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Abstract 

Baier, Peigne and Schiff (BPS) have recently reported that 

the production rate of soft real photons from a hot quark-gluon 

plasma exhibits unscreened mass singularities even within the 

hard-thermal-loop (HTL) resummation scheme. It is shown that 

there exist another diagrams that cancel the singular contribu­

tion found by BPS, in accordance with the general theorem of 

absence of mass singularities in any thermal reaction rate. An in­

terpretation of the relevant diagrams is given in terms of physical 

processes taking place in a quark-gluon plasma.. The mechanism 

of cancelling mass singularities in this example is quite the same 

as in vacuum theory. A question is posed on whether the thermal 

soft photon production rate is physically sensible quantity or not. 
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It has been established by Braaten and Pisarski [1] that, in perturbative thermal 

QCD, the resummation of the leading-order terms, called hard thermal loops, is 

necessary. In thermal massless QCD, we encounter the problem of infrared and mass 

or collinear singularities. The hard-thermal-loop (BTL) resummed propagators soften 

or screen the infrared singularities, and render otherwise divergent physical quantities 

finite, if they are not sensitive to a further resununation oC the corrections of O(g'T) . 

On the other hand, as to the mass singularities, it has been proved [2} that any 

thermal reaction rates are free from them. (For a compact review of infrared and 

mass singularities in thermal field theory, we refer to [3].) 

The calculation of the production rate of soCt real photons (E =O(gT» from a 

hot quark-gluon plasma., to O(aalln al)' within the BTL resummation scheme has 

recently been reported by Baier, Peigne and Schiff (BPS) [4] with the conclusion that 

the result is divergent, owing to mass singularities. The conclusion seems to contradict 

the general theorem [2) mentioned above. The purpose of this paper is to show that 

there are another diagrams which cancel the mass-singular contribution found by 

BPS, and to give an i'nterpretation of the result in terms of physical processes. 

In evaluating the soft-photon production rate, BPS started from the imaginary-

time formalism and then continued to the Minkowski space. For the purpose of 

identifying the physical processes that lead to mass singularities, it is convenient to 

use the real-time formalism. 

After summing over the polarizations of the photon, the production rate is given 
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by the following two equivalent expressions [5, 6] (see also [7]); 

d3-i 	 p IW (1)
Wr 	 1A 2E (211")3 g/A" nll (E, p) 


1 
dl
-i P (I) /A" 	 (2)

A'lC'(')_\3 g/A,,(p)n ll (E,p), 

where the subscript r in Wr refers to the "real photon emission", 6. is the small region 

around the observed photon momentum p, and 

1 

g~~(P) 	 - L: E~)(P) E~')(P) , (3) 
,.1 

_ Pp.P" 
= g/A" + --p;:-' (4) 

9p.,,=(O,-I,-I,-I), Pp.=Pp.-·PoNp., Np.=(I,O). (5) 

In (3), E~')(P) (s = 1,2) is the polarization vector of the photon. [Throughout this 

paper, a. capital letter like P denotes the four momentum, P = (Po,p), and a lower­

case letter like p denotes the length of the three vector, p = Ipl· The unit three vector 

along the direction of, say, p is denoted as p== pIp·] In (1) and (2) nr; is the (1,2) 

component of the photon polarization tensor in the real-time formalism based on the 

time path Cl e Cl e C3 in the complex time plane; Cl = -00 - +00, C'l = +00 ­

-00, C = -00 _ -00 ..:.. iP (P = T-l). [The time-path segment Cl does not play 
3 

{B, 9] any explicit role in the present context.] The fields whose time argument are 

lying on C
l 

and on C'l are referred, respectively, to as the type-I and type-2 fields. A 

vertex of type-I (type-2) fields is called a type-I (type-2) vertex. Then n~; in (1) and 

(2) is the "thermal vacuum polarization between the type-2 photon and the type-I 

photon". 

It is worth mentioning that the "Feynman rules" of the above-mentioned real-

time formalism is equivalent to the circled diagram rules introduced by Kobes and 

Semenoff [5], provided that the type-I (type-2) field is identified with the field of 

"uncircled" ("circled") type. Thanks to the gauge invariance, (1) and (2) lead to the 

same result. 

The diagrams for Wr that should be considered to leading order are those depicted 

in Figs. 1-3, where Po = E, and those which are obtained from Figs.2 and 3(a) by 

reversing the direction of the quark-number flow. In Figs.I-3, i l • i2,jl and h stand 

for the type of vertex. In Fig.I, the incoming (outgoing) bare photon-quark vertex is 

of type-2, i l = 2 (type-I, i2 = and in Figs.2 and 3, i l = 2 and il = 1 [5, 6]. In 

Fig.I, all the momenta P, K, K' are soft ('" gT), so that both vertices as well as both 

quark propagators have to be resummed. In Figs.2 and 3, P and K are soft ('" gT), 

while Q and R are hard ('" T). It is worth mentioning that Fig.2 includes an effective 

'1'1qq vertex with HTL, while Fig.3 includes effective '1'1gg vertices with HTL. 

Now the following observations are in order. 

• In the calculation 6ased on the Feynman gauge, eq. (l), Figs.B and 3 do not yield 

leading contributions. This is because the numerator factors, which are obtained 

after taking the trace of Dirac matrices in the HTL approximation, include the piece 

gp."Qp.Q" = Q2. The piece which eliminates one of the HTL denominators. Thus the 

contributions from Figs.2 and 3 are nonleading This is the reason why Figs.2 and 

3 need not to be considered [41 in the calculation by using the Feynman gauge, eq. 
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( 1). 

• In the calculation based on the Coulomb gauge, eq. (2), Figs.1 and 3 do not yield 

singular contributions. In the contribution from Fig.l, the mass singularities arise 

from the factor l/(E±q·p) that comes from a HTL correction to an effective photon-

quark vertex, where il = qjq, with q the hard momentum in the HTL correction. In 

fact, when ±qllp, the above factor potentia.lly yields singularity. Now let us see the 

numerator factor, which are obtained after taking the trace of Dirac matrices under 

the HTL approximation. When one of the photon-quark vertices in Fig.l is the HTL 

correction and the other is the bare vertex, the numerator is a linear combination of 

the terms, each of which is of the form (il' a) - (il .P)(p. a) with a being q or k. Then, 

the numerator vanishes at ±qllp, meaning that there is no singularity. When both 

photon-quark vertices in Fig. 1 are the HTL corrections, there emerges the numerator 

factor ill . ill - (ill' p){p. ill)' For ill = ±p and ill f; ±p, or for ill = ±p and ill f; ±p, 

this numerator factor vanishes. For iii = ±p and ill = the numerator factor gives 

"double zero". Thus, Fig.l does not yield singular contribution. That Fig.3 does not 

yield singular contributions will be briefly discussed at the end of Appendix. 

We will use the Coulomb gauge, eq. (2), since this gauge is suitable for the direct 

physical interpretation. In order to regularize mass singularities, we introduce a small 

quark mass (d. the first pa.ragraph of Appendix). Then, we see that the real photon 

emission diagram that leads to the (mass )-singular contribution in Wr (eq. (2» is 

Fig.2 (Po = E) with il =il =2 and i l = h = 1. Calculational details for evaluating 

the singular contribution are given in Appendix. Here we reproduce the result (A.20); 

2 l 2 N; - 1 J d3 
p 1 d" K 

Wr := :; eq g Ne 2ii;- 2E (211')3 E2 j (211")3 nF(ko) 

x L(1-qil. k)Pq(K>jdn 6(ko-f)·~k)
.,.=::1: 411" 1 - p' q 

x Jq dq [ns(q)(1 - nF(q» + nF(q)(1 + ns(q))] , (6) 

where the symbol ":=" is used to denote an approximation that is valid for keeping the 

singular contributions, and P± is the absorptive part of the effective thermal quark 

propagator, cf. (A.7). In (6), the contribution associated with the first term in the 

square brackets comes from Q= (Eq, q), while the contribution associated with the 

second term comes from Q = (-Eq , -q), and the polar angle e under the integral 

over the solid angle is defined a.s cose = p•q. The n integral in (6) diverges at 

cos e= 1 or q=p, which is nothing but the mass singularity. 

Carrying out the integrations in (6) over q and over the solid angle n with the 

small quark mass (J.') regulator, we have 

TJ d
3 
p 1

Wr := 	 2· 211" e; Ne m} In -; 2E (211")3 E 

xJ d"K 6(P·K) L:(I-qp·k)pq(K), (7)
(211")3 (1'=:1: 

where mj (eq. (A.9» is the thermal mass of a quark. The factor 2 in front of the 

right-hand side of (7) reflects the fact that the diagram that is obtained from Fig.2 by 

reversing the direction of the quark-number flow gives the identical contribution to 

(6). It is to be noted that, in obtaining (7), we have set nF(ko) = i. This is because, 

in the HTL approximations, e/llco = 1 +0(9). Thus, we have reproduced the BPS 
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result. 

For any given diagram in the real-time formal~m, general rules of identifying the 

Given a (thermal) diagram, like Fig.2, represent-physical processes are available 

ing some thermal reaction rate may be divided into two parts; the one is the reaction's 

S-matrix element in vacuum theory and the other is the S·-matrix element. The S­

(S·-) matrix element represents the reaction between the considered particle(s) (the 

photon in the present case) and the particles in the quark-gluon plasma. The type-l 

(type-2) vertices in the thermal diagram go to the vertices in the S- (S--) matrix el­

ement. The thermal propagator with momentum P from a type-l vertex to a type-2 

vertex is "cut" . When Po > 0 (Po < 0) the "cut" is the "final-state cut" ("initial-state 

cut"). For a thermal propagator from a type-2 vertex to a type-l vertex, the opposite 

rule applies. For more details, we refer to [6]. 

According to the rules outlined above, from Fig.2 (with il = il = 2 and i2 = i2 = 

1) or (6), we can identify the physical processes. For qo E,) > 0, for example, the 

physical process is as depicted in FigAj the dot-dashed line is the final-state cut line, 

the left side part of the cut line represents the S-matrix element in vacuum theory, 

while the right part represents the S--matrix element. The group of particles on 

top of FigA stands for spectators which are constituent particles (quarks, antiquarks 

and gluons) of the quark-gluon plasma. In FigA, two "half blobs" come from the 

blob on the quark line in Fig.2. Recalling the £act that cutting the blob picks up 

the Landau damping contribution, we see that there are particles both in the initial 
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and final states (not drawn explicitly), the particles which connect to each of the 

two "half blobs". As is seen from (6), when p and q in Fig.4 become collinear, the 

quark propagator with P + Q diverges, which is the origin of the collinear or mass 

singularity. 

There are another diagrams leading to the singular contributions that cancel (7). 

The diagrams are Figs.1-3 (and Figs.2 and 3(a) with opposite direction of the quark-

number flow) with i 1 = i2 = 1 and with il = i2 = 2. Mass singular contributions 

appear from these diagrams with p2 ..... O. Two observations made above in relation 

to the analysis of real-photon production diagrams also apply to the present case. As 

a result, the relevant diagrams to be considered are Fig.2 with il = 2 and i 1 = i2 = 

i2 = 1 and with i2 = 1 and il = i2 = il = 2. Explicit derivation of the singular 

contribution is given in Appendix. The result, (A.28), is 

2 2 2 N; - 1 J d3 
p 1 Jd

t K 
W" ::: - -; e, 9 Ne 2Ne 2E (211')3 E2 (211')3 nF(ko) 

x L (1- O'r •k) p/T(K) JdO o(ko - r· k) 
,.z 411' 

X Jr dr [nB(r) (1 :- ~F(r» +(1 + nB(~» ~F(r)] , (8) 
. l-r·p 1+r·p 

where r = Irl = Ip +ql (::: q), and the subscript tI in W" refers to the "process with 

virtual photon". For evaluating (8) associated with the second term in the square 

brackets, we change the integration variable as p - -po Taking into account the 

contribution from the diagram with opposite direction ofthe quark-number flow, we 

obtain W" ::: - Wr , with Wr as given in (7). Thus, we see that the cancellation of 

mass singularities occurs between Wr and W", Wr + W" ::: O. This mechanism of 
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the cancellation between the mass singularities coming from "real-photon emission" 

diagram and the "virtual-photon" diagram is essentially the same as in vacuum theory 

Now we are in a position to discuss the physical content of the result. Let us 

identify [6] the physical processes corresponding to Fig.2 with il = i2 = i2 = 1 and 

il = 2. For qo > 0, the process is as depicted in Fig.5 with the final-state cut line C2· 

On the other hand, Fig.2 with i1= i2 = il = 2 and i2 = 1 corresponds, for qo > 0, to 

Fig. 5 with the final-state cut line C1• 

In the real-photon emission process with qo >' 0, FigA, the photon in the final 

state is the particle that we intend to detect. However, the quark with momentum 

q in the final state is almost parallel to the momentum of the photon. Then we 

cannot detect the photon only, but inevitably detect the photon and the quark. Thus 

we should interpret FigA as giving the production rate of the two-particle state with 

four momentum P+Q = R, which consists of the photon and the quark. On the other 

hand, in Fig.5, where rand p is almost parallel (d. (8)), the quark with momentum 

R = P + Q is the detected particle. This quark has the same momentum and the 

same quantum number as that of the detected quark-photon system in FigA. Then, 

in the detection process, we cannot distinguish the processes as depicted in FigsA 

and 5. Thus the physically sensible production rate is given by the sum of both 

contributions, which is free from mass singularity; W, + W. ~ o. 

For the qo < 0 sector of Fig.2, the situation is the same as above. This type of 
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"mechanism" of cancelling mass singularities is the familiar one in vacuum theory 

[10]. 

Here two comments are in order. (i) The thermal field theory that we employed is 

formulated for the quark-gluon plasma of infinite extent. So the detection mentioned 

above is to be performed inside the quark-gluon plasma. (ii) One may claim that the 

actual quark-gluon plasma is of finite extent. The photon (P) in FigA interacts only 

weakly with quarks and gluons that constitute the plasma, and then it will easily 

come out of the quark-gluon plasma without further interactions, and one can detect 

the photon (P) in FigA. 

We like to make the following two objections against the issue (ii) above. First 

of all, in order for the photon to come out of the quark-gluon plasma., the "partner" 

quark (Q) in FigA should interact with other quark(s) and or gluon(s). Such a process 

is a higher-order process in (improved) perturbative QeD. Then, within the present 

leading-order approximation, such processes should not be included. Secondly, if 

we treat seriously the quark-gluon plasma of finite extent, we should make up the 

perturbative calculational scheme on the basis of single-quark and -gluon eigen-states 

for the finite plasma system [11]. The mass-singularity issue is discussed fully on 

the basis of the plane-wave eigen-states - the basis for the case of infinite plasma.. 

In fact, this "choice" of momentum eigenstates is essential for the appearance of 

mass singularity. Then, for the case of finite plasma., one cannot draw any definite 

conclusion from the argument based on the plane-wave basis. 

9 



From the above argument, it seems rather doubtful whether or not the therma.l 

production rate of a rea.l soft photon is rea.lly physically sensible quantity. 

Acknowledgement. I sincerely thank R. Baier for useful discussions. Were it not for 

his criticism on the first draft, this paper would not appear. 

Appendix 

Derivation 0/ 

We consider Fig.2 (Po E) with it = 2 and i2 = 1. Before proceeding to the 

ca.lculational details, we reca.ll that [12], in order to consistently treat a gauge theory, 

~e should introduce an infrared cutoff, even when the quantity under consideration 

looks to be free from any singularity. When one is faced with taking two limits, 

the on-shell limit and (li) the limit of removing infrared cutoff parameter, one should 

first take the limit (i). In this paper, as an infrared cutoff, we introduce a small quark 

mass JJ. Keeping this regularization in mind, we will not explicitly write down the 

quark mass JJ except at the fina.l stage (eq. (7) in the text). 

Using our regularization, we see that Fig.2 (Po.= E) with it =2 and i2 = 1 gives 

nonzero contribution only when it = 2 and i2 = 1, which yields 

Wr -iL,,~dl?_\3 g;2(p) II~;(E, p) 
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Nl-l f d4 P= ie'l g2 Nc _c_ __ 8(Po) g(t)(P) 6(Pl ) 
q 2Nc (211')3 "'" 

f d4K f d4Q 
x (211')4 (211')4 ~i~(p +Q - K) 


x tr h, Sll(P + Q) 7" Slt(Q) 7" Sl1(P + Q) 7( ·Sll(K)] , (A.l) 


where Q is of OCT), while P and K are of O(gT); IqOI, q » Ipol, Ipl,lkl. In 

(A. 1), ·Sll is the (1-2) component of the effective therma.l propagator of a quark. For 

completeness, we give all the components of '"Sjl(K) (i, i =1,2); 

·Sll(K) = E b· K<r) ·S~;)(K), (i,i = 1,2), (A.2) 
<r=::l: 

where 

K<r = (I,O'k), (A.3) 

·S~~)(I() = - tS~)(K»)· 
1 (A.4)= - 2D.(K) + i1r E(ko) nF(lkol) , 

·S~;~21)(K) = ±i1r nF(±ko)p.,.(K)' (A.S) 

with 

;. m} [( kO) ko + k ]
D<r(R) = -ko +uk + 2k 1 - Uk In ko _ k + 20' , (A.6) 

1 [1 1] (A.7)
p.,.(K) = 211'i D.(ko+iO,k) - D.(ko-iO,k) , 

1 (A.S)nF(z) = -11--1 ' e .. :11­

2 1r(X, N: -1 Tl
m,=--- . (A.9)
2 2Nc 

D<r(K) in (A.6) is first ca.lculated in [13]. Although, the free thermal propagators 

Sjl(K) (i,l = 1,2) are obtained from (A.2) - (A.9) with m, = 0 and p.,.(K) = 
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o(ko - ak), for the purpose of later use, it is convenient to display the "one-term" 

formsj 

Sjt( K) = ('1 . K) BJt ( K) , (A.IO) 

Bu(K) = - {B:n(K)f ' 

I 
= -K:l. + 21finF(lkol) o(K:l) , (A.ll)+ IE 

Sl:l(:lI)(K) = -21fi [8(=Fko) -:- nF(lkol)o(K:l)] . (A.I2) 

The bare thermal gluon propagator 6.f~ in (A.I) is 

6.i;(Q) = _g(tHC(Q) 6.1:l(Q), • (A. 13) 

6.u (Q) = 211" [8( -qo) + nB(lqoJ)] o(Q:l) , (A.I4) 

1 
nB(x) = -A-I' 	 (A. IS) 

e"~ ­

where g(tHC is defined in (4). 

Let us write g~(P) in (4) as 

g~(P) 	 == g,w - g~(P) , (A.16) 

_ pO(Np.P" + feN,,) - Pp.P"
g~(P) 	 (A. 17)

- 'jiJ 

where Nil. is defined in (5) and use has been made of p:l = O. Under the HTL ap­

proxima.tion, IqOl, Iql » Ipol, Ikol, Ipl, it can easily be shown that, in calculating 

g,wII~l(P), the factor Q:l appears in the numerator, the factor which eliminates the 

one hard propagator. Then g,wII~;(P) does not yield a leading contribution [1]. 
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Thus, to leading order, (A.I) is evaluated with the replacement, g~~ - -9~~i 

W =i f d
3 
p {Np.P" + Pp.N" Pp.P,,} 1''' (A.I8)

r it:. 2E(211')3 E - F? II1:l(E, p). 

The Ward-Takahashi identity simplifies the calculation: We can see first that the 

Pp.P" term in (A.I8) does not yield singular contributions. Then, the trace calculation 

under the HTL approximation leads to 

UT __ . 2 2 N; - 1 / d
3 
p 1 / d"K 

~~r ­ 8 t e'l 9 Nc 2Nc · 2E (211')3 E (211')4 


X/ (~:~4 qO 6.1~(p + Q- K) ~~ {Q(KC +QcK; - gEC(Q' K.,.)} 


x {Sl1(P + Q) - Sn(P + Q)} B:n(Q) ·~;)(K), (A.19) 


where the symbol ":::" is used to denote an approximation that is valid for keeping 

the singular contributions. Replacing g(tHC(P +Q - K) ::: g(t)EC{Q) in 6.i~ with 

gf( - g(tHC(Q) as in (A.16) and (A.17), we can easily see that the g(tHC(Q) part 

produces the factor Q:l in the numerator and yields only nonleading contribution in 

Wr • 

Substituting all the relevant formulae given above into (A.19), alter some manip­

ulations, we obtain for the singular contribution, 

d
3

2 :l:l N; - 1 / p 1 / d"KWr ::: -; e'l 9 Nc ~ 2E (211')3 jJJ (211')3 nF(ko) 

x E(I-ap.k)PI1(K)/dO 6(ko-f)·~k) 
~.:t: 411' 1 - P •q 

x / qdq[nB(q)(l-nF(q»+nF(q)(I+nB(q))], (A.20) 

where the contribution associated with the first term in the square brackets comes 

from Q = (E'I' q), while the contribution associated with the second term comes from 
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Q = (-Eq, -q). In (A.20), the polar angle fJ under the integral over the solid angle 

is defined as cos fJ =p. q. 

Derivation of (8) 

Fig.2 with i 1 = i:l = i:l =1 and il = 2 and with i1 = i:l =il = 2 and h = 1 give 

4 4
:l:l N: - 1 / d P / d

4J( / d Q CC • 
W" = eq 9 Ne ~ (211")4 (211")4 ,(211')4 A1:l(P + Q - R) 

x [G,..,(P) tr h( S:ll(P + Q) 'Y,. Su(Q) 'Y., Sll(P + Q) 'YC ·Sl:l(K)} 

- {G,..,(p)r tr{'Y( Sn(P + Q) 'Y,. S:l:l(Q) 'Y., S:ll(P + Q) 'YC ·Sn(K)}] , 

(A.21) 

where 

g(t)(P)
G,..,(P) = _"_"__ N,.N., (A.22)

Pl+if Pl' 

Wll (eq. (A.21» develops mass singularity that comes from the region p 2 ::::: O. 

It can easily be seen that N,.N.,jp2 parts of the photon propagators do not lead to 

the singular contributions. We substitute (A.16) with (A.17) for 9~J(P). Just as in 

the case of eq. (1), we see that the g,.., parts in 9~~(P)'s do not yield the leading 

contributions in W (d. the argument above alter (A.17)). Then, we can substitutelI 

-g~~(P) for g~2(P) in (A.22) that is in (A.21), which again allows us to use the 

Ward-Takahashi identity. In doing so, we have 

4 4 4
N: -1/ d2:l P Po / d K / d R CCW. ::::: -eqg Nc~ (211")4 fj (211")4 (211")4 Al:l(R - K) 

x [-21
-. tr{'YES21(R)'YoSl1(R-P)'Yc-S12(K)}

P +u 
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+ ~ tr {'Y( S:l:l(R - P) 'Yo S:ll(R) 'Yc ·Sl:l(J()}] , (A.23) 
,r- - If 

where R =Q+ P. Only the terms that produce singular contributions are kept in 

(A.23). By evaluating the trace of the Dirac matrices under the HTL approximation, 

we obtain 

4:l:l N: - 1 / d P Po / d4J(
WIt ::::: - 8eq 9 Nc~ (211")4 r? (211')4 

X/ (~~4 A1~(R - K) ro ..~ hJ(, + rc K; - 9(dR. Kcr)] 

S (R) ·S(cr)(K) [SueR - P) _ I (A.24)X :ll l:l JYl + if C.c., 

where S)l is defined in (A.Il) and (A. 12) and "S~~) in (A.5), and c.c. stands for the 

complex conjugate. 

Now we consider the following term in (A.24), 

dPo Po • 
-2-P:l,Su(R-P)/ 11" + If 

= / dPo ~ [1- nF(lro - poD nF(lro - Pol)] (A.2S)
211" p:l + if (R - P):l + if + (R - P):l - if . 

As is well known, the mass singularities manifest themselves as pinch singularities in 

the complex po-plane. The method of extracting such singularities is familiar alter 

the classic work of Cutkosky [14]. We rewrite (A.25) as 

(A.25) = / ?: Po [P:l ~ iPof - 211"i fJ(po) 6(P:l)] 

x f. [{fJ(O') - 0' nF(lro - PoD} {(R _ P):l 1i(Po _ rolf 

-211"if(0')fJ(0'(po-ro))6«R-P):l)}]. (A.26) 
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The products of t.wo advanced propagators in (A.26) do not lead to singular contribu­

tions to W", because one can avoid singularities in the complex Po-plane by deforming 

the integration contour. Since the term Sll(R) in (A.24) includes the factor 6(R2), 

with our small quark-mass regularization, pl and (R - P)l in (A.26) cannot vanish 

simultaneously. Thus we have 

. {I I}
(A.26) :::: ~ [e(ro){8(-ro) - nF(lrol)} rolpl- r' . P - rolpi + r. p 

+ 1 ] . (A.27)
rolpl- r· p 

In (A.27), three factors 1/(rolpl ± r . p) produce mass singularities in W". The 

singularities arising from the two factors in the curry brackets in (A.27) cancel each 

other. 

Substituting the last term in (A.27) into (A.24)" and using all the relevant formulae 

given above, we obtain, after some manipulations, 

d
4

d
32 Nl - 1/ p 1 / K 

W" :::: -;- e~ gl Nc iNc 2E (2'11-)3 El (211")3 nF(ko) 

x 2:(I-ur.k)Pcr(K)/dO 6{ko-r·k)
••* 411" 

ns(r) (1- nF(r» (1 +ns(r» nF(r)] 
x rrd [ 1'· + 1'· . (A.28)

/ -r·p +r·p 

where use has been made of the HTL approximation. 

Fig.3 

As in the case of Fig.2 (see above after (A.22»,.N,.N,,/p'l (N(Nclkl) part which is 

accomanied with the photon (gluon) line with i l = i2 = 1 or 2 (it = h = 1 or 2) 

16 

do not lead to the singular contributions. The same reasoning as above after (A.17) 

teUs us that the g,." part of g~~(P) = g,." - g~~(P) and the gec part of gCtHC(K) = 

g(C - g(l)eC(K) lead to nonleading contributions. Then, substituting -g~~(P) for 

g~f2(p) and _gCIHC(K) Cor g(fHC(K), and using the Ward-Takahashi identity twice, 

we see that Fig.3 do not yield singular contributions in WI' and in WII • 

17 
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Figure captions 

Fig.1. A diagram contributing to the real-50ft-photon production rate. The blobs 

indicate the effective quark propagators and the effective quark-photon ver­

tices. i 1 and i 1 designate the type of bare photon-quark veretex. 

Fig.2. A diagram with HTL, where Q and R are hard (I'V T) while P and K are soft 

(I'V gT). it, i l , il and h designate the type ~f vertex. 

Fig.3. Diagrams with HTL, where Q is hard (I'V T) while P and K are soft (I'V gT). 

FigA. The physical process taking place in the quark-g\uon plasma, which is respon­

sible for the singular contribution to Wr • The left side of the final-state cut 

line (dot-dashed line) represents the S-matrix element, while the right side 

represents the S·-matrix element. 

Fig.s. The physical process taking place in the quark-gluon plasma, which is respon­

sible for the singular contribution to W.... The diagram with the final-state 

cut line C1 (Cl ) corresponds to Fig.2(a) with il = i l =il = 2 and h =1 (il 

= i l = h = 1 and il = 2). 

i i21 

FIG. 1 
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