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Abstract 

The light front frame and Tamm-Dancoff method is reviewed briefly and 
the light front Tamm-Dancoff method is discussed. The method is ~ppliE?d 
to the hydrogen atom and the 2D Yukawa model. 

The light front Tamm-Dancoff (LFTD) method is introduced as an alternative 
approach to lattice gauge theory to understand relativistic bound states. I ,2 

To alleviate the case the coupling parameter is not small, Tamm and Dancoff3 
(TD) independently considered the possibility of expanding in terms of amplitude that 
represent a finite number of particles, and solve the coupled set of integral equations 
of a small number of these amplitudes. This method was applied to a variety of 
problems in strong interactions, but it was unsuccessful. 

In the light front (LF) or null plane formalism, a physical state is given by the 
3evolution variable that plays the role of time x+ = (XO + x ) j V2 = const, and 

2x- = (XO - x3 )jV2, X.L = (Xl, x ) are spatial variables. There are seven generators 
pI, p2, P+, M 12 , M1+, M2+, and M_+ that leave the LF plane invariant.4 

The momentum of a particle of mass m is 

pI' = (p+, p- (m2+ pi) /2p+, Plo = (pl,p2)) fl = +, ....'~1frll 
2where p± = (pO ±p3)jV2 and p2 = m 2 +pi - pi = m , where -,4 

" 
9 J.l.1I = (! ~ J ~). 
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The p+ and P.1. are conserved at each vertex and particles are on mass shell. We 
require spectrum of pJL be contained in the forward cone 

pO > 0, so p+ = (v'm2 + p32 +pi + p3) /\1'2 > 0 . 

The advantages of the LF formalism is that5 (1) If the LF wave function of a 
system is known at rest, it can be obtained at other momentum by boost operators. 
(2) The property p+ > 0, and its conservation reduces the number of Fock space 

. states needed to generate a covariant result. (3) The bare vacuum is equal to the 
physical vacuum. 

But these advantages are accompanied by some disadvantages, (1) It is necessary 
to require for renormalization, mass and counter terms that depend on the sector 
of Fock space within which they act. (2) Note if the momentum p3 is cut off at A, 

2 

p+ = (pO +p3)/V2 = (2A + m )/Vi. There is an infrared divergence as p+ -+ small. 
A 

So ultraviolet and infrared aivergences have to be treated in a consistent manner. 
(3) Renormalization 'constants' ZI and Z2 are momentum dependent.6 (4) How to 
handle zero modes and gluons in QCD is not worked out. 
Consider HI = gifJ3 as an example.7 

If one restricts the TD amplitudes to less than two particles, then the second Z 
diagram is dropped. Both are needed for covariance in the equal time frame. In 
the LF frame the Z diagram does not exist, as the leg going backward has negative 
energy and p+ = (_pO + p3)/V2 cannot be positive. But in the LF the first diagram 
alone is covariant 

PI px + PI.1. 

P2 p (1 - x) +P2.1. 

P PI +P2 :. PI.1. +P2.1. = P.1. = 0 

m2 +p2- 1.1. 
PI = +

2PI 
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(1) 

We begin with Einstein's equation to consider the mass renormalization of the elec
tron. 

(M2 + pl- 2P+ po-) I'll >= 2P+ PI-I'll > (2) 

We outline the calculationS for the hydrogen atom of state IH > 

IH > = Golpe > +Gllpe, > (3) 

Project out Go amplitude from Eqs. (2) and (3). 

FGo = e JLOlGl + e 2 JLooGo , (4) 

where Loo represents the instantaneous photon exchange and 

F= [M2 + (Pl. +kS _ (p+ + k+) {ki :+M;o + pi :+Mfoo }] . 

Project out Gl from Eqs. (2) and (3), and obtain 

HGI = eLlOGO + e2 JLnGl (5) 

Eliminate Gl from Eq. (4) with the aid of Eq. (5) 

FGo = e 2 JLOlH- l LlOGO +e 2 JLooGo . (6) 

In the nonrelativistic limit, Ipl,lql < A «: Me, after mass renormalization we 
obtain, with M2 = (Me + }r1p - B)2 = (Mp +Me)2 - 2 (Mp +Me) B 

( 
B+ p2) <P(P) = ~Joo d3k <I>(k) 2 (7)

2ft 21f2 -00 (p - k) 

e2ft is the reduced mass a = / 41f. This is the Lippman-Schwinger equation and its 
2 

1 t · 9' B a ftso u Ion IS n = 2n2 ' 

A poor person's solution when p = 0 can be found by using the trial function 
2<P(k) = G/(k 2 + a )2, where a is to be determined. 
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We find B == 0: 
2 

a where a has dimensions of mass. Put a == /2B J.L, then 

- 0: 
2J.L

B==
2 

-
0:2me 

2 
hydrogen n==l 

-
0:2me positronium n==l (8) 

4 
We consider next fermion-fermion interaction via meson exchange in two dimensions10 • 

The fermions have equal mass, different flavor and are neutral. Expand the two 
fermion bound state 11/1 > 

11/1 > == Colff > + C1 1ffb > (9) 

It is shown in Ref. 10 that the self-energy corrections can be ignored in the following 
approximation in the non-relativistic limit. We let the fractions of the momentum of 
the two fermions be z and (1- z), so that p+/pt == l/z, p+/pt == 1/(1- z) and 
p PI + P2· We put P.l. == 0, project out Co and C1 from Eqs. (2) and (9), and 
obtain10 

(M2 - m 2/ (1 - z) - m2 /z) Co (1 - z, z) 

== Am { [1-:1: ~ [1/ (1 - z) + 1/ (1- z - y)] C1 (1- z - y,z,y)Jo y41ry 

+ [:1:~ [l/z + 1/ (z - y)] C1 (1 - z, z y, y)} (10)Jo y 41rY 

(M 2 -m2/(1-z-y) m2/z m~/y)Cl(l-x-y,X,y) 

== ~{[1/ (1 z - y) + 1/ (1 - z)] Co (1 - x,z)
y41ry 

+ [1/:z: + 1/ (:z: + y)] Go (1 -:z: - y,:z: + y)} (11) 

Eliminate C1 from Eqs. (10) and (11), 

:1: dy [l/(l-z)+l/(x-y)][l/(l-x)+l/(l x+y)] ( }
+1 - Co 1 - x + y x - y)o 41rY M2 - m 2/ (1 - z) - m 2 (x y) - miJ/y , 

(12) 
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Change variables in Eq. (12), 1 - x = Xl, X = X2, 1 - X - Y Yl, X + Y = Y2 

and the resulting equation with M 2m - B, B = B (B2/4m) islo 

(13) 

This is remarkably similar to the hydrogen atom equation (7). The correspondence 
dl d3 k

is - -+ -(-)- and mB = 0 as expected. To solve the 2D Eq. (13) at q2 = 0, choose a 
27r 27r 3 

trial wave function q,(l) = C and minimize B with respect to a. The solution2v'l2 + a

is B = ~ where .\ has the dimension of mass in 2D. 
7rmB 

One would like to regard the 2D Eq. (13) extended to 4D as i). beginning equation to 
calculate the deuteron bound state energy. But the problem is much more complicated 
because of a repulsive core and D wave contributions. The relativistic limit of one 
boson exchange in the Yukawa model is discussed in Ref. 11. 

For fun if one substitutes in Eq. (13) 

f dl f ld
3

27r -+ {27r)3 

C C 
¢ = v'k2+ a2 -+ ¢ = (k2 + a2)3/2 

one obtains after minimizing with respect to a 

_ .\2 
B = 2 mB·37r 
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