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Abstract 


The· possible types of light neutrinos are discussed in connection 
,..,it-h·· ~he recent data on zo decay~ Ito'" ' 'lhich show the number of 
differ~nt neutral elementary particles to be J( ::: 3. It is shown.. .,., v 
to be ~possible in pr~nciple to construct models including at most 
'six -g~nerations even for J( v ::: 3, if neutrinos are the special 

(ZKM) Dirac type which means that only one Dirac neutrino plays 
a role for t,'lO generations. The neutrinoless double beta decay 
accompanied by the emission of a Majoron does not exist, if J( =3 

v 
and the Majoron is the type proposed by Gelmini and Roncadelli. 
The recent progress of theoretical estimations for nuclear matrix 
elements are summarized briefly. 

1. Introduction 
No important and new experimental result on the neutrinoless double 

beta decay w:hich ''lill be referred to as the (fJ fJ)O v m~de has been reported 
for this one year. One of the reasons is that the' half life for this 
decay mode seems to be longer than the one expected until no''l. Therefore, 
many new ideas of instruments have been proposed and the next stage of 

experiments has started. Of course, if neutrinos are the Dirac type, this 

(fJ /3)0 v mode is prohibited, see for example sec. 1.3 of Ref.1. (Hereafter 
Ref.l will be referred to as 1.) 

The possibility has been discussed to observe the neulrinoless double 

beta decay accompanied by the emission of Majoron, the (fJ fJ)O v ,8 mode, 
see Eq.(5·2·2) of 1. However, this mode. seems to be denied by the recent 
experimental results on the zo decay' widlh, if this Majoron is the type 

proposed by Gelmini and Roncadelli: u The reason is as follows: The number 

of different light neutral elemenlary particles ''lhich are produced in this 
zo decay is, for example, J( =2.8±0.6(SLC) and 3.12±0.42(OPAL).3) If this v 
,type of Majoron exists, its contribution is J( v = 2 in addition to J( v = 3 
which corresponds to three massless neutrinos' in the context of the 
standard model. 4) ••• ) 

Although J( = 3 simply points out the existence of three generations,v 
we can in principle construct special models including at most· six 
generations consistently with J( v =3 under the following two assumptions: 

*) 	This review talk was present~d on September 30 of 1989. Since new 
experimental resulls on the Zo decay were announced on October 13, 
some parts of this ''lritlen review are different from the oral one. 

**) The author would like to express his sincere thanks to 

Professor K. Hikasa for informing him of Ref .4. 
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(1) Only one Dirac type neutrino plays a common role for two generations. 

It is known that such type of neutrino is not incompatible with the present 
experimental data, after Zeldovich and Konopinski and Mahmoud proposed 
this possibility in 1952.5) In subsection 3.2 of this review, this type will 
be defined and referred to as the ZKM Dirac neutrino. (2) All masses of 
quarks and charged leptons which belong to the fourth and higher 
generations should be larger than 45 Ge V, the half of the zo mass. 6 ) If 

all neutrinos are the ZKM Dirac ones, the (/3 /3)011 mode is prohibited. 
If the (/3 /3)011 mode is observed, it is necessary to know the magnitude 

of nuclear matrix elements in order to extract the useful information on 
the elementary particle physics, for example, such as the mass of neutrino 
and the right-handed weak interaction. Concerning these nuclear matrix 
elements, there had been some discrepancies between experimental results 
and theoretical estimations. One reasonable resolution has been proposed 
recen tly. 7). 8), 

In this short review, the difference between the Dirac type neutrino 
and the Majorana type one is explained. It is summarized how to distinguish 
them experimentally. In section 3, various types of neutrinos are classified 
from the view point of the neutrino mass matrix. In section 4, the recent 
theoretical and experimental situations on the double beta decay are 
mentioned briefly. 

2. DIRAC, WEYL AND MAJORANA FIELDS 
Let us first show that a free Dirac field ¢J consists of two independent 

Majorana fields. The Lagrangian density for a classical Dirac field is 

(2.1) 


Hereafter, the Weyl representation of 1 matrices will be used. 
If we express the Dirac field ¢J in the ordinary two component form, 

,1. _ (1 -15) ,1. ( 0) (1+15) (~) (2.2)
'P L - 2 'P = X ' cPR= 2 cP= 0 ' 

then the Lagrangian becomes 

The mass term includes both X and ~, and it will be referred to as a 
Dirac type mass term. If m =0, then X and ~ represent different Weyl 
fields. As the quantized field operator, X with m =0 includes both an 
annihilation operator of particle with the negative helicity and a creation 
operator of antiparticle with the positive helicity, because of 0_ . 

Next, let us represent ¢J as a superposition of two independent Majorana 

fields N 1 and N 2 with the same mass, 

(2.4) 
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where N /s are defined in the four component form as follows, 

and (2.5) 

Note that fields N j satisfy the self-conjugate condition, NC: = N., where 
N C T=CN , C being the charge conjugation matrix, see Eq.(2.1.13) of t Then, 
by assuming 7} and ~ to be Grassman numbers, the original Lagrangian 
density splits completely into two parts such as 

:£ = :£ L ( 7} ) + :£ R( ~ ) '. (2.6) 
where 

:£ L('7} ) = 7}+0_7} - (m/2) (7}Tia2 7} - 7}+ia27}*), 

:£ R( ~ ) = ~ +°+~ - (m/2) ( ~ +i a 2 ~ * - ~T i a 2 ~ ). (2.7) 

These 7} and ~ will be referred to as the left- and right-handed Majorana 

fields in the two component form, respectively, because of the 0_( +) 

character. The natural expression for the Majorana field is the two 
component form like 7} and ~, because it has only two freedoms (two spin 
states). The four component form N 1(2) in Eq.(2.5) should be understood 
as a convention to express the weak charged current compactly. These 
7} and f have opposite signs under the CP transformation, because of the 
factor i in Eq.(2.4), see Eq.(2·5·6) of I. 

Mass terms in Eq.(2.7) are the 7} T i a 27} or ~ +i a 2 f * types (Majorana 
type mass term), instead of the q; +X type (Dirac type mass term) in Eq.(2.3). 
This Majorana type mass term means that there is no freedom for phase 
transformation, because of non-existence of the complex conjugate factor 

of 7J or f. Since the invariance under the phase transformation, namely 

a global gauge transformation. offers the additive conservations of charge 

and fermion number within a framework of gauge theory, all charged 

fermions shoud be treated as the Dirac field. There is, however, a 

possibility that the neutral fermion like neutrino can be described by the 
Majorana field, ,vhich is more fundamental than the Dirac field. One may 
have a question why there is a phase freedom for the Dirac field in spite 
of the fact that it consists of two Majorana fields which have no such 
phase freedom. The answer for this question is as follows, see Eq.(2·5·8) 
of I: First let us mix two Majorana fields by an orthogonal transformation, 

(2.8) 

Then the Dirac field c/J a is related to c/J in Eq.(2.4) as 

(2.9) . 

The quantized field operator for the Majorana neutrino (7} or f) is 
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expressed in a four component form as 

N = ( -iU;1/* ) =NL + (NL)C 

=fdQqL:S[a(q,s)u(q,s)e-iqX + a+(q,s)v(q,s)eiqXJ ' (2.10) 

where the four component spinor u(q,s) is nothing but the ordinary Dirac 
spinor in th~ Weyl basis of r matrix, and v = CuT, Of course, the spinor 
parts for 1] and f in the two component form are different from each 
other and from Eq.(2.10), see Eq.(2·4·6) of 1. In the case of the massless 
NL (NR ), the operator a(q,s) annihilates a Majorana neutrino with negative 
( positive) helicity, while a+(q,s) creates another with positive ( negative) 
helicity. In our point view of Eq.(2.4), annihilation operators (b and c) 
for the Dirac neutrino and antineutrino are defined as 

(2.11) 

respectively. It is worthw hile to note that the Majorana fields N j and 
the Dirac field ¢ are related as follows, 

1 -i c
N =-( ¢ + ¢c) and N 2 = -{2 ( ¢ - ¢ ), (2.12)

1 -{2 

where the charge conjugation of ¢ is ¢c = (N1 - iN2)/-{2. The situation 

where ¢ and ¢ c are the superposition of N j is similar to the charged 

boson case where the field operator is expressed by a superposition of 

two Hermitian fields. 
In this review, the leptonic charged currents of the weak interaction 

with the left- and right-handed weak intermediate bosons (WLand WR) are 

defined respectively as follows, 

(2.13) 

where l =e, J.l and t' and the weak charged currents are 

j lL P =I r P (1 - r 5) IJ lL the left-handed (V - A) interaction, (2.14) 

the right-handed (V + A) interac;;tion. (2.15) 

If m = 0, it has no physical meaning to distinguish the Weyl neutrino 
from the Majoran~ one in the context of the (V - A) and (V + A) weak 
interactions, because of factors (1 ± r 5) and Eq.(2.10). However, if m * 0 , 
it is important to determine whether neutrino is the Dirac or Majorana 
type. For this purpose, let us consider five cases in the framework of 

the V - A weak interaction: 
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(1) 	 Magnetic dipole moment : 

A massive Majorana neutrino can not have a magnetic and electric 
moments, because of the self-conjugate condition characteristic of 
Majorana neutrinos. Since there is a transition moment, the radiative 
decay of the heavier Majorana neutrino to the lighter one is allowed, 
and the spin rotation also occurs, if they pass through a gigantic 
magnetic field, see Eq.(2·7·1) of 1. 

On the other hand, a massive Dirac neutrino can have a magnetic 
moment ( and if time reversal invariance is violated, an electric 
moment, too). This is because the transition moment between two 
Majorana neutrinos in Eq.(2.4) gives rise to the magnetic moment for 

the Dirac neutrino, see Eq.(2·7·3) of 1. Its magnitude is 
11 ~V-A) =3xl0-19 (m 1 1 eV) IlB in the SU(2)LxU(1) theories with massive

1l 

Dirac neutrinos, m 11 and 11 B being the mass of neutrino in units of 
1 eV and the Bohr magneton, respectively. If the V + A weak interaction 
is taken into account, a little larger value may be derived. The 
present experimental lower limits are (1.6 ........12) x 10-10 11 B from laboratory 
experiments,9) and 10-12 ........10-13 11 B from the SN1987a data. 10 ) 

(2) One neutrino case in the final state : 

As an example, let us consider the single /3 decay, n - p + e- + 11 e' 
where the emitted neutrino will be referred to as an (electron) 
antineutrino. The electron (or proton) spetrum shows no difference 
for both the Dirac and Majorana neutrinos, because the second term 
in Eq.(2.10) is the same for both cases. The word "antineutrino" will 
be used even for the Majorana neutrino as the case where it has 
mainly the positive helicity in the context of V-A weak interaction. 

Its negative helicity part is proportional to (m 11 I w), typically of order 
of 10-6

, m and w being the mass and energy of neutrino, respective­
11 

ly, see below Eq.(2·4·26) of 1. 

This emitted antineutrino, for example from a nuclear reactor, can 

trigger the reaction, 

1I e +n-p+e-, 	 (2.16) 

for the massive Majorana neutrino case, though it is forbidden for 
the Dirac neutrino because of the lepton number conservation. 
Unfortunately, it. is almost impossible to observe it experimentally. 
The reason is the requirement of the helicity matching: That is, in 
the context of V-A theory, the allowed reaction for either the Dirac 
or Majorana neutrino is 11 e + n - p + e-, where the' helicity of the 

incident neutrino is negative mainly. Thus, the reaction rate of 
Eq.(2.16) is smaller by the order of (m / w)2 < 10-10 in comparison with 
another normal reaction, v-; + P - n + e+. 

11 
Of course, this reaction rate 

is proportional to the inverse square of the distance of antineuttino 
propagation, see Eq.(11·1·6) of 1. 

There may be a chance to observe Eq.{2.16) inside one nucleus, where 
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the normal reaction, ~ + P - n + e+, is prohibited by the energy con­

~ervation or the competing radiative decay of the excited nuclei. This 
is the neutrinoless double beta decay, which will be mentioned in the 
case (5). 

Quite similar argument can be applied to the case of neutrino, for 

example, as solar neutrinos like 2p - d + e+ + ve' The reaction due to 
the Majorana neutrino corresponding to Eq.(2.16) is 

(2.17) 


This case is a little favorable in comparison with Eq.(2.16), because 
the normal nuclear reaction JJ e + n - p + e - is able to be avoided for 
low energy neutrino by using the hydrogen or the water as a detector. 
However, the reducing factor (m v / W)2 ........10-10 is still obstructive. 

There is another problem of the spin-rotation due to the magnetic 
moment of Dirac neutrino or the transition moment of the Majorana 

1013neutrino passing through a gigantic magnetic field B ........ G. We do 
not discuss it here. 10 ) 

(3) Two neutrinos in the final state : 

There are processes like Jl + - e+ + v Jl + ve and r + r - v l + v l in the 
final stage just before the explosion of supernova. The difference 
between the Dirac and Majorana neutrinos is terms proportional to 
(m v / w). It is not easy to measure these terms, see Eq.(11·2·9) of I. 

(4) Neutrino oscillation : 
In the n massive Majorana neutrino system in the framework of the 

SUL(2)xUy (1) model with n left-handed lepton doublets, the number of 

the CP violating phases is n(n - 1) / 2, which is larger than· 

(n - 1) (n - 2) / 2 in the n Dirac neutrino system. The latter corresponds 

to the Cabibbo-Kobayashi-Maskawa phases in the quark sector. However, 

this phase difference does not appear in the theoretical expression 
for the neutrino oscillation, see Eq.(2·3·2) of I. 

In the Majorana neutrino case, if the left- and right-handed Majorana 
type mass matrices corresponding to mL and M in Eq.(3.3) coexist, then 
some initial neutrinos (or antineutrinos) transit into sterile neutrinos 
which do not take part in the V - A interaction, so that the measured 
flux of neutrinos becomes less than the flux expected for the pure 
Dirac or the pure left-handed Majorana neutrino case.ll) 

In the Majorana neutrino case, it is possible, in principle, that the 
v J1 beam from the pion decay, tr: +( -) - J1 +( -) + v J1 ( JJ Jl)' induces the 
reacti~n in Eq.(2.17) (or Eq.(2.16) ), if neutrino oscillation occurs. But, 
it should be noted that there is some contamination of the ve beam 
experimentally. 

(5) 	The Majorana neutrino exchange processes : 
The transition of the parent nucleus with (Z - 2) protons into the 
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daughter one with Z protons without emitting neutrinos, 

(A, Z - 2) -+ (A, Z) + 2e­ the (/3 /3)0 v mode, (2.18) 

is the realization of Eq.(2.16), as mentioned above, and will be discussed 
in subsection 4.2 of this review. 

There are some other processes to distinguish the Majorana neutrino from 
the Dirac one like 11- + (A, Z) -+ (A, Z - 2) + e+ and K+ -+ 'II - + e+ + 11 +. They 
are listed and discussed in section 11 of 1. 

3. Neutrino mass matrix 
As the simplest extension' of the standard theory, we shall assume that 

in each generation, there is only one massless left-handed Majorana 
neutrino before the spontaneous symmetry breaking and it will get some 
mass by the Higgs mechanism. Furthermore, it is assumed to be able to 
add another massless right-handed Majorana neutrino which appears in 
the left-right symmetric models like SU(2)L xSU(2)R X U(l)y gauge theory. 
Let us first examine one generation case. 

3.1 One generation case 
The Lagrangian density of the neutrino mass part after the symmtery 

breaking is 

(3.1) 

where v L and v it' do not mean to take the left- and right-handed parts 
of v 0, but stand for seeds which are characterized respectively as the 
left- and right-handed Majorana massless neutrinos by their kinetic terms 
like the first terms in Eq.(2.7) before the spontaneous symmetry breaking. 
In the four component form, they are 

and (3.2) 

and belong to the same representation of the homogeneous Lorentz group. 
The mass matrix .JA. in Eq.(3.1) is represented as 

mb) (3.3)
M ' 

where mL' mn and M are the vacuum expectation values of neutral Higgs 
bosons multiplied by the Yukawa coupling constants of interactions among 

Higgs bosons, v L and v R'. These mL' M and mn will be referred to as 
the left-, right-handed Majorana type and Dirac type mass terms (mass 
matrices for many generation case), respectively. For simplicity, they are 
assumed to be real (the CP conservation). The transposed notation T of 
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mD has no meaning in this one generation case, though it comes from an 
identity 

(3.4) 

Since the mass matrix .,(,( is a real symmetric matrix, it can be 
diagonalized by the following transformation, 

(3.5) 

Although it is enough mathematically to use an orthogonal matrix for the 
transformation matrix U a unitary matrix is chosen so that both eigen

)) , 
values (m I and m ll) become real positive and give the masses of the 
Majorana neutrinos, see Eq.(2·3·16) of 1. The corresponding eigen vectors 
which will be referred to as (Majorana) mass eigenstates, are represented 

by N I and N ll' respectively, where N j is defined as 

N ' =N 'L + (N 'L)C =N 'L + N 'R . (3.6)
J J J J J 

Here sufices Land R mean to take the left- and right-handed projection 
of the mass eigenstate field operator N j as in Eq.(2.2). If all elements 
of one column of U)) are pure imaginary and those of another column are 

real, then N I and N II have opposite CP values. 
According to their assumed kinetic terms, the full Lagrangian densities 

for the left- and right-handed massive Majorana neutrinos are expressed 
in the four component form as 

:e L = NIL i r Pap NIL - ~ (N I L)C mIN I L + NIL m I (N I L)C) , 

corresponding to Eq.(2.7) in the two component form. If the transformation 

matrix U)) and the mass eigenstate neutrinos N j are expressed in the 
column matrix form as 

and (3.8)U = (U1) = (U I Ull)
)) v* v*1 I v*II 

then the original )) Land )) it' are defined as superpositions of the mass 
eigenstate neutrinos, 

and (3.9) 

respectively. Note that in the one generation case, )) Land )) R' are equal 
to the weak eigenstate )) lL of the V - A interaction in Eq.(2.14) and )) lR' 
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of V + A in Eq.(2.15), respectively. 

It is worthwhile to mention about the sterile neutrino here again. 
Though U 11 itself is a unitary matrix, its part U1 in Eq.(3.9) is not unitary. 
Therefore, for example, the antineutrino ~ produced by the V - A weak 
interaction in Eq.(2.14) can go to some other state (the sterile neutrino 

11 L" ) coming from (11 R')C, which corresponds to the weak eigenstate 11 Rl' 
in the V + A interaction of Eq.(2.15) and does not play a role in the 
standard V - A theory. In general, conditions to make the neutrino 
oscillation are; (1) the difference between m I and m II is so small that a 
coherent superposition of the state vectors derived from the field operator 
N I and N II is formed by the weak interaction, and (2) each mass of them 
is negligible in comparison with their momenta. H ) Each transition amplitude 
is expressed as 

_ _ -iEjt 

a( 11 L - 11 k) = Lj= I, II (Ui)kj e (U1)Lj' 


_ -iE·t 
a( 11 l - 11 k") = Lj= I, II (Vl)kj e J (U1)lj , (3.10) 

where k = l for one generation. The sum of these two transition 
probabilities shoud be equal to unity. The concept of such transition to 
the sterile neutrino does not exist for the pure Dirac case (only mD #: 0) 
or for the pure left-handed Majorana case (only mL #: 0). 

Let us examine three special cases for mL' mD and M. 

(3.LA) The M = - mL case ( the degenerate mass case ): 

The transformation matrix U 11 and the degenerate mass are 


1 (C + s) i (c - s»)U -- and = /ml+mb, (3.11)
11 - {2 (c - s) -i (c + s) 

m I =m II V 

where c = cos8, s = sin8, tan 28 = (mL/mD) and sin 28 = (mL/m I)' Thus, N I 

and N II have the degenerate mass but opposite CP values, because of the 
i factor in U . If we define one Dirac type field as

11 

(3.12)rb =(N 1+ i N II )/{2 and 
then we have 

11 L= cos8 rb L 

(3.13) 


In the limit e - 0, namely mL - 0, we obtain the usual result for the 

( ordinary) Dirac neutrino with the mass mD' 

and (3.14)11 R' = rb R ' 

corresponding to rb in Eq.(2.2). 
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On the other hand, if e =1= 0 (mL =1= 0), the mass degeneracy are broken 
slightly by' the higher order effects of the weak V - A interaction obtained 
by substituting J) L of Eq.(3.13) into J) lL of Eq.(2.14). Thus we have two 
Majorana neutrinos which have the tiny mass difference and opposite CP 

values. These two neutrinos induce the decay of the (/3 /3)0 J) mode in 
Eq.(2.18), where the effective neutrino mass <m > is proportional to 

J) 

2m I sin 2e. A pair of these neutrinos is called as the pseudo Dirac 
neutrino, according to Wolfenstein. 

In the opposite limit of 8 - n /4 (mD - 0), N I and N II contribute to 
the V - A and V + A interactions separately. 

(3.1.B) 	 The mD » mL -- M case: 

Let us choose the transformation matrix U J) and two masses as follows, 

U 	 = (cose i sine) and 	 (3.15 ) 
J) sin 8 -i cos8 

where tan2e =mD/[(mL - M)/2], sin28 =mD/D and D = {[(M - mL)/2)2 + mhP/2. 
We have another type of pseudo Dirac neutrino, if mD » 1M - mL 1/2. These 
two Majorana neutrinos have opposite CP values and their mass difference 

can be chosen as the larger value than the case (3.1.A), because mL and 

M are free parameters. In the limit where mL =M =0, of course, we have 
one Dirac field. 

If the number of light neutrinos is J( J) =3 from the Zo decay width, 
the existence of these pseudo Dirac neutrinos in subsections 3.1A and 3.1B 
seems to be unlikely, because it gives J( J) =2 even for one generation. 

(3.1.C) The M» mD » mL ~ 0 case ( the seesaw mechanism case ): 
The transformation matrix U J) and two masses are chosen as 

U = ( i cos e 
J). -i sine 

sin e) 
cose 

and (3.16) 

where tan 2e = mD/[(M - mL)/2] and sin2e = mn/D. Then, two Majorana 
neutrinos with opposite helicities appear. If we assume mD = me = 0.5 MeV 
and M =100 GeV, then two masses become 

-- 100 GeV. 	 (3.17) 

This is the so-called seesaw mechanism to explain the smallness of the 

neutrino mass in 'comparison with masses of the corresponding charged 

leptons. Parameters M and mL are free in the grand unified theories like 
the 80(10) gauge theory, though the value of mD are restricted by the 
known quantities like quark mixing, masses of quarks and charged leptons. 

While, if ,ve choose parameters like mL » (mh/M), then we have two 
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Majorana neutrinos with the same helicity. In this case, the transformation 
matrix U 11 is obtained by taking out the i factor of the first column in 
Eq.(3.16), and m I becomes m I = [(M + mL)/2] - D ....... mL and m II ....... M. 

This (3.1C) case is one of the realistic models for neutrinos. In this 
case, it is easy to see the following relation from Eq.(3.8) and Eq.(3.16), 

lUI 1= IV II I»IU II 1= IV I I. (3.18) 

This inequality is general for the seesaw mechanism models of three 
generations with I M I ::1= 0, though the equalities should be read as the 
same order of magnitude, because all of them are complicated 3x3 matrices. 

3.2 Three generation case 
In our simplest extension of the standard theory, 11 Land 11 R' in Eq.(3.1) 

are considered to represent columns like 

and (3.19) 

Accordingly, three mass matrix elements, m L , mD and M in Eq.(3.3), become 
3x 3 matrices, so that the whole matrix .Ai is a real symmetric 6x6 one. 
The symmetric character of mL is proved by the identity, 

(3.20) 


CTwhere definitions (11 lL)C = -( 11 lL)TC-l and = -C have been used. The 
symmetric features of M can be proved similarly. 

Therefore, the symmetric mass matrix .Ai can be diagonalized by using 
a 6x 6 unitary matrix U 11 as in Eq.(3.5). The mass eigenstate field N j with 
mass mj is classified by extending the notation in Eqs. (3.8) and (3.5) as 
follows; 

(3.21) 
where all m j are real and positive. 

The weak eigenstate neutrino fields [11 lL of the V - A interaction in 
Eq.(2.14) and 11 lR' of V + A in Eq.(2.15)] are defined as superpositions of 
the mass eigenstate neutrinos N j with mass mj multiplied by mixing matrix 

elements Ulj and Vlj , respectively; 

and 
(3.22) 
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where 3x 3 unitary matrices Ucl and Vel are transformation matrices for 
the left- and right-handed charged leptons, respectively. Note that the 
Dirac type mass matrix for charged leptons (.At D ) is diagonalized as V~l.A{DUcl' 

The 3x6 transformation matrices for neutrinos (U and V ) are defined1 1
from 	U 11 similarly to Eq.(3.8). 

Thus, all theoretical expressions for three generation case are derived 
from the corresponding quantities for one generation case by replacing 
them with matrix forms, except the neutrino mixing matrices U and V in 
Eq.(3.22), cf. Eq.(3.9). Hereafter, we shall assume transformation matrices 

for charged leptons Ucl and Vel to be a unit matrix in order to simplify 
the description. Also eigen values m 1, m2 and. m3 are assummed to 
correspond to different masse,s of 11 e' 11 Jl and 11 r' 

Various types of neutrinos introduced for the one generation case can 
be defined also in the three generation case similarly. For example, we 
have three light left-handed Majorana neutrinos and three heavy right­
handed ones under the seesaw mechanism. They are consistent with the 
zo decay data, say, .K 11 = 3 and three kinds of charged leptons. 6 ) 

However, there are special types of neutrino characteristic of many 
generations. Before discussing them, it is convenient to explain how to 
obtain the ordinary Dirac neutrinos from our view point of Eq.(2.4) for ¢. 

The word "ordinary Dirac" means to guarantee the lepton number conser­
vations for each generations and/or Le + L Jl + L r =const. Three following 
relations are required; 
(1) 	 m I =m II in Eq.(3.21): 

Two masses in Eq.(3.21) should degenelate such as mj =m3+j" These 
eigen values are obtained from the following diagonalization by using 

U 11 in E.(3.8), 

(3.23) 

(2) 	Two Majorana type mass matrices should be zero, mL =M =0: 
This is necessary to avoid the pseudo Dirac neutrinos due to the 
mass splitting which come from the radiative correction like Eq.(3.13). 

(3) 	Two Majo,rana neutrinos should have opposite helicities: 
If they are the j-th neutrinos of N I and. N II with the degenerate 
mass mj' this condition is expresssed as 

and 	 (3.24)(U II )lj = i(U I )lj (V II )lj = i(V I )lj . 

Note 	that if.K =3 from the zo data is established, three Dirac neutrinos 
11 

are consistent with it, but this type of pseudo Dirac neutrinos due to 
ImL I 	=1= 0 and/or I M I =1= 0 corresponding to Eqs.(3.13) and (3.15) is prohibited, 

because .K 11 > 3. 
Now we shall return and see the new features characteristic of many 

generations. Let us first consider a new type of Dirac neutrino which 
consists of two left-handed Majorana neutrinos. As an example, the case 
of two left-handed electron and muon neutrinos will be examined, see 
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Eq.(2·5·9) of 1. Then the Lagrangian density for the mass part is, 

(3.25 ) 

where Eq.(3.20) has been used. This has mathematically the same structure 
as Eq.(3.3) for the one generation case, except the seesaw mechanism in 
subsection 3.1.e. Thus, if m j1. j1. = - m ee, then analogously to Eq.(3.13), we 
have 

lJ eL = 

(3.26) 

where tan 28 = (mee/me j1.)' sin 28 = (mee/m I) and m I =[m~e + m~j1. )1/2. 

In the limit of 8 - 0 (mee - 0), we have one Dirac type neutrino. This 
is the ZKM Dirac neutrino, which is a superposition of two left-handed 
Majorana neutrinos with the degenerate mass m e j1. and opposite helicities, 

c/. Eq.(2·1·7) of 1. In this example, we have m 1 =m2 and (U 1)11 =±i(U 1 )l2 
for l = e and j1. in order. Note that the difference of lepton numbers 
(L - L j1.) is conserved, because the mass term m I ¢J ¢J and the weak chargede 
current in Eq.(2.14) is invariant under the phase transformation, 

_ ia 
and (3.27)lJ eL e lJ eL 

Only one ZKM Dirac neutrino appears for two generations. Therefore, 
if all neutrinos are the ZKM Dirac neutrino, six generations are compatible 

with J{ lJ =3. The intermediate case of four or five generations is allowed, 

depending on the structure of the mass matrix. Strictly speaking, since 

the transformation matrix UcL for charged leptons is not the unit matrix 

in general, the mixing angle 8 in Eq.(3.26) should be chosen as having 

lJ eL = ¢J L and lJ j1. L = (¢J c)L' 
If 8 =1= 0 in Eq.(3.26), we have the pseudo ZKM Dirac neutrino which is 

equivalent with two left-handed Majorana neutrinos. In this case, J{ lJ =3 
indicates three generations with one pseudo ZKM Dirac neutrino and one 
Majorana neutrino. Of course, the (/3 /3)0 lJ mode is allowed in this case, 
though it is' prohibited for the pure ZKM Dirac neutrino. 

If we take into account the right-handed Majorana neutrinos, say lJ ~R' 

and lJ ~R' , then we can have two different ZKM Dirac neutrinos by applying 
the seesaw mechanism. One is light and another is heavy (>100GeV), and 
the difference of lepton numbers (Le - L j1.) is conserved. Such case is 

realized by assuming that both symmetric left- and right-handed Majorana 
mass matrices (mL and M) have only off-diagonal elements and the Dirac 
mass matrix (mD) has only diagonal elements. Again, if all six neutrinos 
are these types of the ZKM Dirac ones, then six generations are compatible 
with J{ lJ = 3. The situation is similar to the case of mL only. If 
requirements on mL' M and mD are not satisfied, then only three 
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generalions are allowed from.K =3. 
v 

Furlhermore, il is possible lo conslrucl anolher lype of lhe ZKM Dirac 
neulrino, which consisls of one lefl-handed Majorana neulrino and aolher 
righl-handed one wilh the degenerale mass mj = m3+k for k#:j • . The case 
of lhree generalions is only compatible wilh.K =3. The seesaw mechanism v 
does nol work, so lhal lhis case seems nol lo be realistic. 

4. Double bela decay 
Two following decay modes compele wilh the (/3 /3)0 v mode in Eq.(2.18); 

(A, Z - 2) - (A, Z) + 2e - + 2~ the (/3 /3 )2 v mode, 

(A, Z - 2) - (A, Z) + 2e - + X 0 the (/3 /3 )0 v , B mode, (4.1) 

where XO is lhe Majoron. These lhree 
decay modes can be dislinguished experi­
menlally by measuring lhe sum-energy 
speclrum of lwo eleclrons, as shown in 
Fig. 1. The lolal kinelic energy released 
in the decay is defined as, 

II 

,, 
I 

I, 
, T = ( Mi - Mf - 2me )/me,

I 

I 


I 
 where me' M i and Mf are masses of 
~5 1 eleclron, parenl and daughler nuclei, 

['1 + , 2 - 2m.)/ T m, 
respeclively.Fig. 1. 

4.1 The (fJ fJ )211 mode 
This decay mode is allowed for eilher Dirac or Majorana neulrino. 

Since lhis decay rale can be calculaled unambiguously by lhe slandard 

V - A model, il is used lo check lhe reliabilily on lhe lheorelical 
eslimalions of nuclear malrix elemenls. 

The half-:-life of lhe 0+-0+ lransilion in lhe (/3 /3)2 v mode is given as 

(4.2) 


l'{here lhe inlegraled kinemalical faclor GGT is lhe known numerical 
quanlilies. 12 ) The faclor I M~}¥) )1/1 0' is relaled lo lhe reduced nuclear 
malrix elemenls of lhe double Gamow-Teller (nuclear spin flip) lransilions 
[Mh~) defined in Eq,(3·2·4b) of I] by the following definilion: 

(4.3) 

where La. means'lhe sum over lhe inlermediale nucleus (Na.) al lhe energy 
slale Ea. and by neglecling the leplon energy parl, lhe denominator becomes 

(4.4) 
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As an example, let us consider the following decay, 

82 82 -­
34Se -+ 36Kr + 2e + 2ve with T =5.861 = 2.995 MeV/me. (4.5) 

Experimental values of the half-life are in units of 1020 years 
(1.30 ± 0.05) ( Heidelberg, 1986 ),13) 

(1.2 ± 0.1) ( Missouri, 1988 ),14.) 

(1.1 + 0.8 - 0.3) ( Irvine, 1987 },15) 

where the first two are obtained by the geochemical method and the last 
one by the time proportional chamber at laboratory. As the integrated 
kinematical factor is (GGT}-l = 2.276xl017 yr for this 82Se decay,U) we have 
from the Irvine data 

(4.6) 

Theoretical estimates of it was ( 0.083 -.. 0.123 ) before 1986. In 1986, the 
Caltech and Tubingen groups proposed the theoretical nuclear models to 
reproduce the strong suppression, the proton-neutron quasiparticle random 
phase approximation (pnQRPA) with particle-particle interaction (gpp).7) 

The Heidelberg group performed the laborious calculation and found the 
reasonable agreements with present experimental limits for various nuclei. B ) 

However, there remains some problem on the ~i8Te and ~~OTe nuclei. We 
shall return it in next subsection. 

Before closing this subsection, we would like to add one comment. 
Strictly speaking, the denominator of Eq.(4.3} includes the lepton energy 
difference originally, because of the second order perturbation, i.e., 

Jl. a ± Kn (or Ln ), where 

8 j being the energy of the j-th electron. The integrated kinematical 
factor GGT in Eq.(4.2} ~akes into account this lepton energy dependence 
as factors like [1- (Kn/<Jl. »2], where <Jl. > is defined from Eq.(4.4) bya a 
using some appropriate average of E .12) Since Jl. a> 10 and <K n> « T/4,a 
the error due to this replacement is small, say less than 5%. The value 
in Eq.(4.6} has been obtained from the experimental data by using Eq.(4.2), 
so that it is a little diffferent from the direct theoretical evaluation of 
Eq.( 4.3), though this deviation is supposed not to be so serious. 

4.2 The (fj fj}O v mode 
Let us consider this decay mode as the transitions of two neutron 

into two protons inside nucleus, the 2n mechanism, as shown in Fig.2. 
In the minimum standard model, an antineutrino (v ) with positive helicitye
is emitted from the nl vertex, while a neutrino (v e) with negative heliC?ity 
is absorbed at the n2 vertex, as shown in Fig.2(a} where the main helicity 
states of leptons with large momenta are shown by short arrows. These 
two neutrino lines can not be connected in the standard model. In order 
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for the (fj fj)o 11 mode to occur, two conditions are required: (1) The Lepton 

number nonconservation, i.e., this virtual neutrino should be the Majorana 
type. (2) The heLicity matching, i.e., both neutrinos should have the same 
helicity component to connect them. 

The second condition is satisfied within the V - A interaction, if 
neutrinos are massive (the m 11 part), as explained below Eq.(2.16). In 
addition, there is another possible case (the V + A part), as shown in 
Fig.2(b). Transition amplitude due to the j-th virtual neutrino is proportinal 

to mjU~j for the m 1l part, while ).qjUejVej for the V + A part, where U 
and V are the neutrino mixing matrices defined in Eq.(3.22), ). stands for 
the ratio of the V + A to V - A interactions and q j is the 4-momentum 
(w j' q) of neutrino, see Eq.(3·3·1) of 1. Thus, the m 11 part and the virtual 
neutrino ene.rgy (w) term of the V + A part contribute to only the 0+ -- 0+ 
nuclear transition, because both final electrons are in the S wave and 
there is no daughter nuclei with unit spin in nature. On the other hand, 
the q term of the V + A part triggers both the 0+ -- 0+ and 0+ -- 2+ 
transitions, because q requires one more parity odd term like an electron 

in the P1/2(3/2) wave. There is another parity odd term, the nucleon 
recoil term. Its contribution is not small, because both final electrons 
can be in the S wave. It is worthwhile to mention that if the 0+ -- 2+ 
transition in the (fj fj )011 mode is observed, then it means unambiguously 

that at least one neutrino is the massive Majorana and there is the V + A 

interaction. Its mass may be a tiny radiative correction due to the weak 

interaction. 
The effective interaction Hamiltonian in the simplest extension of the 

standard model is expressed as 

(4.8) 

where j L(R) p is the leptonic current defined in Eqs.(2.14 - 15). The ratio 
of the V + A to V - A interactions is expressed by )., 1] and IC, which are 
written approximately as, for example in the SU(2)L x SU(2)R x U(1)y models; 

11 = IC ......., -tan r , (4.9) 


where r is the mixing angle between the left-handed gauge boson W L with 
the mass MWL and the right-handed gauge boson W R with MWR ' c/. Eq.(A:2·5) 
of 1. In the (fj fj)O 11 decay, the IC term is neglected, because it appears 
always as (1 ± IC) and I IC 1« 1 is expected, see Eq.(C·1·5) of 1. 
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The hadronic V - A (V + A) current JL(R) P is within the non-relativistc 
impulse approximation, 

Jf+(x) =Enr~[(gv - gACn)gPO + (gAa~ - gvD~)gpk]c5(X - Tn)' 

JJ?+(x) =En r ~[(gv + gACn)gPO + (-gAa~ -gvD~)gpk]c5(x - Tn)' (4.10) 

where r~, a n and Tn are the isospin raising, spin and position operators 
acting on the n-th nucleon, respectively, and gP J.I. =(1, -1, -1,-1) is the 
metric tensor. The operators C and Dn represent the nucleon recoiln 
terms defined in Eq.(3·1·17) ?f I, where only the first and second terms 

are kept in, the expansion of the inverse of nucleon mass (mN)' If 
m j > mN' the non-relativistic approximation of Eq.(4.10) should be carefully 
examined, because the third terms contribute to the m part. If m·» mN' 

v J 
then the quark structure of nucleons should be taken into account. In 
this review, these heavier neutrino case will not be considered. 

The quark mixing and the renormalization effect due to the strong 
interaction are included as follows; 

(4.11) 

where () c and () c are the Cabibbo-Kobayashi-Maskawa mixing angle for the 
left- and right-handed d and s quarks, respectively, and a is the CP 

violating phase, see Eq.(3·1·11) of 1. 

Thus, we have three unknown effective parameters for masses of 
virtual neutrinos and the V + A part, 

where the primed sum extends over only the light neutrinos (mj<10 MeV), 

The reason for this restriction on the sum is that if mj is smaller than 

the average value of the intermediate nuclear energy level J.l. a in Eq.(4.4) 
which is of order of 20, then the neutrino potential due to the virtual 
neutrino exchange is a simple Coulomb type (if> Ir) independent of mj, see 

Fig.3.4 of I and Fig.8 of the second paper of Ref. 8. If mj>mN' the 
neutrino potential becomes a Yukawa type depending on mj, so that the 
expressions of these effective parameters should include the ratio of 

-m·r 
nuclear matrix elements like [< ¢ 'e J Ir>l< ¢ Ir>]. However, as mentioned 

already, the non-relativistic approximation of Eq.(4.10) and the quark 
structure of nucleons should be carefully examined for the heavier 
neutrino case, especially for the m v part. In addition, the mixing matrix 
element Uej becomes smaller in general. Therefore, we do not ,,,,rite this 
case explicitly. However, it is worthwhile to note that the absolute value 
of the contribution from some heavier neutrino should be equal to the 

one from the lighter neutrino, because <m v> is proportional to mj' 

Now let us examine the kinematical characters of the m v and V + A 
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parts. From the dimensional analysis, the effective mass <m > is normalized v 
by some typical energy scale of the decay process, say m Then, we 

5 e. 
have a big suppression factor, «m v >/me) -., 10-. While, the corresponding 
quantity of the V + A part is the average energy of virtual neutrino which 
is of order of <w>-"<q>-.,<1/R>-.,80 me' where R is the nuclear radius. 
Therefore, it may be expected that the V + A part gives the larger 
contribution than the <m v> part, but it is not so in reality. If all 
neutrinos are lighter than 10 MeV, then the unitality property of U v in 
Eq.(3.8) requires the relation, 

(4.13) 

Thus, the non-zero values of <.:t > and < TJ > in Eq.(4.12) mean to measure 
the small deviations from zero which are based on the contributions from 
the virtual heavy neutrinos, in addition to the smallness of .:t and TJ 
themselves. 

Contributions from the m v and V + A parts can be distinguished in 
principle by measuring the angular correlation between two final electrons, 
because the former shows the (1 - cos 8) type but the latter is the mixing 
of (1 + cos 8) and isotropic types, see Eq.(6·2·1) of 1. 

The half-life of the 0+-+0+ transition in the (/3 /3)0 v mode is given as 

[TO v (0+-+ 0+)]-1 = IMb~ )' 2 [ C1«m v >/me)2 + C2<.:t >( <m v >/me)cos ¢1 

+ C3<71>«mv>/me)cos¢2 + C4<.:t>2 + C5<TJ>2 + C6<.:t><71>COS(¢1-¢2)]' (4.14) 

where ¢1 and ¢2 take 0 or 1f, if CP is conserved. The double Gamow-Teller 
nuclear matrix element is defined as 

where h+ is the neutrino potential, r nm is the distance between the n-th 
and m-th decaying neutrons and the abbreviation for the reduced nuclear 
matrix element had been defined in Eq.(B·l·5) of 1. Coefficients C j are 
some combinations of 8 integrated kinematical factors and other 8 nuclear 
matrix elements, see Eq.(3·5·10) of 1. 

We shall consider experimental data on two nuclei as examples. 
For the decay of ~~Ge -+ ~~Se + 2e-, the largest upper limit of the 

half-life for the 0+-11> 0+ transition with T = 3.991 (= 2.0396 MeV) in the (/3 /3)Ov 

mode is, 

( UCSB-LBL, 1988 ).18) (4.16) 

Using estimations obtained by the Heidelberg group,8) we find 

< m v > < 1.7 e V, i. e. ( < m v > / me) < 3.3 X 10-6 
, 


< .:t > < 3.1 x 10-6, 
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<TJ > < 1.7 X 10-8. (4.17) 

Each limit is obtained by assuming two other parameters to be zero. The 
smaller upper limit of <TJ > is due to the large contributuion from the 
nucleon recoil term accompanied with the induced weak magnetism (gjf)' 

Next, let us consider the ratio of total half-lives of 130Te to 1Z'8Te : 

T2 (130Te )] [{1 + (T IT )}( 128Te)]-1 v 2 v 0 v 
(4.18)RT = [ T2v( l28Te) {1 + (T2vITOv)}( l30Te) • 

The interest in this ratio is that the maximum kinetic energy release of 
l28Te (T = 1.700) is much smaller than that of l30Te (T = 4.957). Thus, if 

the ({3 {3)0 v mode exists, its yield in the 128Te decay may be comparable 
with the ({3 {3)2 v mode, while in the 13°Te decay the yield of the ({3 {3)0 v 
mode is much less than the ({3 {3)2 v mode, because the half-lives of the 
three body decay (the ({3 {3 )0 v mode) and the five body decay (the ({3 {3 )2 v 
mode) depend roughly on T as '1& and '111 

, respectively. In fact, theoretical 
estimates by the Heidelberg g roup8) confirm the tendency of this rough 
idea; 

T2v ( 13°Te) = 1.84x102lyr, TOv (0+ - 0+; l30Te) > 1.68x1023yr, 

T2v ( l28Te) = 2.63x1024yr, TO v (0+ - 0+; l28Te) > 2.49 x 1024yr, (4.19) 


where TO v (0+ - 0+) is calculated by assuming <m v> < 1.7 eV and <l >= <TJ >= O. 

While, the small T value means the long life time and the difficulty to 
measure electrons precisely. This ratio has been measured by the 
geochemical method, which can not discriminate two decay modes and each 
(0+ - 0+ or 2+) transition. The (0+ - 2+) transition is known to be small 

in the ({3 {3)2 v mode, but is the open question in the ({3 {3)0 v mode. But 
as it is irrelevant to the present discussion, we do not consider it. 

It is clear from Eq.(4.19) that (T2vITOv)« 1 for the 130Te decay. Thus, 
we have the· following inequality; . 

-1 -1 _ [T2V (130Te )] _ _4 [M&~)//lol(128Te) 2 
RT ~ (R2v ) = T (128Te) - (1.78±0.08)x10 (2) , (4.20) 

2v [MO{ I tl 0]( l 
30Te) 

where the equality m~ans no ({3 {3)0 v mode and Eq.(4.2) has been used. It 
was pointed out by Pontecorvo that the similar values are expected for 
nuclear matrix elements of 128Te and 130Te. 

Three recent experimental results are 

Rio1 =(1.01 ± 1.13)x10-4 (Heidelberg, 1983 ),13) 

(3.9 +1.5 -0.8) x 10-4 (Missouri, 1988 ),14) 

(3.2 ± 1.3)x10-4 (Yamagata, 1989 ).17) 
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The theoretical estimates in Eq.(4.19) gives (R2 v )-1 =7.0x 10-4.. This value 
is larger than experimental values and inconsistent with the inequality 
in Eq.(4.20). The calculated value for the ratio of nuclear matrix elements 
is 1.98. If the uncertainty of 2u is allowed for experimental data, then 
we may say that this theoretical value of (R2 v )-1 mean the very small 

limit on <m v > or no (f3 f3)0 v mode. It is necesssary to recheck theoretical 
estimates on the nuclear matrix elements for the (f3 f3)2 v mode. 

4.3 The (f3 f3)0 v ,8 mode 
The recent experimental data on the invisible decay ,.,idth of the ZO 

boson exclude the Majoron which has hypercharge larger than or equal 
to 1,18) as already mentioned in section 1. At present, we do not know 

the model of Majoron which make the significant contribution to the 

(f3 f3)0 v ,B mode, but does not couple with the neutral gauge boson. 
Therefore, we present only experimental upper limits for this mode; 

TOv 8(0+- 0+; 76Ge) > 1.4X1021yr ( UCSB-LBL, 1988 ).16) 


TOv '8(0+- 0+; 82Se) > 1.6X1021yr ( Irvine, 1988 ).15) 


TO v :8(0+- 0+; IOOMo) > 3.3X1020yr (LBL-Hol.-NM, 1988 ).19) (4.22) 


6. Summary 
The number of light neutrinos is assumed to be restricted to .}{ v = 3 

from the invisible decay width of the Zo decay. 3) There are three possible 

types of light neutrinos, i.e., ordinary Dirac, left-handed Majorana and 
ZKM Dirac defined below Eq.(3.26). The numbers of the former two types 
are supposed to be m and n, respectively. Then the number of generations 
and these p,?ssible types are related as follows: 

No. of generations m+n No. of ZKM Dirac 
3 3 0 

4 2 1 

5 1 2 

6 0 3 (5.1) 

Thus total 10 combinations are consistent with.}{ = 3. Concerning the v 
ZKM Dirac neutrino, we considered only the case where it consists of two 
left-handed Majorana neutrinos. There are other possibilities that it is 
a superposition of one left-handed Majorana neutrino and another 
right-handed one but not the ordinary Dirac; for example, only three ZKM 
Dirac neutrinos for three generations are compatible with .}{ v =3. We did 
not include these possibilities in this list. Various models can be 

constructed from these 10 cases. For example, a pair of two left-handed 
Majorana neutrinos may be treated as one pseudo ZKM Dirac type. For 
the left-handed Majorana and ZKM Dirac types, we can add the corresponding 
heavier neutrinos by applying the seesaw mechanism, by which masses of 
light neutrinos are of order of a few eV or less. Of course, all masses 
of quarks and charged leptons of the fourth and higher generations 
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should be greater than 50 GeV, the half of the ZO mass. 

The (/3 /3)0 lJ mode has not yet been observed. It is a still open question 
whether neutrinos are Dirac or Majorana types. If this mode is observed, 
then at least one of neutrinos is a massive Majorana one unambiguously, 

see section A.l of 1. The precise knowledge of nuclear matrix elements 
is required in order to take out the useful information on the effective 
neutrino mass parameter <m lJ >and the effective V + A interaction parameters 
< .:t > and < 1] >. 

If the 0+ -- 0+ transition is observed and <m lJ > is obtained, then at 

least one of neut~ino masses mj satisfies mj ;;; <m lJ >, where the equality 
stands for the special cas~ with only one light left-handed massive 
Majorana neutrino. If the finite values of <.:t > and < 1] > are determined, 
they give the most severe restrictions on the V + A interaction and also 
mean the finite deviation from the unitality condition in Eq.(4.13), that 
is, the existence of heavy neutrino, say mj > 10 MeV. The present upper 
limits are <m lJ >< 1.7 eV, <.:t >< 3.1xl0-& and < 1] >< 1.7xl0-8 

• 

If the 0+ -- 2+ transition is observed, the existence of the V + A 
interaction is established uniquely. However, if all masses of neutrinos 
are less than 10 MeV, the transition due to the V + A interaction in the 
(/3 /3)0 lJ mode is forbidden. In this case, experimental data from the 
11: + -- /.1 + -- e+ d ecay20) give the restrictions on parameters of the V + A 

interaction 	 defined in Eq.(4.9), i.e., .:t ~ 0.0263 (mWR ;;; 432 GeV) and 
I 1] I ~ 0.037, c/., Table 10.1 of 1. 
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