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Abstract 

We have obtained a new approximate general formula for radiative cooling 
of the accretion disk which is valid for all optical depths T, including T of the 
order of unity. Using this formula and following Bjornsson and Svensson (1991) 
for determination of the equilibrium structure of the geometrically thin a-disk, 
we analyze the general global disk solutions for fixed viscosity parameter a. We 
have determined the values of the maximal possible rate of accretion, at which 
there are formal global solutions, for various values of the viscosity parameter a. 

1.Introduction 

It is well known that disk accretion plays a crucial role in many astrophysical objects 
and phenomena. Linden-Bell (1969) was the first who proposed the model of gaseous 

disk accretion onto black holes as a source of energy of quasars and active galactic 
nuclei (AGN). Shakura (1972), Pringle and Rees (1972), Shakura and Sunyaev (1973) 
have built the Newtonian models of accretion disk. Later Novikov and Thorne (1973), 
Page and Thorne (1974), gave the theory of disk accretion in the framework of General 
Relativity. This theory is important for the structure of innermost parts of the disk. 

In the subsequent period a lot of works were devoted to this problem. In the most 
early papers the emphasis has mainly been on the existence and analysis of the local 
disk solutions at a given radius r. Of greater importance is whether or not these local 
solutions at different radii connect smoothly to form physically self-consistent global 
disk solution that is continuous from large radii to the inner disk edge. 

It is known that for a given values of the accretion rate if and viscosity parameter 0, 

there are two different solutions for a steady state disk structure equations at the given 
radius r. One of them corresponds to optically thick, low-temperature (T '" 105 + 107K) 
state. Another solution corresponds to the optically thin, high-temperature (T '" 109 K) 
state. 

The physics and properties of these solutions, stability for example, are quite dif
ferent. The formulae for radiation flux and radiation pressure conventionally used are 
valid only in limiting cases either for the optically thick region, or for the optically 
thin one, but not for the intermediate zone. So far only a few papers with the dis
cussion of the intermediate zone were published (Maraschi and Molendi (1990), Liang 
and Wandel (1991), Wandel and Liang (1991), Lasota and Pelat (1991), Kusunose and 
Mineshige (1992), Luo and Liang (1994)). 

Here we study the disk behavior at all T, including Tefl ~ 1, and derive a new 
approximate formula for the radiative flux which is valid for all optical depths. 

Using this formula we follow Bjornsson and Svensson (1991) for determination of the 
equilibrium structure of the geometrically thin disk and analyse the general topology 
of the family of the global disk structure solutions for a fixed viscosity parameter o. 
Each curve corresponds to a given rate of accretion if. From this analyses it is clearly 
seen the bifurcation of the solutions into different sub-families. In order to specify the 
main behavior of global solutions we analyze the simplest accretion disk model with 
the pure bremsstrahlung proton-electron release of the radiation energy E. 

In section 2 we obtain an approximate formula for radiative flux, valid for all T. In 
the section 3 we present the disk structure equations. In the section 4 we discuss the 
results of numerical solutions of the disk structure equations. 

2.General formula for radiative flux 

For obtaining the formula for the vertical radiative flux Frad in the disk and radiative 
pressure Prad for any optical depth, we consider the Eddington approximation in a grey, 
isothermal, scattering medium in LTE conditions. The first momentum of the equation 
of transfer for plane-parallel geometry gives 

dFrad = -pE (~-1), (1)
dz aT4 

where z is a vertical coordinate (z = 0 at the symmetry plane of the disk), p is the 
matter density, S is the energy density, E is the source function. Using the mean value 
p one can write down the following approximate formula for radiation flux: 



/ 

Fo 

Frad = 2 Eo pz, (2) 

where Fo is the surface value of Frad, Fo=Fradlz=h , h is the half height of the disk, 
Eo=2ph is the surface density. Using (1) in (2) we get the expressions for Sand Prad 
in Eddington approximation 

4 ( Fo ) (3)3Prad = S = aT 1 - Eph ' 

From the second momentum of the transfer equation we get 

dP Fo (4)C dz = -K.pFrad = - 2EopK.PZ, 

where K.=~ , Ut is the Tomson's scattering depth, C is the speed of light. One can 

write eq (6) in the following form (T = Jzoo K.pdz, p is taken constant) 

dP Fo 
c- = Frad =2~T. (5)

dT K.l.JO 

We solve (5) with the following boundary condition: 

Fradl.,.=o = Fo = c; = 3C~rad. 

what gives 
cS 2Fo FOT2 2 T2 

(6)CPrad = 3 = 3 + K.Eo = FO(3 + 2TO) ,TO = K.ph. 

Excluding S from (5) and (6), we obtain the final expression for the temperature 
distribution over the thickness of the disc 

4 3 Fo (T2 4 2)aT = -- - +- + - . (7)
2 C TO 3 3Ta 

Here we have introduced the optical depth to the absorption Tf ~ T, 

E E 
Tf = -T.4pz ,Ta = -T.4ph,

a OC a OC 

where To is the temperature in the plane of the disc. Introducing the effective optical 
depth: 

T. = (ToTa)1/2. 

We get from (7) the connection betwen the flux Fo and To 

2aT~c ( 4 2 )-1Fo =-- 1+-+- (8)
3To 3To 3T~ 

The formula (8) has the following properties: 

1) In the optically thick limit TO ~ 1, T. ~ 1 we have the diffusion limit 


F. _ 2aT4 c 
0- 3K.ph' 

2) In the effective optically thin case T. ~ 1, any TO ~ T. we have 

Fo = Eph. 

Thus we can use the formula (8) for any optical depth. 

3.Disk structure equations 

Now we can investigate the geometrically thin disk structure without any restriction 
on the optical depth. To the equation (8) we add the following disk structure equations: 
the total pressure: 

Ptot = Pgaa +Prad , (9) 

the equation for the gas pressure: 

2m c
Pgaa = _e_7lp (Op +Oe), (10)

rgUt 

where me is the mass of the electron, rg = ~, 7lp is the dimension-less proton con
centration 

7lp = nprgUt· 

Here Op and Oe are the dimensionless proton and electron temperatures 

Op= TP2 ,Oe= Te 
2meC meC 

The equation for the radiation pressure with account of (6),(8) is 

a m ec
2 

4 ( 4 ) ( 4 2) -1Prad = ---0 1 + - 1 +- +-- (11)
3 rgUt e 3To 3To 3ToTa 

Hydrostatic equilibrium in the vertical direction is described by the equation 

m pc2 
_ h -1 ( )Ptot = --np-r. , 12 

rgUt r 

where r. = f; is the dimensionless radius. Conservation of the angular momentum is 
presented by the equation 

2 
m pc • -2.5(h) -1

aPtot = --m - r. J(r.), (13)
rgUt r 

where J(r.) = 1- (6 r o)1/2 and mis the dimensionless accretion rate m= LMt?; M is the 
r edd 

accretion rate, Ledd is the Eddington luminosity. The rate of release of the gravitational 
energy per unit volume is 



. 3mpc2 (h) -IE+ = --m • - r. 
-4 J(r.). (14)

2rg O"t r 

The radiative cooling rate is 

. 3afmec2 
-2 

Erad = -8--2-npFbr, (15)
7rr O"tg 

where Of = 1~7 is the constant of thin structure, Fbr is the dimensionless radiation rate 
due to bremsstrahlung. The last two relations are the energy balance equation 

. (Fo)E+= h . (16) 

and the expression for free-free optical depth 

To 
k )4 (h) . -4= -rg ( -2 - r.EralJe , (17) 

ac mec r 

with the Boltzman's constant k 

4.Results 

We have obtained the solutions to the system of equations discussed above numeri
cally using the technique described in Bjornsson and Svensson (1991). In the Figure (1) 
we plot the dependences of the optical depth To (which is proportional to the surface 
density Eo) on the radius r. for the case MBH = 108 Me , 0 = 1.0 and various fixed 
m. One can clearly see the bifurcation of the global solutions into two (optically thick 
and optically thin) families. 

For the rate m ~ 9.39 there are two families of the global solutions which are 
continuous from the large radii to the inner disk edge. At m:::::: 9.39 two global solutions 
cross each other at r. = 10.67 and for this case we observe the transmutation of 
the optically thick solutions into optically thin and vise verse. For m > 9.39 and 
0= 1, MBH = 108 Me there are no global solutions. 
For each fixed m > 9.39 ther are two formal branches of solutions which both start 
and end either at large radii or at the inner disk edge but without any solutions for the 
values r. in some region around r. = 32/3. For these formal solutions at the turning 
points the gradient of all physical values ( as functions of r. ) tends to infinity and 
physical restrictions for correctness the used equations are violated. 

The value m== mmar = 9.39 is the maximum possible value of the rate of accretion 
mwhen there are global solutions for the disk structure. Note that the point of bifur
cation r. = 32/3 corresponds to the place of the maximum realize of the gravitational 
energy in the disk. In the Figure (2) we have plotted the dependence of mmax on the 
value of the parameter o. It is obviously that mmax can be both greater and smaller 
then the value of mwhich corresponds to the Eddington luminosity. The dependence 
of critical value mmax on the mass of a Black Hole is weak and will be represented 
elsewere. Let us stress that our results reflect the formal properties of the accretion 
disc equations in Sec.(3), which has physical meaning only at ~ < 1 for global solu
tion, or r. > 2~ for ~ > 1. Formally at ~ > 1 the ratio h/r is becoming large in 

the inner parts of the disc and the disc approximation fails. Here c is the efficiency of 
accretion c = M

L 
c2 , c :::::: 0.1 . That indicates to the begining of the intensive mass loss 

from the inner parts of the disc in combination with the disc accretion outside ( G.S. 
Bisnovatyi-Kogan and S.1. Blinnikov, 1977). 
We do not discuss here the problems of stability of the solutions. In the subsequent 
papers we shall discuss the same problems for more complicated physics of the disk 
including the Comptonization effect, two temperature, pair creation and advection. 
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Figure 2: The dependence of mma:r on the value of the parameter o. 




