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ABSTRACT: We discuss early~stage spinodal decomposition in a near-critical binary 

fluid for a situation in which the system is quenched abruptly by changing the pressure and 

in which the subsequent phase separation occurs adiabatically. The resulting nonequili~ 

rium situation has features that do not fit conventional theoretical assumptions. We find 

that changes in the effective temperature during the transition can account for the lack of 

agreement between earlier theories and recent experimental results of Bailey and Cannell. 
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measurements of early-stage spinodal decomposition in a near-critical mixture of 3-methyl~ 

pentane and nitroethane (3MP + NE). Their experiment is, to our knowledge, the orst 

fully quantitative observation of phase separation in a thermodynamically unstable state 

of a system for which all of the relevant properties and all of the control parameters are 

independently determined. Thus, their results provide a rigorous test for nonequilibrium 

theories of a kind that ultimately will be needed for reliable simulations of materials pro­

cesses. 

Although the BC experiments are uniquely well characterized, they are carried out in a 

way that is not consistent in some respects with conventional theoretical assumptions about 

the spinodal process. The most important of these differences is that BC quench their 

system into the unstable state by abruptly changing the pressure, not the temperature, 

and the subsequent unmixing of the two phases takes place very nearly adiabatically rather 

than isothermally. This procedure forces the theorist to face an unexpectedly fundamental 

question, specifically: What does one mean by "temperature" when a system is driven so 

far from equilibrium? Our purpose in this letter is to outline briefly our answer to this and 

some related questions, and to report that our calculations, with no adjustable parameters, 

are in excellent agreement with the experimental data. An account of this work may be 

found in Ref.(2); a complete report is being prepared for publication. 

Our analysis is based on the theory of Langer, Bar-on, and MillerS (LBM) for the 

onset of isothermal spinodal decomposition in an Ising-like system with a conserved order 

parameter. This theory was designed to describe phase separation up to the point where 

the reaction has gone most of the way to completion but the characteristic length scale of 

the separation pattern is not yet very much larger than the correlation lengths ein the 

separated phases. LBM starts with a Cahn-Hilliard equation of the form" 
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where u(r,t) is the local deviation from the average concentration of one of the chemical 

constituents, M is a transport coefficient related to the diffusion constant, and 

1{u} =! dr[~(Vu)2+f(U)]. (2) 

Here, the gradient-energy coefficient K and the free-energy density flu) are quantities 

that can be determined from the equilibrium properties of the system. The function flu) 

also depends on temperature T and pressure P. For T and P such that the equilibrium 

state of the system is the uniformly mixed phase, flu) has a single minimum near u = o. 

Unmixing occurs when feu) develops two minima at nonzero values of u. 

It is very important for present purposes to note that u is a coarse-grained variable 

and 1 is a coarse-grained free energy. That is, u is a smooth function of position r that 

contains no Fourier components with wavenumbers k greater than some cutoff A, which we 

take to be of order e- 1; and the parameters in 1 have been renormalized by integrating 

over the rapidly equilibrating modes with k > A. We shall return to this point. 

The process of interest here is one in which the most probable values of u are ini­

tially near zero in the unstable state but move toward the two minima of flu) as phase 

separation occurs. Eq.(l) is formally equivalent to a Fokker-Planck equation for a proba­

bility distribution in the space of functions u(r); and this equation, in turn, is equivalent 

to a hierarchy of equations of motion for multi-point distribution functions of the form 

PN(UhU2, ...uN,t), where the symbols Un denote values of u at points rn. The central 

feature of the LBM method is a simple truncation of this hierarchy that avoids the assump­

tion, implicit in most low-order perturbation theories, that the distribution over values of 

u remains peaked near zero. Specifically, LBM assume that the time-dependent, two-point 

probability distribution function P2(Uh u2,t) can be written in terms of the one-point 

function Pt(u,t) via the ansatz: 

ulu2 ]P2(Utt U2) ~ Pl(Ul)Pt (U2) [1 + (u2)2S(lrt - r21) . (3) 
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Because (u) 0 by definition, it is easy to see that the function S in (3) is the two-point, 

equal-time correlation function (UIU2) whose Fourier transform, S(k,t), is the structure 

factor that is measured in scattering experiments. 

The ansatz leads to an equation of motion for the structure factor that looks 

almost the same as the equation that one obtains by the most elementary linearization of 

the theory: 

as(k,t) -2 M k2 [(K k2 + A(t)) S(k,t) - kBT] . (4)
at 

The only nonlinear feature of (4) is the time-dependent chemical potential A(t), which is 

the statistical average of a one-point function: 

1 af (5)A(I) = (u2) (u au)' 

and which therefore requires only a knowledge of PI (u, I) for its evaluation. Deriving an 

equation of motion for PI requires more work but no new assumptions; one simply uses 

(3) in the first of the hierarchy of equations of motion for the multi-point distribution 

functions. The result, which we shall not display here, looks as if the distribution PI is 

diffusing in a self-consistent time-dependent potential that, as expected, causes the initial 

peak in P at u 0 to split into two peaks that signal the onset of phase separation. 

The LBM theory originally was tested3 against numerical simulations of the Ising 

model with Kawasaki spin-exchange kinetics. It also has been used in the analysis of x­
ray and neutron scattering measurements of phase separation in alloys." In order to apply 

the theory to fluids, however, one must include hydrodynamic degrees of freedom via a 

procedure introduced by Kawasaki and Ohta 6 (KO). 

Because the length scales of interest here are very small, we need to consider only 

advection of the concentration gradient by overdamped viscous How which, in turn, is 

driven by the same chemical-potential gradient that appears on the right-hand side of (1). 
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Accordingly, KO add to the right-hand side of (1) a term of the form 

J 
61 


-2 dr'Vu(r) . T(r r') . V'u(r') cSu(r') (6) 


where T is the Oseen tensor whose components are 

Top = 8:", (60 13 + ';;13) 	 (1) 

and " is the shear viscosity. When the LBM ansatz (3) is used in connection with this 

modified Cahn-Hilliard equation, the new equation of motion for the structure factor S(k) 

differs from (4) in two respects: the transport coefficient M is renormalized to include the 

hydrodynamic effects, and an additional term containing the Oseen tensor appears on the 

right-hand side. 

For present purposes, we need not display these equations ill detail, but we do need 

to be clear about one technical point. The quantity A(t) in the hydrodynamic version of 

(4) is still defined by (5), but the distribution functions P1(u) implicit in that definition 

should be recomputed so as to be consistent with the changes in S(k) generated by the 

hydrodynamic forces. In their original paper, KO neglected this modification and simply 

took the function A(t) from LBM3. It later was pointed out in an unpublished paper 

by A.J. Schwartz that the results of a fully self-consistent calculation are quantitatively 

different from those of KO. In collaboration with Bailey and Cannell, we have repeated 

, 	 and confirmed Schwartz's results. In what follows, we shall refer only to the self-consistent 

version of the theory. 

The conclusion reached by BC, shown clearly in their Fig.3, is that their experimental 

data are in substantial disagreement with the KO theory, and that the self-consistent 

correction - if anything makes the situation worse. We propose that the principal 

reason for this discrepancy is the assumption, implicit in the LOM and K 0 analyses, 

that the phase transformation takes place isothermally rather than adiabatically as is 

appropriate for the BC experiments. 
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Our adiabatic version of the LBM/KO theory is based on the following assumptions. 

We visualize the binary fluid as consisting of two distinct subsystems: the relatively 

slow, coarse-grained modes described by the order parameter u(r,t) , whose behavior 

describes the phase separation, and (2) the rapidly equilibrating short-wavelength modes . 

that we have integrated out of the equations of motion for u(r, t), which serve as a thermal 

reservoir in contact with the slow modes. We assume that these subsystems, together, 

are ,thermally isolated from the outside world during the time in which measurements are 

being made. We further assume that the reservoir of fast modes effectively dominates the 

thermodynamic properties of the system as a whole. Because the reservoir equilibrates 

rapidly compared to any other changes in the system, it makes sense to talk about a 

reservoir temperature Tr, and we assume that Tr is the same as the temperature T that 

determines values of the parameters in the coarse-grained free energy 1 { u }. Moreover, we 

assume that this coupling via T is the only explicit coupling between the reservoir and the 

coarse-grained modes. 

In our picture of the adiabatic spinodal process, the initial pressure quench removes 

energy from the reservoir, thus lowering its temperature. The coarse-grained configuration 

remains unchanged at this instant. (The effects of the small change in the volume of the 

system are negligible.) The coarse-grained modes now see a lower temperature and, because 

they have fallen out of equilibrium, begin to undergo phase separation. During this process, 

they release energy which, according to our adiabatic assumption, can be absorbed only by 

the reservoir. Thus the system experiences what is known in the metallurgical literature 

as "recalescence"; the temperature rises and, as that happens, the kinetics of the phase 

transformation are modified. 

These processes can be summarized by an equation of motion for the temperature T: 

C dT VTa dP a(t{u}) 
fir dt pr at (8) 
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w here V is the volume and 

(l{u}) = _(T2 (al{u}!T) (9)aT )v 

is the internal energy of the coarse-grained system computed using the time-dependent 

probability distributions obtained from the LBM ansatz. 

The quantities apr and Cpr in (8) are, respectively, the isobaric thermal expansion 

coefficient and heat capacity for the reservoir, which must be computed by subtracting the 

singular contributions of the slow modes from the equilibrium values of these quantities 

in the critical region. In this connection, it is important to recognize the importance 

of the choice of the cutoff wave number A in these calculations. In principle, A is an 

artificial parameter that should cancel out of the final expressions for physically meaningful 

quantities. In fact, however, our choice of A is constrained by practical considerations. On 

the one hand, we need to choose A large enough so that what we call the "fast modes" 

do indeed equilibrate rapidly on the time scales that are of direct interest to us in specific 

experiments. On the other hand, we need to choose as small as possible a value of A so 

that essentially all of the thermodynamically important degrees of freedom are included in 

the reservoir, that is, so that we can easily determine the parameters in 1 by equilibrium 

measurements. 

For example, the BC experiments are carried out by first allowing the system to come 

to equilibrium in a state just outside the two-phase region and then quenching abruptly to 

a state inside that region. Associated with each temperature T as the system undergoes 

decomposition are correlation lengths eand associated (T-dependent) relaxation times of 

order TT = 61f"e3 /kBT. Choosing A-I to be less than but roughly comparable to the 

smallest of the e's assures both that the reservoir modes are "fast" and that the coarse­

grained modes contain only just as many degrees of freedom as are necessary to describe 

patterns of phase separation. We also know that the coarse-grained modes with k < A 
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are too slow to undergo critical fluctuations at any stage of this experimental process, and 

thus we can formulate a self-consistent procedure for eliminating the critical singularities 

in computing apr an.d Cpr. 

Eq.(8) simply expresses energy balance within the thermally isolated experimental 

sample. The first term on the right-hand side is the work done during the pressure quench, 

which is negative and therefore produces the initial drop in temperature. The partial 

pressure of the coarse-grained subsystem is negligible, thus the partial pressure of the 

reservoir is the same as P and remains constant throughout the later stages of the process. 

The second term is the contribution from the (decreasing) internal energy of the coarse­

grained modes; it is this term that drives recalescence. The combination of (8) with the 

ingredients of the LBM/KO theory described in the preceding paragraphs produces a set of 

coupled nonlinear equations that is complicated but well suited to numerical integration. 

To demonstrate the results of the adiabatic theory, we use equilibrium data for 3MP + 
N E1 and adopt the same experimental conditions as those used by BC.I We assume that 

all BC quenches were critical, that is, we set the average concentration to be the critical 

concentration. We introduce no adjustable parameters. 

In Fig.l, we plot E/IE/I {E == (T Te)ITe) as a function of the reduced time" = tl"/. 

Here, the subscript I denotes parameters evaluated in the final equilibrium state after the 

quench, and the subscript i denotes the initial state. For the quenches shown, EilE/ = -5, 

and TeE/ -0.04 mK, -0.4 mK, and -4.0 mK. We have set the scaled quench time "quench 

to be .01; thus the initial temperature drop does not appear on the graph. Clearly, the 

temperature undershoot is large; the temperature reached immediately after the quench is 

roughly -2IE/I, with the smaller final temperatures giving the greater undershoot. Note 

also that there is not much difference in the scaled temperature trajectories even though 

the final unscaled temperatures differ by a factor of 100. 

In Figure 2, we compare results of the adiabatic and isothermal theories with the 
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experimental data. Here we show the scaled structure factor 8(') = S(k)/XI as a function 

of scaled wave vector , = k/el for various times". The normalization factor XI is the 

susceptibility at E= EI_ The quenches shown all begin at TeEi 10 mK and have final 

iemperatures which range from TeEI = -0.116 mK to -10.37 mK. The solid and dashed 

curves denote results for the adiabatic and isothermal theories, respectively. For each time, 

the uppermost curve denotes the result for the deepest quench shown and the lower one 

denotes the shallowest. The effect of a finite quench time is included in these resultsj the 

scaled quench time "quench ranges from 2 X 10-3 for the shallowest quench to 11 for the 

deepest. 

While lagging behind the data at early times, the adiabatic theory gives results for 8(') 

which agree quite well with the data for times " ~ 20 up to the largest time for which data 

is available, " = 100. A possible explanation for the lack of agreement at early times is 

that the actual temperature might have been farther below EI than predicted. Nonetheless, 

this good agreement is evidence that the temperature change during decomposition can 

be large for this class of systems. We conclude that, when modified to reflect actual 

experimental conditions, the LBM/KO theories of early stage spinodal decomposition can 

decribe experiment. 

We are grateful to A.E. Bailey and D.S. Cannell for suggesting this problem, for sharing 

data in advance of publication, and for many helpful discussions. We also acknowledge, 

with thanks, discussions with J. Cardy, C. Knobler, and C. Pryor. This work was supported 

by Department of Energy Grant No. DE-FG03-84ER45108 and NSF Grant No. PIIY89­

04035. Computations were done, in part, on the Convex computer provided by DARPA 

through URI@UCSB (ONR Prime Contract NOO14-86-K0753). 
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FIGURE CAPTIONS 

Fig.1. Scaled temperature E/IEII as a function of scaled time" for three adiabatic 

runs. The final temperatures are indicated in the figure and the initial temperatures are 

fj = 51£/1. The straight line denotes the final equilibrium temperature. 
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Fig. 2. Scaled structure factor 8(1) as a function of scaled wavevector 1= kel at scaled 

times l' = 1,5,20,50 and 100. The initial temperature for all quenches was Tef,= 10 mR. 

The symbols denote the experimental results of Bailey and Cannell as follows: Tefl 

(6) -0.116 mR, (0) -0.219 mR, (D) -0.538 mR, (x) -1.036 mR, 2.079 mR, (0) -2.079 

mR, (V) -5.156 mR, and (<» -10.37 mR. The solid and dashed curves denote results of the 

adiabatic and isothermal theories, respectively. For each time, the upper curve denotes 

results for the deepest quench shown in that time frame, while the lower one is for the 

shallowest. 
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