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Abstract 

The first reliable analytic calculation of the phase diagram of the bose gas on 


a d-dimensionallattice with on-site repulsion is presented. In one dimension, 


the analytic calculation is in excellent agreement with the numerical Monte 


Carlo results. In higher dimensions, the deviations from the Monte Carlo 


calculations are larger, but the correct shape of the Mott insulator lobes is 


stiD obtained. Explicit expressions for the energy of the Molt and the "defect" 


phase are given in a strong-coupling expansion. 
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fermion materials and metal~insulator transition.. The study of these .ystem. has been 

confined to either numerical simulations which are plagued by finite-size effects (with the 

notable exception of the infinite-dimensional expansion) or uncontrollable approximations. 

Similar problems arise in strongly interacting bosonic systems which have attracted a lot of 

recent interest (1-4). Physical realizations include short correlation length superconductors, 

granular superconductors, Josephson arrays, and the dynamics of flux lattices in type II 

superconductors. The relevant physics of these problems is contained in the bose Hubbard 

Hamiltonian which describes the competition between kinetic energy and potential energy 

effects. Various aspects of this model were investigated analytically by mean-field theory 

(1,5), by renormalization group techniques (1,3) and by projection methods 16]. The bose 

Hubbard model was also studied with Quantum Monte Carlo methods (QMC) by Batrouni 

et aI. (2) in one dimension (1+1) and by Krauth and Trivedi (7] in two dimensions (2+1). 

In this contribution, we show that the phase diagram obtained from a strong-coupling ex­

pansion has the correct dependence on the dimensionality of the spatial lattice, and agrees 

with the QMC calculations (to within a few percent). 

We study the minimal model which contains the key physics of the strongly interacting 

bose system the competition between kinetic and potential energy effeds: 

H = - ?: ';j6!6j - " ~ ni + iU ~ nj(ni - I) • ni = b16; (I) 
., I • 

where 6i is the boson annihilation operator at site i, 'ij is the hopping matrix element between 

the site i and ;, U is the strength of the on-site repulsion, and" is the chemical potential. 

The approximate form of the zero temperature (T =0) phase diagram can be understood 

by starting from the strong~coupling or -atomic" limit (1,8,9]. In this limit, the kinetic 

energy vanishes (tij = 0) and every site is occupied by a fixed number of bosons, no. The 

ground-state boson occupancy (no) is then chosen in such a way as to minimize the on~8ite 

energy. If the chemical potential,,, = (no + 6)U, is parametrized in terms of the deviation, 
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(" from integer filling no, then the on-site energy is E(no) = -IUno -IUno(no - I), and 

the energy to add a boson onto a particular site satisfies E(no +1) - E(no) -6Uno. Thus 

for a nonzero (" a finite amount of energy (gap) is required to move a particle through the 

lattke. The bosons are localized, producing a Mott insulator. This energy gap decreases 

with increasing strength of the hopping matrix elements until it vanishes and the bosons 

condense into the superfluid phase. For 6 = 0 the energy of the two different boson densities 

is degenerate [E(no) = E(no + I») and no energy is needed to add or extract a particle; 

i.e., the compressibility is finite. As the strength of the hopping matrix elements increases, 

the range of the chemical potential p. about which the system is incompressible decreases. 

The MoU-insulator phase will completely disappear at a critical value of the hopping matrix 

elements. 

We are interested in the determination of the phase boundary between the (incompress­

ible) Mott insulator and the (compressible) superftuid phase. A strong-coupling expansion 

for this boundary is determined by calculating both the energy of the Mott insulating phase 

and of a defect phase (which contains an extra hole or particle) in a perturbative expansion 

of the kinetic energy. At the point where the energy of the Mott phase is degenerate with 

the defect phase, the system becomes compressible, and, since there is no disorder, also su­

perfiuid [I). There are two distinct cases for the defect phase: 1<0 corresponds to adding 

a boson to the Mott-insulator phase (with no bosons per site); and 6 > 0 corresponds to 

adding a hole to the Mott-insulator phase (with no+ 1) bosons per site. The phase boundary 

will depend on the number of bosons per site, no, of the initial Mott insulator phase. 

To zeroth order in flU the Mott insulating state is given by 

N 1 ( no
ItMolt(no»(O, = !] N. 61) 10) (2) 

where no is the number of bosons on each site, N is the number of sites in the lattice and 

10) is the vacuum state. The defect phase is characterized by one additional particle (hole) 

which moves coherently throughout the lattice. To zeroth order in t/U the wave function 

for the "defect phase" is determined by degenerate perturbation theory; 
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l'lo.r{no»~. =.j: 1+ I E'i"I''lMott(no»)(O)
no i 

''lo.r{no»~1 = ~ EIt"i''lMou(no»f°' (3) 
v no i 

where the ,. is the eigenvector of the hopping matrix 'ii with the lowest eigenvalue [10]. 

For simplicity we will only consider hopping between the nearest neighbors of a hyper­

cubic lattice in d-dimensions. The number of nearest neighbors is denoted by % = 2d and 

the hopping matrix element by 'i the minimum eigenvalue of the hopping matrix is -d. 

The many body version of standard Rayleigh-SchrOdinger perturbation theory is employed 

throughout. To third order in tlU, the energy of the Molt state with no bosons per site 

becomes 

1 zt2 ]EMol&(nO) =N -6Uno - iUno(no + 1) - 1/8o(no + 1) (4)[ 

which is proportional to the number of sites. Note that the odd-order terms vanish. The 

energy difference between the Mott insulating phase and the defect phase with an additional 

particle (6 < 0) satisfies 

E'~r'idtl'(no) EMoU(no) = _6(parilcltl'U _ zt(8o + 1) + ~2 no(5n; + 4) %;:2 no(no + I) 

,3 ) [( 3 25 2 3 7 1 ]+ U2no(no + 1 -2% +"4% - 4%)no +(-z +2z - :lz) (5) 

to third order in flU; while the energy difference between the Moti insulating phase and 

the defect phase with an additional hole (6 > 0) satisfies 

Eb""'tl'( ) E ( ) .s(hole,U t + zt2 (no + 1)(5no + 1) %2,2 ( )
d' no - Molt no = - %no U 2 - Uno no + 1 

f' [25 11]+ U2no(nO + 1) (-2%3 + "4%2 - 4%)no + (_%3 + "4%2 - 2%) (6) 

These results have been verified by small-duster calculations on two and four-site dusters. 

Note that the energy difference in Eqs. (5) and (6) is independent of the lattice size N. 

The phase boundary between the incompressible Mott phase and the compressible su­

perftuid phase occurs when the energy difference between the two different phases vanishes 

(11). The two branches of the Mott phase boundary meet when 
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6(,..",ide)(no) + 1 = 6("0")(no). (1) 

The additional one on the left hand side arises because 6 i8 measured from the point plU = 

no. Equation (7) may be used to estimate the critical value of the hopping matrix element, 

'criliCII,(nO), beyond which no Mott-insulator phase exists. 

In one dimension, the upper boundary of the Mott insulator lobe (with a particle density 

of no) is given by 

6(,.ar lide'(no,'IU) = -2(no + l)(tIU) + n~('IU)2 + noCno + I)(no + 2)('IU)3 (8) 

to third order in tlU, and the lower boundary is given by 

6(",,'e)(no,'IU) = 2no(tIU) - (no + 1)2('IU)2 + noCno + 1)(no - 1)('IU)3. (9) 

The slope of the phase boundaries about the point p = noU are equal in magnitude to first 

order (limc_o 1;6"ar'ide(no, tlU) = lim,-o 1,6"0I'(no+I, 'IU»), but change in magnitude as a 

function of the density (no), implying that the Mott-phase lobes always have an asymmetrical 

shape. 

The strong-coupling expansion for the " p phase diagram in one dimension is compared 

to the QMC results of Batrouni et at [2] in Figure 1. The solid lines indicate the phase 

boundary between the Mott-insulator phase and the superfluid phase at zero temperature 

as calculated from Eq. (8) and Eq. (9). The squares are the results of the QMC calculation 

at a small but finite temperature T = U12 [2). Note that the overall agreement of the two 

calculations is excellent. For example, the critical value of the chemical potential for the 

first lobe (no =1) satisfies 6critica' :::::: -0.155 so that the critical value of the hopping matrix 

element is (tIU)crilica' = 0.215, while the QMC calculations found (tIU)crilica' =0.215±0.01 

12]. A closer examination shows that the first lobe (no = I) has a systematic deviation at 

larger values of t. This is most likely a finite-temperature effect, since the Mott-insulator 

phase becomes more stable at higher temperatures [5]. 

It is known from the scaling theory of Fisher et al. [I) that the phase transition at the tip 

of the Mott lobe is in the universality class of the (d+I) dimensional XY model. Although a 
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finite-order perturbation theory cannot describe the physics of the Lricritical point correctly. 

it turns out that the density fluctuations dominate the physics of the phase transition even 

close to the tricritical point. Note how the Mott lobes have a cusp-like structure in one 

dimension, mimicking the Kosterlitz-Thouless behavior of the critical point. 

Figure 2 presents the strong-coupling expansion for the " p phase diagram in two di­

mensions. For comparison, the tricritical point of the first Mott-insulator lobe as obtained 

by the QMC simulations of Krauth and Trivedi [7) is marked with a solid square. Their, 

numerical calculation gives a critical value of ('IU)criCiCII' = 0.122 ± 0.01, whereas our cal­

culation yields (tIU)crilico' ~ 0.136 which is in reasonable agreement. As already mentioned 

above we cannot hope to describe the physics close to tricritical point with our approach, 

but note that the qualitative shape of the Mott lobes has changed from one dimension to two 

dimensions, mimicking the "smooth" critical behavior of the XY model in three or larger 

dimensions. 

Finally the strong-coupling expansion is compared to the exact calculation in infinite 

dimensions [1). In infinite dimensions, the hopping matrix element must scale inversely with 

the dimension [12), , = '-IJ, ,- = finite, producing the mean field theory of Ref. (I). In 

Figure 3 the strong-coupling expansion (solid line) is compared to the exact solution (dashed 

line). Even in infinite dimensions, the agreement of the strong-coupling expansion with the 

exact results is quite good. 

We have repeatedly compared a strong-coupling expansion to the numerical QMC sim­

ulations for the incompressible-compressible phase boundary of the bose Hubbard model. 

A mean-field treatment of the bose Hubbard model (e.g. [1,5]) cannot capture the physics 

of the one dimensional system which is completely dominated by fluctuations. The dimen­

sionality only enters as a trivial prefactor in integrals over the phase space. For this reason, 

mean-field theories will always give a concave shape to the Molt-insulator lobes independent 

of the dimension. A strong-coupling expansion, on the other hand, easily distinguishes the 

shape difference from one dimension to higher dimensions and shows that a proper treatment 

of density fluctuations is critical in determining the Molt-insulator to superfluid transition. 
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In conclusion we have described an analytical method to accurately calculate the phase 

diagram of the bose Hubbard model in any dimension. Extensions of these techniques t.o 

include disorder will be presented separately. 
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FIGURES 

FIG. 1. The It P phase diagram of the bose Hubbard model in one dimension (d = I). The 

solid lines give the phase boundaries of the Mott insulator to the superOuid state as determined 

from a third-order strong-coupling calculation. The squares are the result of the QMC calculation 

of Batrouni et aI. (2). 

FIG. 2. The I, p phase diagram of the bose Hubbard model in two dimensions (d =2). The soUd 

lines give the phase boundaries of the Mott insulator to the superOuid state as determined from a 

third-order strong-coupling calculation. The point indicates 1he tricritical point as determined by 

the QMC calculation of Krauth and Trivedi (7). 

FIG. 3. The It P phase diagram of the bose Hubbard model in infinite dimensions (d -+ (0). 

The solid lines give the phase boundaries of the Mott insulator to the superftuid state as determined 

from a third-order strong-coupling calculation. The dashed Unes are the result of the mean field 

calculation of Fisher et aI. (l). 
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