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We consider a new Lorentz-covariant quantization of ga1ra,g-;;'elr.file~~ldrlQ:s..,.,.·r~""""""_·_-,,-J~=,_.-1 
which overcomes the problem of Gribov copies and verify, b"'t.- ' 

one- and two-loop perturbative expansion, ~hat the two-p~ ntRtHi~~~"i U r...".. u, a.;.A. '( 

tion in the new gauge (maximal Landau gauge) agrees with "'i1ie·-c~·~--.._..-..'_-1 

ventional perturbative correlation function in the Landau gauge, It is 

shown that this result can be extended, at least up to one-loop level, 

to all correlation functions , 
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1 Introduction 

One of the main difficulties presented by QeD is that the quanta of the fun~ 
damental gauge-coupled fields are not particles observed in nature, but are 
instead believed to be in a confined phase that is not described by conven­
tional renormalized perturbation theory. 

In searching for non-perturbative results in continuum gauge theory a new 
gauge (maximal Landau gauge) has been introduced [1, 2]. This replaces the 
Faddeev-Popov quantization, which is not correct because of the existence 
of Gribov copies [3, 4], and arises quite naturally from the necessity of quan­
tizing the gauge fields by' integrating over the correct classical configuration 
space. 

We will review this aforementioned Lorentz-covariant quantization pro­
cedure in the following section. Then, to ensure consistency of the new 
formulation, we revert to perturbation theory: first we derive the Feynman 
rules in the new gauge, stressing the relationship enforced by gauge invari­
ance among the new vertices (secs. 3, 4) and then we explicitly calculate the 
one- (sec. 5) and two- (sec. 7) loop corrections to the two-point correlation 
function. These will be found to agree, in the limit in which the gauge-fixing 
parameter is taken to infinity, with the conventional perturbative correlation 
functions that one finds in the Landau gauge. We will also show that this 
result holds, at one-loop level, for all correlation functions (sec. 6) . 

2 The new gauge-fixing procedure 

The expectation value of a gauge invariant observable O[A] is given by the 
formal Euclidean functional integral 

< 0 > = JVA e-Sd[A] OrA] , (1) 

where Sel[A] = iPIFI 2 = iP f dDx(F:vF;v) is the usual kinetic action for the 
gauge fields and the proper normalization factor is understood in front of the 
integral; A is the unrenormalized classical connection and P is related to the 
unrenormalized coupling constant 9 by P= 1/92

• Since the action SellA] is 
gauge invariant, the functional integration in Eq.(l) has to be restricted to the 
physical configuration space; integrating blindly over all field configurations 
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would result in a divergence due to redundant infinite integrations, since the 
gauge group is not compact in the continuum case. This is usually achieved 
by gauge-fixing, i.e. by choosing a representative field on each gauge orbit. 
The set of all these representatives constitute what is known as fundamental 
modular region, and is the correct region over which one should integrate. 

All gauge-fixing procedures have to face the problem that there is no 
global section of the fiber bundle of connections l (on a torus), so that they 
are locally correct, but globally they may contain gauge-equivalent copies 
(Gribov copies) of the representative connection. A globally correct gauge­
fixing procedure that overcomes the problem of Gribov copies can be intro­
duced [1, 2]. The correctness of the procedure we are about to review rests 
on some recent results that we are going to summarize first. 

Let n be the Gribov region, that is the region characterized by 

n = {A E A: a·A = O,I<[A] = -a· D[A] 2:: O} (2) 

where A is the set of all connections for a fixed principal bundle P(M, G) 
with gauge group G over a base-space M (M is to be identified with the D­
dimensional, usually compactified, space-time; in our case the D-dimensional 
torus T D ). Let A be the fundamental modular region. It has been shown 
that: 

1. 	 Every gauge orbit A9(g E G) does intersect n, so that A ~ n [7]. 

2. 	 There are Gribov copies inside the Gribov region n, i.e. some of the 
orbits intersect n more than once, so that the inclusion A c n is proper 
[3, 4]. 

3. 	 The region n is the region where the minima of the functional 

(3) 

lie (8]. For fixed A , SA[g] is a functional of 9 whose domain is the orbit 
through A. Its most important feature is that it reaches its absolute 
minimum on each gauge orbit (7]. 

IThis result was first proved by Singer for the case of a principal bundle over a four­
sphere with compact (non-Abelian) Lie group [5] and, more recently, by Killingback for 
a principal bundle over a four-torus with any compact non-Abelian semi-simple Lie group 
G, and even for the Abelian G = U(l) case [6] . 
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In absence of degeneracy of the absolute minimum (outside of a set of measure 
zero), the feature described in (3) 'makes it possible to choose the region of 
absolute minima of SA[g] as the fundamental modular region, i.e. to choose, 
for every fixed A, the absolute minimum of SA[g] as representative on the 
orbit that passes through A. This in turn is achieved, given that the region 
of absolute minima of SA[g] is not known explicitly, by adding a gauge-fixing 

2term M 2 1Ag 
l to the classical action (where M is a gauge parameter with 

the dimension of mass) so that, as M ---+ 00, the Euclidean probability gets 
concentrated at the absolute minimum of IAgl2 on each gauge orbit, and the 
path-integration is thus automatically confined to the interior of the physical 
configuration space A. 

Following the standard Faddeev-Popov procedure one defines the gauge 
invariant function 

(4) 

and rewrites Eq.{l) in the equivalent form 

< 0 >= f VA e-Scl[A] O[A] I-1 [A] f dge-!PM2IA912 (5) 

By exploiting the gauge-invariance of the measure, of Scl[A] and O[A], we 
can factorize out the (infinite) volume of the gauge orbits and include it in 
the normalization constant so that Eq.(5) reduces to 

(6) 

where Sgf[A] = !,BM2IAI2. The (gauge-variant) gauge-fixing term e-S9,[A] 

gives a different weight to each point on a gauge orbit in such a way that 
the points having the maximum weight are the ones inside the fundamental 
modular region A: by taking the limit M ---+ 00 at the end of the calculation 
the probability gets concentrated at the absolute minima of SA [g], i.e. inside 
A. 

To evaluate I[A] one takes the limit M ---+ 00, so the Gaussian approxi­
mation becomes exact and one obtains 

(7) 


where B is the configuration on the gauge orbit on which the absolute mini­
mum is attained. 
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3 The magic of gauge-invariance: Ward-Takahashi 
Identities 

Consider a gauge invariant functional F[A] of the gauge-field A and let us 
assume that F can be expanded in powers of A : 

What one can show is that the gauge-invariance of F entails some relation­
ships among the coefficients F(n) of its power expansion. Starting from the 
condition which expresses the gauge-invariance of F 

(9) 

and substituting for F its power expansion of Eq.(8) one finds, after a little 
algebra (and Fourier-transforming to momentum space) 

n 

-ik F(n+l){k k k )aa1 .•. an +'" faarc F(n){k k +k k )a1 ... c ... an = 0 
IJ, , 1,···, n 1J,1J,1 ••• lJ,n 	 L.J 1, ... , r , ••• , n 1J,1 ••• lJ,r ••• lJ,n , 

r=l 

(10) 
which provides a recursion relation for the longitudinal part of these coeffi­
cients. At k 0 this reduces to a condition among the coefficients of a given 
order n: 

n 

'" faarc F(n){k k k )a1 ... c ... an - 0L.J 1," ., r,···, n 1J,1 •••lJ,r ••• lJ,n - , (II) 
r=l 

which expresses global gauge invariance. 
One can now apply this general technique to our case and find relation­

ships among the vertices. Following the standard procedure, we rescale the 
field A by g, the coupling constant, before deriving the Feynman rules. The 
action S[A] =Scl[A] +Sgf[A] that appears in the functional integral in Eq.(6) 
contains a term that breaks gauge-invariance: S[A] Sinv[A] + ~M2IAI2. 
Nevertheless, since 

(D· 8~)S[AJ = M2(8·A) 	 (12) 
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is linear in A, if one expands S[A] in powers of A and follows the pro­
cedure used above, he will find for the coefficients s(n)a1 ...an(Xl," . ,xn) = ILl···lLn 
8nS[A]/(8A:~(Xl)'" A::(xn)) IA=O of the expansion the same relationship 
we stated in Eq.(10); only the one pertaining to the linear term has to be 
modified. We will find convenient, in the calculations that follow, to split 
the action into two pieces 

(13) 

where the local part is defined by 

(14) 


and the remaining part is 

snl[AJ =_~M2 IB[AW - tr In(-8· D[B[A]]) =s;l + S:/.; (15) 

Eq. (10) will hold separately for each piece. 
For example one finds that (for n = 2), in lowest order, the S;l contribu­

tion to the inverse gluon propagator2 

(16) 

and the non-local three-point vertex function 

:F[ 8 
3 
S;/ I] - Vn1(kt,k2,k3):!:~~"C;:3 (17)

8A:~ (xl)8A:;(X2)8A::(X3) A=O 

are related by 

ikIL V3(k, kt, k2):~;a:2 - M2 pT(k2)ILIIL2faala2 - M2 pT(kdILIIL2faa2al = 0 (18) 

One can therefore extract the color dependence by defining3 

2.1"[.] indicates the Fourier transform of the object in brackets. 
3Clearly Eq. (18) gives a constraint only on the longitudinal part of V;, and one should 

allow in Eq. (19) for a dependence on the totally symmetric tensor dala2aa as well. But, as 
we will show in the next section, all non-local vertices must have at least two longitudinal 
legs, so that the only dependence on the color indices that is actually allowed is the one 
shown in Eq. (19). 
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(19) 

and Eq.(18) gives 

k~V~(kbk2,k3)~lt~2'~3 = M2 [pT(kl ) - pT(k2)]~1~2' (20) 

With the notation for the (non-local) n-point function 

sns;/ I
Vn1(xI,"" xn):!·:.::: = -----=---- (21)

SA~i (Xl)'" SA~~(Xn) A=O 

Eq.(10) gives 

n 
n n'k vn+l(k k k )aa1 ...a '""'" faarbvn(k k +k k )a1 ...b...a ( > 2)z ~ nl ,b ... , n ~~l ...~n = L..J nl b ... , r , ••• , n ~l n_...~r ...~n 

r=l 
(22) 

Perturbative Expansion 

The Feynman rules for the perturbative expansion can be read off, as usual, 
from the generating functional Z, 

Z[J] = JVA e-Sd [A]-SM[AJ+(J,A)+ttrlog(-8.D[B[A]J) (23) 

where 

SM[A] =Sgf[A]- ~M21B12 = ~M2(IAI2 - IB[AW). (24) 

Since gauge-invariance enforces relationships among the vertices, as we 
saw in the previous section, one need not calculate explicitly the expansion 
of B[A] in powers of A; all one has to do is to find the lowest order term of 
the expansion and make use of the recursion relationship given in Eq.(22). 

To find this lowest order term let us denote, for a fixed A, by 9 = eW the 
gauge-transformation that brings A to the point B[A] where the functional 
SA[g] reaches its absolute minimum: B[A] = A9. The condition that B be a 
stationary point of SA[g] is, for an infinitesimal gauge-transformation, 

(25) 
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Eq.(25) shows that w is of order AL (AL denotes the longitudinal component 
of the gauge field A). Expanding w in powers of Ax.r,)w = 2:~=1 w(n), where 
w(n) is of order O(An) in the gauge field, and substituting this expression in 
Eq.(25) one finds 

(26) 

Solving for W(l) 

W(l) = -.6.-18. AL (27) 

which gives the lowest order term of the expansion of B 

B[A] - A + D[A]w + O(w2) = A + 8W(1) + O(A2) = 
_ A - 8.6.-18. AL = A - AL = AT (28) 

so that 
(29) 

and 

SM[A] = ~M2IALI2 +.... (30) 

From (30) one concludes that: 

a) The quadratic piece of 8M gives a purely longitudinal contribution to the 
usual Landau-gauge gluon propagator which vanishes as M --+ 00. 

b) All vertices that one finds by expanding 8M in powers of A [and that 
we will sometimes refer to as non-local, since they originate from the 
non-local part of the action 8n1 [A] of Eq. (15) ], have the following 
remarkable features: 

1. They have at least two legs which are longitudinal. 

2. They are related to each other in virtue of Eq.(22). 

Inverting the quadratic part of the action Sci +SM one finds the zeroth-order 
gluon propagator in momentum space 

(31) 

where 
(32) 
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are the projectors on the transverse and the longitudinal subspaces, respec­
tively. The transverse part of V, which is the only one that survives in the 
M ----+ 00 limit, is the usual Landau-gauge gluon propagator. However the 
longitudinal part will contribute in diagrams containing non-local vertices, 
which are proportional to M2. 

Summarizing: the cubic and quartic part of Sci [A] give rise to the usual 
three- and four-leg vertices that represent the self-interaction of the gluons, 
while the non-local part 

(33) 

is made up by two pieces: the first one, proportional to IBI2, gives rise to 
the new (non-local) vertices for the self-interaction among the gluons, while 
the second one is just one-half of the usual ghost contribution, but with the 
field B[A] taking the place of A. One apparently needs once again to expand 
B[A] in powers of A up to the required order in each perturbative calculation. 
This expansion would produce new ghost-ghost-gluons vertices; from the fact 
that B[AL = 0, AT] = AT and B[A] = AT + O(A2) it follows that 

1. 	 The lowest order vertex is the same as the usual Landau-gauge ghost­
ghost-gluon vertex. 

2. 	 All higher order vertices (i.e. vertices with two ghost lines and two or 
more gluon lines) have at least one gluon line which is longitudinal. 

Therefore, if one considers ghost contributions to the totally-transverse n­
point function, he will soon realize that, in any order in perturbation theory, 
the diagrams containing higher order ghost vertices are O( ~ ), and will not 
survive the M ----+ 00 limit. 

One can therefore conclude that the ghost contribution to the totally­
transverse n-point function that comes from the S;~ part of the action is, 
in the limit M ----+ 00, exactly one-half of the standard Landau-gauge ghost 
contribution, and this is true in any order in perturbation theory. 
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5 One-loop correction to the vacuum polar­
ization 

To understand the mechanism that makes the correlation functions in the 
maximal Landau gauge coincident with the ones relative to the standard 
Landau-gauge, let us consider first the simplest case: the first-order contri­
bution to the two-point function. The (totally-transverse) one-loop contribu­
tion to the vacuum polarization has the diagrammatic representation shown 
in Fig. 1, where the "L" over a line indicates the longitudinal part of the 
gluonic propagator and the dot on a vertex indicates its non-local origin. 

We will label with rrT(p):~(i)(i = 1, ... ,6) the contributions to rrT(p):~ 

coming from the diagrams of Fig. 1, and with rr~~)T(p):~ the one-loop Landau­
gauge ghost contribution to the n-point function. 

We are interested in the totally transverse part of it since the longitudinal 
part does not survive the M ---+ 00 limit once the (full) propagator is put on 
the external legs; therefore all external lines in the Fig. 1 are to be thought 
of as transverse. 

Since the three- and four-leg local vertices are the same as the ones one 
finds in the Landau-gauge and the gluon propagator differs from the usual 
one only by a longitudinal part that vanishes as M ---+ 00, the contributions 
coming from diagrams containing only local vertices (e.g. rrT(I) and rrT(2)) 
are the same that one finds in the Landau-gauge. As already explained the 
"tr In" contribution is just one-half of the (totally-transverse) Landau-gauge 
ghost contribution, rrT(p):~("tr In") = ! rr~~(p):~, so that our claim is 
equivalent to say that all contributions coming from diagrams containing 
non-local vertices add up to give, in the limit M ---+ 00, one-half of the 
standard Landau-gauge ghost contribution. 

Let us consider the contributions to the two-point function given by the 
diagrams containing non-local vertices. Let us start with the contribution of 
the fourth diagram, nT (p):~ (4). The fact that at least two of the "three-legs 
of the non-local vertex have to be longitudinal forces the internal propaga­
tors to be longitudinal; but the longitudinal part of the gluon propagator is 
proportional to ~ (Eq.(31», while the non-local vertices are proportional to 
M2, since they arise from the expansion of BM[A] = !M2{IAI2A -IB[A]12). 
Therefore rrT{p):~{4) is proportional to ~ and goes to zero as M goes to 
infinity. 
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The third diagram gives4 

D 
rrT( )ab (3) 1 Jd k T Tnl ( k )acd DL( k)CS DL( )dr TTnl( k )bsrp f.,£// = 2" (27r)D Y3 p, ,m f.,£O/.f3 - -m f3Cf Y3 -p, - ,-m //".Cf0/.". 

(p + k + m = 0).(34) 

Substituting for the longitudinal part of the propagator DL its expression 
(Eq.(31)) and making use of 

kf.,£v;nl(k,l,m)~~~ = iM2 jabc[pT(I) _ pT(m)]//p (k +1+ m = 0), (35) 

one finds 

where -JdDk kf3k". 
R(p )13". = (27r)D k2 ( k +p)2' (37) 

The fifth diagram gives 

II(p)~~(5) = ~ J(;:~D ~nl(p, k, -k, -p):~-;:uDL(k)~~IIT(p):~(5). (38) 

Making use of Eq. (22) 

k// ~nl(k, -k, -p, p)~~~af.,£f;bc = -tr(TaTd) [y;nl( -k, -p,p+k)-v;nl( -k, k-P,P)]PCff.,£ 
(39) 

and one finds 

pL(k).pV;l(k, -k, -p,p)~~: = -2:2 tr(T"Td) M2[pL(p) - pL(p + k)]"u. 

(40) 
Therefore the totally transverse part of rr(p)~~(5) is [changing the integration 
variable k into -(k +p)] 

(41) 

4In the following we will always consider all divergent integrals regularized by dimen­
sional regularization. Actually we will never need to evaluate them and all cancellation 
that we will find are true in any other regularization scheme that does not break gauge 
invariance, so that the recursion relation (10) holds. 
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Adding all the contributions coming from diagrams containing non-local ver­
tices together 

Now we have to compare (42) with II~~(p)~~. From 

det( -8· D[AD etrln(-8.D[A]) = (43)

- J Vij VTJ exp { - Jdx dyija(x)( -8· D[A])abSD(x - Y)TJb(y)} 

one derives the usual Landau-gauge Feynman rules for the ghosts 

ghost propagator D9h(k)ab= ~2 6ab 
(44)

ghost-ghost-gluon vertex V9h (p q r )abc = -ifabcq = iTc q, , , p P - ab p 

Hence the usual ghost contribution to the transverse part of the two-point 
function is 

II(2)(p)abgh J.W 

so that, indeed 
T( ) 1 (2)()lim II p nl = -2IIgh P . (46)

M -----+ 00 

•We can thus conclude that the first-loop correction to the two-point function 
calculated in the maximal Landau gauge coincides with the usual results one 
finds in the Landau gauge. 

One-loop correction to the totally trans­
verse part of the n-point function 

Let us now consider how it is possible to generalize the previous result to 
Green's functions of every order n. A generic one-loop contribution to the 
n-point function has the form of a loop with a certain number V of vertices 
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and n external lines. If we let Vk be the number of vertices with (k + 2) legs 
appearing in the loop, then V = LI:=1 Vk and n = LI:=1 kVk. 

Once again one has to consider only the totally-transverse part of the n­
point function, since parts containing one or more longitudinal components 
can be written as linear combinations of totally-transverse parts of lower 
order in virtue of a recursive use of Eq.(10). As we are going to see, these 
transverse parts have a finite M ----+ 00 limit, hence the parts containing 
longitudinal components will not survive the limit when the propagator is 
put on the external legs. 

Since we are considering the totally transverse part of the n-point func­
tion, all external legs are transverse; therefore both propagators originating 
from a non-local vertex have to be longitudinal. Since the longitudinal part 
of the gluon propagator is proportional to ~2 while all non-local vertices 
are proportional to M2, the only contributions that do not vanish in the 
M ----+ 00 limit are those in which all the vertices in the loop are either local 
or non-local. 

In the case in which all vertices are local, all internal propagators can be 
replaced by their transverse part (the only one that survives in the M ----+ 00 

limit), so that they all add up to give the usual (Landau-gauge) gluonic 
contribution to the (totally transverse part of the) n-point function. 

To show that the totally transverse part of the n-point function is the 
same as the one that it is found in the Landau-gauge it is once again sufficient 
to prove that all the contributions coming from loops containing only non­
local vertices add up to give one-half of the totally transverse part of the of the 
Landau-gauge ghost contribution, the other one-half necessary to reconstruct 
the standard ghost contribution coming from the "tr In" part of the action. 

One can construct all possible diagrams with n external legs by consider­
ing all possible partitions 5 v = [V1' .. vn ] of n. Clearly diagrams associated 
to different partitions will be topologically inequivalent. 

To a given partition v = [V1 ... vn ] of n one can associate a certain num­
ber N[v] of topologically independent diagrams obtained by placing the V 
vertices on the loop in different ways. N[v] is found by considering that, 
of the possible V! permutations of the V vertices, the ones involving only 

5The standard way of writing a partition of n as a set of non-increasing integers 11 ~ 
12 ~ ..• ~ In such that L~=l Ir =n is obtained by defining h == L~=k V r· 
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vertices of the same kind do not give a distinct diagram, so that 

N[v] =, V! , (47) 
VI- - - - Vn • 

Finally each of these N[v] diagrams can be attached to the n external points 
In 

(48) 

different ways. Of course we are overcounting both the number of topologi­
cally inequivalent diagrams and the number of different ways one can attach 
them to the external points: diagrams obtained by a rigid rotation or by 
reflection of a given diagram are not inequivalent. To compensate for this 
overcounting each diagram should carry a symmetry factor 1/(2V), where V 
stands for the rotations and 2 for the reflection. 

We will first show that each of these N[v] . C[v] diagrams gives a contri­
bution that is proportional to the contribution 

+ (n! permutations of the n triplets (aIPIJld ... (anPnJln)} (49) 

coming from the ghosts, so that the proof of our main claim is reduced to a 
combinatorial problem. 

Let us consider one of the Vr non-local vertices with r +2 legs that appear 
in the loop. Let us label with Pi( i = 1, ... , r) the external (transverse) 
incoming momenta and with kn and -kr the (longitudinal) internal ones 

v.nl (k k )bna1 ...arbr (50)r+2 n,PI,'" ,Pr, - r PnJ.l.l ••• J.l.rOr = 
- pT() pT() pL(k) v.nl (k k )bna1 •••arbr - PI J.l.ll/l ••• Pr J.l.rl/r n PnP r+2 n,PI,· ··,Pr,- r Pl/l •••l/rOr • 

By applying the recursion relation (22) and making use of the fact that a non­
local vertex must have at least two longitudinal legs (so that, for example, 
v,.~1 (PI, ... , Pr, kn - kr ):!·::.~~~r = 0) one finds 

(51) 
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Repeating this procedure of pulling out one longitudinal projector and of 
using the relationship (22) r times one finds 

~~2(kn' P1,·· ., Pn -kr)~:a:l'::':;:;r = 


_(_ ')rM2 (kn){3n (kr)ar (TalTa2 Tar) 

- Z k2 k2 • • • bnbr 


n r 


[pT(pI) . (kn + pt)] 1'1 ••• [pT (Pr) . (kn +PI + P2 + ... + Pr ) ] I'r 

1 1 	 1 
(kn + pI)2 (kn +PI + P2)2 ... (kn + PI + P2 + ... + Pr_I)2 + 

+ r! permutations of the r triplets {( al/lIPI) ... (ar/lrPr)}. (52) 

The link of the non-local vertex ~~2 with the ghosts becomes apparent 
by considering the Feynman rules of Eq.( 44) for the ghost-ghost-gluon vertex 
and the ghost propagator. Comparing the analytic expression of the diagram 
shown in Fig .. 2 with Eq.(52) one obtains the useful identity that is expressed 
pictorially in Fig. 3, and which can be used to reduce each of the N[v]C[v] 
diagrams that contribute to the totally transverse part of the n-point function 
to the form of a ghost contribution. Let us consider the contribution to the 
n-point function coming from a given diagram (i.e. given v) attached to the 
external points in a definite way (i.e. fixed i,j with (i = 1, ... ,N[v];j = 
1, ... ,C[vD ). By use of the identity of Fig. 3 one finds 

rT...T [ ]( )al ...an _ ( )V+I {rT...T( )al ...an + rrn ( ,)Vr t t' }
ij V PI, ... ,Pn 1'1 •••l'n - -- gh PI,··· ,Pn 1'1 •. ,l'n r=1 r. permu a Ions . 

(53) 
This is the contribution to the n-point function coming from a given 

diagram attached to the external points in a definite way. Summing over the 
C[v] different ways of attaching a given diagram to the external points gives 

C[V] 

r j [v](p1, .. . ,Pn):~::·.~: - I: rij[V](PI, ... ,Pn):~:::~: = (54) 
i=1 

--	 (-l)V-l[fgh(Pt, ... ,Pn):~:::~: + 
+ 	n! permutations of the triplets {(al/lIPt}, ... , (ar/lrPr)}] 

n(_l)V-IfT...T(p P )al ...an-- gh 1, ••• , n 1'1 ...l'n' 

The sum of all the contributions pertaining to the N[v] topologically 
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inequivalent diagrams (with the appropriate symmetry factor) gives simply 

j=N[V] 

)al ...an ­r[V](PI,· .. ,Pn Jl.l ••• Jl.n = :L rj[V](pt, ... ,Pn):~·.::~: = (55) 

Finally one has to sum 6 over all possible partitions of n : 

"'" r[v]( )a1 ...a n ­L...J PI, ... ,Pn Jl.1 •• •Jl.n = (57) 
V 

1 r-T ...T ( )a1 ...an- '2 gh PI,··· ,Pn Jl.l···Jl.n (58) 

which proves our claim 

(59) 

Two-loop correction to the vacuum po­
larization 

One would like to see if what was shown to hold at one-loop level can be 
extended to higher orders in perturbation theory: is it still true that the 
contributions coming from the "new" diagrams, i.e. the one containing non ­
local vertices, add up to give, once the limit M ----4 00 is taken, one-half of 
the usual (Landau-gauge) ghost contribution? We will consider the two-loop 
correction to the two-point function and show that this is still the case. 

6Using the identity 

(56) 
Vl.·. Vn 


'\""" rv..=n

L;..=l 

which is proved in the appendix. 
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By using the Feynman rules derived in Sec. (4) one can write down the 
diagrams that contribute to the (totally transverse part of the) two-loop vac­
uum polarization, as shown in Figure 4. In that picture explicit dependence 
on Lorentz and color indices has been suppressed for simplicity while the ap­
propriate symmetry factors pertaining to each diagram have been explicitly 
shown. The vertices with three or four legs in each diagram can be either 
local or non-local. Making use once again of the fact that each non-local ver­
tex has at least two longitudinal legs (and is proportional to M2), and of the 
form of the propagator (31), one can extract from the list of Figure 4 those 
diagrams which contain at least one non-local vertex and which survive in 
the M ----+ 00 limit [whose sum we will indicate with limM ----+ 00 Anl(P)]. 
These diagrams are shown in Figure 6; the additional numbers in front rep­
resent a symmetry factor that arises when we split the propagator into its 
transverse (T) and longitudinal (L) part. For example the factor two in the 
first diagram takes into account that one has also to consider another dia­
gram where the Land T lines that join the same two vertices are exchanged. 
Which lines are longitudinal and which are transverse is explicitly indicated 
in the first three diagrams. 

By using the fundamental identity shown in Fig. 3, one can reduce every 
non-local vertex to a gluon-ghost-ghost vertex and every non-local diagram 
to a sum of ghost diagrams i.e. of diagrams that contain ghost propagators. 
The result of this operation on the non-local diagrams that contribute to the 
two-loop vacuum polarization is shown in Fig. 6, where the value of every 
non-local diagram is given in terms of ghost diagrams, as defined in Fig. 5. 

Adding up all these diagrams one finally finds 

lim Anl(P) = ~ {4At + 2A2 + 2A3 + 4A4 + As} (60)
M ----+ 00 4 

This has to be compared with the usual Landau-gauge ghost contribution to 
the two-loop vacuum polarization: 

so that, indeed, one finds once again 

(62) 
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and the same mechanism that was shown to work at one-loop level appears to 
be still valid at two-loop level: the extra diagrams coming from the presence 
of the non-local vertices add up to give a contribution that is one-half of the 
usual Landau gauge ghost contribution.; this together with the fact that the 
ghost contribution coming for the "tr log" part of the action in the new theory 
gives exactly the same result as in the usual Landau-gauge, but is reduced 
by a factor one-half by the presence of a different exponent in the Faddeev­
Popov determinant, makes the two perturbative expansions coincident order 
by order in perturbation theory. 

8 Conclusion 

It has been verified by explicit one- and two-loop perturbative expansion that 
the two-point function in the maximal Landau gauge coincides with the one 
in the ordinary Landau gauge. This result has been extended, up to one-loop 
order, to all correlation functions. As a byproduct of the calculation it has 
been seen that the gauge symmetry-breaking term Sg! = !j3M2IAI2 is not 
affected by radiative corrections. 
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A Combinatorics 

We claim that the following identity holds 

(63) 
VI ••• Vn 

L:;=1 TlIr=n 
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where V = L~=I V r • To prove it let us consider the generating function for 
the Wn 

F(x) =	L00 

xnWn (64) 
n=I 

so that 
n 

1 d IWn = 'd nF(x) 	 (65) 
n. x x=o 

Summing over all [VI ... vn ] with the restriction L~=I rVr = n and over all 
n.~ 1 is equivalent to summing over all possible v's without any restriction 
(only the case in which all V's are simultaneously zero is excluded), which 
is in turn equivalent to summing over all possible v's with the restriction 
L~I Vr = V and then over all V ~ 1; therefore 

F(x) = 

_(-)E(-~JY (Exk) v 

- -log (1+ ~xk) 
10g(1 -	 x) 

(66) 

By equating coefficients with the same power of x it follows 

1
Wn =-. 	 (67) 

n 
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o Figure Captions 

Fig. 1: One-loop contributions to the vacuum polarization. 

Fig. 2: A useful diagram and its analytic expression; it is understood that 
there are no propagators on the external ghost lines. 

Fig. 3: Relation between non-local vertices and ghosts. 

Fig. 4: Diagrams that contribute to the two-loop vacuum polarization 
and do not contain ghost propagators. 

Fig. 5: Ghost contributions to the two-loop vacuum polarization. 

Fig. 6: Non-local contributions to the two-loop vacuum polarization and 
their value, in term of ghost diagrams. 
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