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Abstract 3</ 
I present the detailed behavior of phonon dispersion curves near momenta 


which span the electronic Fermi sea in a superconductor. I demonstrate that 


an anomaly, similar to the metaJlic Kohn anomaly, exists in a superconduc


tor's dispersion curves when the frequency of the phonon spanning the Fermi 


sea exceeds twice the superconducting energy gap. This anomaly occurs at ap


proximately the same momentum but is stronger than the normal·state Kohn 


anomaly. It also survives at finite temperature, unlike the metaJlic anomaly. 


Determination of Fermi surface diameters from the location of these anoma

lies, therefore, may be more successful in the superconducting phase than in 


the normal state. However, the superconductor's anomaly fades rapidly with 


increased phonon frequency and becomes unobservable when the phonon fre


quency greatly exceeds the gap. This constraint makes these anomalies useful 


only in high-temperature superconductors such as LausSr.uCuO •. 
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I. INTRODUCTION 

The Kohn anomaly· occurs in a metal's phonon dispersion curves when a phonon's mo

mentum spans the Fermi surface. Locating these anomalies through inelastic neutron scat

tering (on lead2 or niobium,3 for example) and inelastic helium scattering (on a platinum 

surface·), accurately measures the Fermi surface, as well as the electron-phonon interac

tion. This Article consists of a derivation and discussion of a similar type of anomaly, with 

greater magnitude, which exists in a superconductor. This anomaly could prove useful in 

LaUSSr.15CUO., whose Fermi surface shape generates heated debate. 

A significant decay product of a phonon in a metal is a single electron-hole pair. The 

Kohn anomaly occurs because, for momenta smaller than the Fermi surface diameter, there 

exist single-pair excitations of the electron gas for the phonon to decay into, while for larger 

momenta there are none. This sharp change in the availability of decay products causes a 

nonanalyticity in the phonon's lifetime and, by a Kramers-Kronig relation, in its frequency. 

The sharpness originates in the discontinuous electron occupation at the Fermi surface at 

OK. Thus, even in an interacting electron gas, with a quasiparticle weight less than unity, the 

anomaly persists. The discontinuity vanishes at finite temperature, resulting in a phonon 

anomaly smoothed over the momentum range kBT/livF, where VF is the Fermi velocity. 

This smoothing is typically unobservable. However, in the high-temperature superconductor 

La2_IISrIlCuO. at room temperature any Kohn anomaly would be substantially smoothed. 

This may explain the failure of a searchri for Kohn anomalies in that material. In order to 

lay the Coundation Cor discussion of the Kohn anomalies in superconducting La1.8SSr.15CuO.. , 

this Article begins with the characteristics of that material's metallic Kohn anomalies. 

A standard approximation in the deri vation of the metallic anomaly is the use of the static 

pair response function. Neglecting the phonon frequency is suggested by the smoothness of 

the metal's electronic response function at frequencies much smaller than the Fermi energy 

{F. This smoothness persists at finite temperature, also justifying a static approximation. 

In most superconductors, however, the energy gap A produces substantial structure in the 
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response fundion at frequencies much less than phonon frequencies (.6 <: liwn). Thus the 

static electronic response differs qualitatively from that at a phonon's frequency, 

In work primarily devoted to calculating the screening around a static impurity, lIurault6 

suggested that a superconductor has no true Kohn anomaly. Since even at OK the electronic 

occupation is continuous in the superconductor1, he argued that the metallic anomaly would 

appear smoothed over a momentum range equal to the inverse coherence length hie = 

tJ./hvp. Testing this prediction proved impossible since the momentum resolution of inelastic 

neutron scattering would not suffice. For high-temperature superconductors, however, since 

hie - .1.4-1 the resolution is adequate. 

A heuristic explanation for the survival of Kohn anomalies in phonon dispersion curves 

whose frequencies exceed 2~ follows. Fig. la shows the minimum-energy electronic ex

citations (from now on, the adjective "single-pair" will be dropped) for a two or three

dimensional isotropic-gap superconductor (solid line) and normal metal (dashed line). In 

Fig. 1b the region near q = 2kp has been enlarged so that the solid and dashed lines can 

be distinguished. For the superconductor, in the region to the left of and above the solid 

line there exist excitations, so the electronic response function has a finite imaginary compo

nent. To the right of and below the solid line, however, no excitations exist, so the response 

function is real. A function must be nonanalytic on the border between a region where it is 

identically zero and a region where it is nonzero; the imaginary part of the response function 

is nonanalytic on this (solid) line. By Kramers-Kronig relations, the real part is nonanalytic 

there as well. Thus the superconductor must produce an anomaly in phonon dispersion 

curves at q - 2kp when hw(2kF) > 2~. All phonons resolvable by neutron scattering in 

low-temperature superconductors satisfy this condition as do most in high-temperature ones. 

For 2~ ;S hw, enhancement of the density of states near the Fermi surface due to su

perconductivityenlarges the superconductor's anomaly relative to that of the metal. The 

different character of the large-momentum excitations in a superconductor also augments 

the anomaly for 2~ ;S hw. However, for phonon energies hw far above 2.6, the altered char

acter of large-momentum excitations renders the anomaly unobservable. The observability 

condition reduces to the resolvability of e-1
, For this reason, only high-temperature super

conductors may have observable differences in their Kohn anomalies between the metallic 

and supcrconducting phases, 

Figs. lab illuminate the two types of anomalies which occur in a superconductor. Anoma

lies in phonon dispersion curves in superconductors when hw = 2.6 occur for zero momentum 

up to the Fermi surface diameter. They were proposed by Bobetic,8 elaborated by Schuster,9 

and observed in Nb3Sn lO and niobium l1 • Recentlyl2 it has been pointed out that in quasi

two-dimensional superconductors with anisotropic gaps, the frequency where these anomalies 

occur dep~nds on the phonon momentum. This observation forms the basis of a method for 

measuring the energy-gap anisotropy in a high-temperature superconductor. The remainder 

of this Article will consider the anomalies induced in phonon dispersion curves crossing the 

solid line when q - 2kp. 

It is important to note that numerical calculations of the effect of d-wave and s-wave 

superconductivity on phonon lifetimes and frequencies have been performed for a nearest

neighbor tight-binding madell3, It is possible to find features in these results which resemble 

the Kohn anomalies to be discussed in this article. However, the results presented here 

concern the location and analytic form of the anomalies, which were not discussed in Ref 13. 

Furthermore, the primary concern of Ref. 13 was to locate features identifying nesting, or 

which distinguish s-wave from d-wave gaps. I do not address nesting because the appearance 

of Kohn anomalies does not depend on nesting, merely the diameter of the Fermi surface. 

And, as I discuss in Section V, the analytic form of the Kohn anomalies is identical for 

s-wave and d-wave gaps for almost all phonon momenta. 

II. NORMAL STATE 

The conditions outlined in Section I for the observation of a Kohn anomaly in a super

conductor (e- I resolvable by neutron scattering and 2.6 ;S hw) imply that hw/fF is of order 

10-1
, This has implications for the momentum of the Kohn anomaly in the metal. 
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The meta)ls electron-hole response function, 

PM(q,W) = lim E !(tl) - !(tl+q) (2.1) 
0-0 l tk tk+q -law - ier' 

depends on the ratio hW/tF. Here !(t) is the Fermi function and tl the dispersion relation 

for the metal's electrons. The response in Eq. (2.1) is called the Lindhard function for a 

spherical Fermi surface in three dimensions. 

x~p( )=_N·(2 _ (1-lx+vJ
2
)1 11 - - v l 

M q, w . 4x x 2 n 1 + x + v 
2(1- [x - vJ )ln 11 - x +VI 

2 l+x-v -i; [8(1 -Ix + vl)(1 - [x + V]2) - 8(1 -Ix - vl)(1 -Ix - V)2)] ) (2.2) 

where x =q/2kF, V =mw/hqkF' N· is the density of states at the Fermi surface, and 8 is 

the Heavyside step function. In the limit hW/tF -t 0, 

n3D N· ( 2 11 - x I)r.u(q,O) 4x 2x-(I-x )In l+x . (2.3) 

The location of the Kohn anomaly at the momentum 2kF follows directly from the non an

alyticity of the right hand side of Eq. (2.3) at that momentum. Clearly from Eq. (2.2), 

however, at finite frequency the nonanalyticity takes place at 

H w hw 
qn = kF ± kF 1 - - '" 2kF ± (2.4)

tF iF 

Fig. 2 indicates the four types of extremal excitations which produce anomalies in the 

response function. Excitation (1) takes an electron from the Fermi surface and places it in 

a state hw above the Fermi surface on the other side of the Fermi sea. Excitation (3) takes 

an electron from a state hw below the Fermi surface and places it on the Fermi surface on 

the other side. For momenta greater than (1) or less than (3) these types of excitations 

do not exist. This explains the origin of the two solutions for qn. For hw ~ 0, excitations 

(1) and (3) are the same. The static approximation succeeds because the nonanalyticity 

has the same form for finite frequency as for zero frequency and because the differences in 

qn cannot be resolved. Excitations (2) and (4) concern the zero-momentum anomaly in a 

metal's response function which will not be discussed in this Article. 

Fig. 3 shows p3J>(q,w) for various values of law/tF. These are plotted to indicate the 

changes in the anomalies' momenta due to finite frequencies. In a high-temperature super

conductor, where the bandwidth may be less than an electron volt and the phonon energies 

are tens of meV, the splitting evident in Eq. (2.4) may be observable. 

Another feature of the high-temperature superconductors is that their electronic struc

ture is quasi-two-dimensional. In two dimensions the slope of the response function14 is 

discontinuous and divergent at qn: 

N-(P1J'(q,w) = - 2x 2x - sgn(x + 1I)8(1x + 111- Ih/(x + v)2-1 

-sgn(x v)8(1x - vl- Ih/(x + 11)2 - 1 

-i8(1 -Ix + vlh/1 - (x + V)2 + i8(1 -Ix - vlh/1 - (x - V)2). (2.5) 

The two-dimensional response contains stronger nonanalyticities than the three-dimensional 

response. Fig. 4 shows PZP(q,w) for various values of AW/tF. 

Figs. 5 and 6 indicate the location of Kohn anomalies in (q,w) space in the (100) and 

(110) directions for Lal.85Sr.15CU04, using the Fermi surface parametrizations of Hybertsen 

et al.15 • The low-energy phonons are also plotted as the solid lineslS• Every time a dispersion 

curve crosses one of these lines, a Kohn anomaly should appear. In the (100) direction the 

difference in momentum between the actual anomaly and the static anomaly may be visible 

in high-energy phonons. Unfortunately, a recent experiment' looking for Kohn anomalies 

in La1.9Sr.ICu04 was performed at temperatures too high to see this splitting (kBT > hw) 

and probably too high (kBT/tF ....., 0.1) to see anomalies at all. 
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III. KOHN ANOMALIES IN SUPERCONDUCTORS 

A. ftw < 2~ 

The disappearance of the Kohn anomaly in a superconductor was suggested by Hurault6 

as a manifestation of Fermi surface smoothing in a superconductor. To explain this requires 

formal machinery. The quasiparticle description, due to Bogoliubov, provides the most 

convenient method of calculating the effect of the superconducting electron system on the 

phonons7• The quasiparticle creation and annihilation operators ; relate to the electron 

creation and annihilation operators c as follows: 

;:'t= Ultct.. - t1kc-It.• 

;-It,,= UItC-It,l + "ltct. •. (3.1) 

Here 

6 _ 1 ( flt)l t1k =_1 (1 _~) l , (3.2)UIt-~I+EIt·' UIt"1t = 2EIt'~ Eit 

where Eit = Jf: + 6 2 is the energy added to the system by creating a quasiparticle of 

momentum k. The Hamiltonian, expressed in quasiparticle operators, is then 

Ho =E EIt7:'. ill,. (3.3) 
It,. 

and the ground state contains no quasi particles. 

A significant difference between the superconducting system and a normal system is the 

"It function, which is the analogue of the Fermi occupation function I(flt) in a metal. At 

zero temperature I(flt) has a discontinuity at the Fermi momentum, while "It smoothly falls 

to zero over a momentum range (A/e). "It and I(flt) are shown in Fig. 7. The Kohn anomaly 

arises from the discontinuity in the electron occupation, and as I(flt) becomes smoother due 

to increased temperature, the apparent anomaly becomes weakerlT. Hurault suggested the 

smoothness of tilt due to superconductivity affected the Kohn anomaly the same way as the 

smoothness of I(fit) at finite temperature affected the anomaly. He predicted a "smoothing" 

of the Kohn anomaly over a momentum range of (A/e) and extracted this smoothing from 

the superconductor's static response function. 

However, this heuristic explanation needs to be reexamined in the light of the existence 

of anomalies for higher phonon frequencies. The Fermi surface sharpness cannot change as a 

function of frequency in the superconductor. Instead, the explanation for the smoothing of 

the Kohn anomaly at small frequencies must be due to the lack of any electronic excitations 

in the superconductor, at small or large momenta (as seen in Figs. la and Ib). 

Calculating the non-analytic behavior of an anomaly is necessary to make this argument 

concrete. This calculation requires the superconducting electronic response function, 

. (E!LEq_!L - f!Lfq-!L +Re(61t6:_k }) -1 . , (3.4)Ps(q,w) = 1'2A~ 2EItEq_1t Eit + Eq-It - Aw -10 

where the sum is over all k values. The parenthetical factor, called the coherence factor and 

denoted C(k, q - k), reaches its maximum of 1 for k and q - k at the Fermi surface. It 

behaves similarly to the occupation expression I( fit) -Iefk+q) in the normal metal's response 

function, Eq. (2.1), but while the occupation expression vanishes sharply as a function of k 

or q, C decays to zero with a scale given by the inverse coherence length. For the rest of 

this section, the gap will be assumed isotropic. Section V will discuss anisotropic gaps. 

The second factor of Eq. (3.4), the energy denominator, has poles for all excitations of 

the Bogoliubov quasiparticle sea. The imaginary part of Ps(q,w) consists of contributions 

from each of these poles (the coherence factor is real). 

At zero frequency there are no excitations in the isotropic superconductor. Since there 

are no poles of the energy denominator, Ps(q,w) is real for all q. The smoothness of the 

integrand in Eq. (3.4) with respect to q for all values of k forces the response function to 

be smooth with respect to q. 

This smoothness can be estimated in a simple way from the change of Ps(q,w) at q = 2kF • 

In three dimensions the sum from Eq. (3.4) can be replaced by the following integral: 

() 
 ~ 

PjD(q,O) _ ~ N*jOO df I ,'" d ,EE' fE' +6 

2 

(3.5)2qkFA2 -(F J~'<::.')' f _. -, • 
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Here E = J f 2+&2 and N- is the density of states per unit energy at the Fermi energy in an 

otherwise identical material with & = O. This usually is the normal metal. The integral in 

Eq. (3.5) can be estimated near 9 = 2kF to yield a measure of the remnant of the anomaly: 

2kF 8Pj:(q,O)lu,1~D(2kr,O) '" 21n (~) #v 21n (k:e)' (3.6) 

When & vanishes, the logarithmically-divergent slope o( the normal-metal response 

reemerges. That response, the Lindhard function, is Eq. (2.2). 

For finite but small frequencies in the superconductor, the slope magnitude increases to 

I 8PjD(q,W) I /PjD(2kr , 0)1 #v In (&2 _ ~~W/2)2)' (3.7)2kF 89 2If, 

This increase resuits (rom the overall decrease in all the energy denominators in Eq. (3.4), 

due to a finite driving frequency. That change increases the contribution o( each virtual 

excitation to the response o( the superconductor. The overall response o( the superconductor 

also increases, so the relative magnitude o( the slope does not change (or small but finite 

frequency. 

12kF 8Pj~~q'W)I2k'/PjD(2kr,W)1 #v 21n (~) #v 21n (k:e) . (3.8) 

In a quasi-two-dimensional superconductor a similar effect occurs. Instead of diverging 

as in Eq. (2.5), however, the slope magnitude reaches a maximum value o( 

12k..IJP1~~q'W)I../P1D(2kr,w)1 ~ (~)I. (3.9) 

In one dimension the response-function magnitude reaches a maximum o( 

IPJD(2kr,w)1 #v ~- In (~2 ~!W/2)2)' (3.10) 

whereas in the normal metal it diverges logarithmically: 

{II(1 x f' 1121 i'lf' }PlP(q,w) = N· 4x In (1 ~ x)2 _ 112 + 4x [8(1 -Ix + III) - 8(1 -Ix - III)] (3.11) 

These results are quite similar in implication to Hurault's. However, the phonon (re

quency regime Iiw < 2& is unphysical in ordinary superconductors and rare in high

temperature superconductors. We now turn our attention to the more physical frequency 

regimes. 
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B. 2A;S Aw 

When the phonon energy exceeds the excitation gap, the superconductor recovers an 

anomaly. For 9 > 2kF the minimum energy quasiparticle mode creates two quasi particles 

with momentum 9/2 > kF. Because both of these quasiparticies are created with a momen

tum greater than the Fermi momentum, this mode does not have an analogy in the normal 

state. The superconductor, there(ore, has lower energy excitations at high 9 than the normal 

metal, as can be seen in Fig. lb. 

For a fixed Iiw > 2& there are two regimes of 9, separated by the solid line in Figs. 

la and lb. For small 9, ImPs(q,w) :# °because the minimum excitation energy is less 

than the driving frequency. For large 9 no excitable modes of the electron gas exist, 80 

ImPs(q,w) = 0. There(ore, the imaginary part o( Ps(q,w), and by implication from the 

Kramers-Kronig relations the real part as well, cannot be analytic (unctions o( 9. The' 

momentum 9c(W) beyond which no modes of frequency w or less exist is the anomaly's 

momentum. A nonspherical Fermi sur(ace does not affect the analytic form o( the anomalies. 

J( the Fermi suriace is known, the anomaly momenta in various directions can be calculated. 

I will now derive the (orm o( the nonanalyticity o( Ps(q,w) at 9 = 9c(W). 

The nonanalyticity in Ps(q,w) at 9 = 9c(W) can be extracted by expanding the energy 

denominator in Eq. (3.4) around the anomaly'. momentum: 

E +E = 2E + fq,,/2(p2 - 9:/4) + fq,,/2(P'J. +9
2 +2pqC088 - 9:/4) (3 12) 

k q-1: q,,/2 2mEq,,/2/A2 •• 

This expansion is valid when the quantities in parenthesis are small compared to 1iw/2, 

which will usually mean small compared to.6.. This expansion, there(ore, is only valid (or 

states k and q - k in a region of dimension (Ii/e) around the momentum fJe/2. Consider 

the sum in Eq. (3.4) to be restricted to this region. An evaluation of that sum, which will 

(ollow and will be called Ps(q,w), accurately gives ImPs(q,w) and the nonanalytic part of 

RePs(q, w) near the nonanalyticity at 9 = 9c. 

Since 2Eq,,/2 = liw and the coherence factor is smooth over a momentum (A/e), the sum 

can be written as the following integrals in one, two and three dimensions: 
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NID • liw kF q q I,+a dp 
(3.13)Ps (q,w) = -N Eq.,/2 T C(2"' 2") 1"-11 2p2 - qU2 +q'- 2pq' 

p~D(q,w) = -N. 1iw qc C(~,~) 
fq.,/,811" 2 2 

I,,+a J.ft'+¢ dpd9 (3.14)1,,-. .-Ii; 2p2 - qU2 +q2 +2pqcos9' 

PiD(q,w) = -N. liw £C(~,~) 
fq.,/2 8kF 2 2 

I,+a J.ft' dpdC089 (3.15)1,-. .-Ii; 2,., - q!/2 +q' +2pqC089' 

where a is a cutoff of order e-1• 

Evaluating the integrals above in the limit q -+ qc and defining f = q qc yields the 

following forms for the response functions: 

plD( )= _ ·N. liw [~] C(9 ~)s q, w. 8. r-;;-;: 2' 2 ' f<~
Eq.,/2 V -qcq 

=-N. 1iw [ 1I"kF ] C(9, 9), f>~ (~1~ 
fq.,/2 8.jq;q 2 2 

p~D(q,w)= N· 1iw ! [lnl fq;l-i1l"9(-q)] C(~,~), (3.17) 
fqe/24 Sa 2 2 

3D • "CAl • -qqc 2 q q N I.. - [ (N )1]
Ps (q,w)= -N fq.,/2 P +111" 32kj. C(2"' 2")' f<~ 

\ • fKII qqc q q I.. _ [ (-) l] f>a (3.18)=-N fq.,/2 P+1I" 32kJ. C("2'2")' 

Here 9 is the Heavyside step function and P is an uninteresting constant. Only PAD(2kr,w) 

has been reported elsewherel3• The change in f9rm of the integrals in Eqs. (3.13)- (3.15) 

when q passes through qc causes the nonanalyticities in Eqs. (3.16)-(3.18). The forms of 

these nonanalyticities differ from those in the normal metal. 

This primarily results from the different dispersion of the excitations with momentum 

near qc/2 between the metal and superconductor. In a normal metal, for finite frequency, 

the anomaly's momentum connects electronic states with different velocities. One electronic 

state rests on the Fermi surface and one does not. In the superconductor the two quasi

particle states have the same velocity, causing an amplification of the density of states for 

E. +Eq _. = 1iw and a stronger nonanalyticity. The prefactor in Eqs. (3.13)-(3.15), 

liw 1 ( [26],)-l (3.19)
fq.,/2 = 2" 1 - liw ' 

is due to the square-root divergence near the Fermi surface in the superconducting density 

of states. 

C.Iiw> 2A 

For large phonon frequencies, the anomaly's momentum exceeds twice the Fermi mo

mentum by well over (Ii/O. In this case, the small value of the coherence factor C(!f,') 

renders the anomaly undetectable. A remnant of the normal metal's Kohn anomaly still 

exists. Since all relevant excitations for this remnant are near the dashed line of Figs. lab, 

this situation is analogous to finite temperature in a normal metal. In the superconductor, 

phonons with momenta on both sides of the dashed line have zero-energy excitations, but 

their number decreases markedly, over a momentum range (Ii/e), upon crossing that dashed 

line. 

IV. EXPERIMENTAL IMPLICATIONS 

The actual size of the phonon anomalies can be estimated by including the response 

function in the phonon self energy in the standard way18 and then expanding about w(2kF) = 

wo: 

6w(q) = )..woN· Re [Ps(q,wo) - PM (2kr ,Wo)] (4.1)
Wo 2 N· 

where).. is the dimensionless electron-phonon coupling constant. The linewidth is simpler 

to express: 

7s(q,Wo) ImPs(q,wo) 
(4.2)

70 = ImPM(2kr ,wo)' 

In comparing anomaly magnitudes I will assume that ).. in the superconductor equals the 

normal-metal value. Recentlyl9 the average value of ).. over the whole Brillouin zone has been 
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calculated to be 1.37. The value of N· has been calculated20 to be 0.3/e-V. Fig. 8 shows 

the real and imaginary part of the response function for a simple model of Lal.85Sr.I5CuO ... 

The anomalies evident in Fig. 8 are due to crossing the pair threshold surfaces (shown 

for LaUSSr.15CuO .. in Fig. 9). Fig. 10 compares a phonon dispersion curve in the normal 

and superconducting state of La1.8sSr.15CuO... Clearly the anomaly should be larger in 

superconducting La1.8/1Sr.15CuO.. than in metallic La1.8/1Sr.lIICuO... To show how the two

dimensional anomalies are much larger than the three-dimensional anomalies, Fig. 11 shows 

the metallic and superconducting response function for a three-dimensional spherical Fermi 

sea. 

V. GAP ANISOTROPY 

An anisotropic gap influences this anomaly only through the coherence factor, 

C(qe, 'Ie) = (1.1.q.,/21)2 (5.1)
2 2 Eq.,/2' 

which is independent of the phase of the gap. 

So long as the gap is finite at Qc/2, the situation for anisotropic gaps is essentially the 

same as for isotropic gaps. A difference occurs when the momentum spanning the Fermi 

surface connects two nodes in the gap. For this situation the anomaly is weaker. This has 

been analyzed numerically by Marsigliol3. 

VI. CONCLUSION 

The vanishing of the Kohn anomaly for liw < 2.1. results from the absence of electronic 

excitations at low energy in the superconductor rather than from a smoothing of the Fermi 

surface. The rapid decrease of the coherence factor of the minimum-energy excitation for 

liw ;» 2.1. also eliminates the Kohn anomaly. A new regime exists when 2.1. ;$ liw; here 

superconductivity enhances the Kohn anomaly. An appropriate material to examine when 

looking for this effect would have phonon branches both above and below the excitation gap 

at q '" 2kF , as well as a quasi-two-dimensional electronic structure. High-Tc superconductors 

like LausSr.lsCuO.. are such materials. 

Since an extremely sensitive probe of surface phonons exists in thermal-energy-inelastic

helium scattering", I remark that similar arguments to those presented in this paper may 

apply to surface phonons. 

The anomalies discussed in this Article complete the catalogue of pair-production thresh

old anomalies, begun by Bobetic8 and Schuster,9 and elaborated for two-dimensional super

conductors recently by this authorl2. 
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FIGURES 

FIG. 1. Minimum single-pair excitation energy in a two or three-dimensional superconductor 

(solid line) and normal metal (dashed line). Here ll./fF ::: 0.01. (a) Fun range of momentum ,. 

(b) Closeup of the region near, ::: 2kF' 

FIG. 2. Four possible extremal excitations for a fixed w. The two dashed lines are energy 

contour surfaces at Iiw below and above the Fermi surface, indicated by the solid cirde. For 

momenta smaller than (1) and (2) there are no real single-pair excitations of the Fermi sea of this 

type. For momenta greater than (3) and (4) there are no single-pair excitations of this. type. 

FIG. 3. -p3,f(q,w)/N· for liw/fF =0 (solid line), 0.1 (dashed line), and 0.2 (dotted line). (a) 

Real part. (b) Imaginary part. The solid line is not visible in (b) because ImPM(', O) =O. 

FIG. 4. -PlP(q,w)/N· for liw/fF = 0 (solid line), 0.1 (dashed line), and 0.2 (dotted line). (a) 

Real part. (b) Imaginary part. 

FIG. 5. Kohn anomalies for phonons with momenta parallel to the (100) direction in 

LausSr.nCuO... Points on the dashed line correspond to Kohn anomalies when phonon curves 

cross them. Solid lines are the low-energy phonons from Ref. 16. The dotted line indicated the 

momen~um of the static anomaly. 

FIG. 6. Same as Fig. 5 except for phonons with momenta parallel to the (110) direction. 

FIG. 7. Occupation number /(fk) for a normal metal at OK (dashed line) and the function Vk 

for a superconductor at OK (solid line). 

FIG. 8. The response function for a model or LausSr.I5CuO .. with the correct curvature at the 

points where a vector in the (100) direction spans the Fermi surface. The Fermi velocity was taken 

from Ref. 15. The frequency is fixed at 18 meV. The dashed line is for the normal metal and the 

solid line is for the superconductor. The nonanalyticities in these curves correspond to momenta 

where a phonon at this frequency would cross a pair-production threshold surface shown in Fig. 9. 

(a) Real part. (b) Imaginary part. 

FIG. 9. The pair-production threshold in the superconductor (dotted line) ~n the (100) direction 

is shown on the same graph as the threshold in the normal metal (dashed line, previously shown in 

Fig. 5). The gap magnitude is taken to be 7.5 meV. The four-pointed star indicates the momentum 

and energy of the superconductor's anomaly. The five-pointed star indicates the momentum and 

energy of the normal metal's anomaly. 

FIG. 10. A phonon dispersion curve near 18 meV in the normal and superconducting state of 

LausSr.nCuO... (a) Frequency. (b) Relative lifetime. 

FIG. 11. Response function for a superconductor (solid line) and normal metal (dashed line) 

with a three-dimensional Fermi surface. liw/fF =0.1 and 1iw/21l. = 1.25. (a) Real part. (b) 

Imaginary part. 
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