A Measurement of the Gross-Llewellyn Smith Sum Rule
from the CCFR xF3 Structure Function

W.C. Leung, P.Z. Quintas, 1 S.R. Mishra, 2 F. Sciulli,
C. Arroyo, K.T. Bachmann, 3 R.E. Blair, 4 C. Foudas, 5 B.J. King,
W.C. Lefmann, E. Oltman, 6 S.A. Rabinowitz, W.G. Seligman, M.H. Shaevitz
Columbia University, New York, NY 10027
F.S. Merritt, M.I. Oreglia, B.A. Schumm 6
University of Chicago, Chicago, IL 60637
R.H. Bernstein, F. Borcherding, H.E. Fisk, M.J. Lamm,
W. Marsh, K.W.B. Merritt, H. Schellman, 7 D.D. Yovanovitch
Fermilab, Batavia, IL 60510
A. Bodek, H.S. Budd, P. de Barbaro, W.K. Sakumoto
University of Rochester, Rochester, NY 14627
P.H. Sandler, W.H. Smith
University of Wisconsin, Madison, WI 53706:

(Nevis Preprint # 1460, Jun.1992)

1 Address after Jan. 1992: Fermilab, Batavia, IL 60510.
2 Address after Aug. 1991: Harvard University, Cambridge, MA 02138.
4 Present address: Argonne National Laboratory, Argonne, IL 60439.
5 Present address: University of Wisconsin, Madison, WI 53706.
6 Present address: Lawrence Berkeley Laboratory, Berkeley, CA 94720.
7 Present address: Northwestern University, Evanston, IL 60208.

1
We report a measurement of the Gross-Llewellyn Smith Sum Rule:
\[
\int \frac{dx}{x} x F_3(x, Q^2 = 3 \text{ GeV}^2) = 2.50 \pm 0.018 \text{ (stat)} \pm 0.078 \text{ (syst)}.
\]

PACS numbers: 13.60.Hb; 11.50.Li, 12.38.Qk; 25.3.Fj

The Gross-Llewellyn Smith (GLS) Sum Rule[1] predicts that the integral of \(xF_3 \), weighted by \(1/x \), equals the number of valence quarks inside a nucleon — three in the naive quark parton model. With next to leading order QCD corrections, the GLS sum rule can be written as

\[
S_{\text{GLS}} = \int_0^1 \frac{dx}{x} x F_3(x, Q^2) = 3 \left[1 - \frac{12}{(33 - 2N_f) \ln(Q^2/\Lambda^2)} + O(Q^{-2}) \right], \tag{1}
\]

where \(N_f \) is the number of quark flavors (=4) and \(\Lambda \) is the mass parameter of QCD. Higher twist effects, of the order \(O(Q^{-2}) \), are expected to be small (< 1% of \(S_{\text{GLS}} \) at \(x \approx 0.01 \)).[2] Until now, the most precise measurement of the GLS Sum Rule has come from the Narrow Band Beam (NBB) neutrino data of the CCFR collaboration[3]. The factor of 18 increase in the \(\nu \)-induced charged current (CC) sample of the new data, compared to our earlier experiment, provides a much more precise determination of \(xF_3 \), and an improved measurement of \(S_{\text{GLS}} \). In an accompanying letter, we have reported a high statistics determination of \(F_2(x, Q^2) \) and \(xF_3(x, Q^2) \).[4]

Due to the \(1/x \) weighting in Eq.1, the small \(x \) region (\(x < 0.1 \)) is particularly important. Accurate measurements of the following ensure small systematic errors:
(a) the muon angle \((\theta_\mu) \)[5] and (b) the relative \(\nu/\bar{\nu} \) flux. Since \(x F_3 \) is obtained from
the difference of \(\nu \) and \(\bar{\nu} \) cross-sections, small relative normalization errors can become magnified by the weighting in the integral. The absolute normalization uses an average of \(\nu-N \) cross-section measurements.\[^4\] Here we describe procedures for obtaining the relative flux: ratios of neutrino flux from energy to energy, and between \(\nu_\mu \) and \(\nu_\mu \). Two methods have been used in extracting the relative flux \([\Phi(E)] \): the fixed \(\nu \)-cut method and \(y \)-intercept method.\[^6\] The two techniques yielded consistent measures of \(\Phi(E) \).

The fixed \(\nu \)-cut method uses the most general form for the differential cross section for the \(V-A \) neutrino nucleon interaction (Eq.1 of Ref.\[^4\]) which requires that the number of events with \(\nu < \nu_0 \) in a \(E_\nu \) bin, \(N(\nu < \nu_0) \), is proportional to the relative flux \(\Phi(E_\nu) \) at that bin, up to corrections of order of \(O(\nu_0/E_\nu) \):

\[
N(\nu < \nu_0) = \Phi(E_\nu)\nu_0 \left[A + \left(\frac{\nu_0}{E_\nu} \right) B + \left(\frac{\nu_0}{E_\nu} \right)^2 C + O\left(\frac{\nu_0}{E_\nu} \right)^3 \right].
\]

(2)
The parameter, \(\nu_0 \), was chosen to be 20 GeV to simultaneously optimize statistical precision while keeping corrections small. There are 426,000 \(\nu \)- and 146,000 \(\bar{\nu} \)-induced events in the fixed \(\nu \)-cut flux analysis.

The \(y \)-intercept method comes from a simple helicity argument: the differential cross sections, \(d\sigma/dy \), for \(\nu \)- and \(\bar{\nu} \)-induced events should be equal for forward scattering, i.e., as \(y \to 0 \).

\[
\left[\frac{1}{E} \frac{d\sigma^\nu}{dy} \right]_{y=0} = \left[\frac{1}{E} \frac{d\sigma^{\bar{\nu}}}{dy} \right]_{y=0} = \text{Constant.}
\]

(3)
Thus, in a plot of number of events versus \(y \), the \(y \)-intercept obtained from a fit to the entire \(y \)-region is proportional to the relative flux. The fixed \(\nu \)-cut and \(y \)-intercept methods of \(\Phi(E) \) determination typically agreed to about 1.5% with no
measurable systematic difference. A smoothing procedure was applied to minimize the effects of point-to-point flux variations.[7]

Structure functions were extracted from the CC data in the kinematic domain $E_{\text{had}} > 10 \text{ GeV}, Q^2 > 1 \text{ GeV}^2$ and $E_\nu > 30 \text{ GeV}$. In this sample, there were 1,050,000 ν- and 180,000 $\bar{\nu}$-induced events. Accepted events were separated into twelve x bins and sixteen Q^2 bins from 1 to 600 GeV2. Integrating the ν-N differential cross-section (Eq.1 of Ref.[4]) times the flux over each x and Q^2 bin gives two equations for the number of neutrino and antineutrino events in the bin in terms of the structure functions at the bin centers, x_0 and Q^2_0.

$$\Delta N^{\nu,\bar{\nu}} = \left(\int a\Phi(E)^{\nu,\bar{\nu}} dE \right) (F_2(x_0, Q^2_0)) \pm \left(\int b\Phi(E)^{\nu,\bar{\nu}} dE \right) (xF_3(x_0, Q^2_0))$$

(4)

where a and b are known functions of x, y, E and $R(x, Q^2)$.[4] and $\Phi(E)$ is the flux. The observed numbers of events, N^{ν} & $N^{\bar{\nu}}$, were corrected with an iterative Monte Carlo procedure for acceptance and resolution smearing.

To solve these equations for F_2 and xF_3 certain known corrections have to be applied. We assumed a parameterization of $R(x, Q^2)$ determined from the SLAC measurements,[8] and applied corrections for the 6.85% excess of neutrons over protons in iron. We used the magnitude and the x-dependence of the strange sea determined from our opposite-sign dimuon analysis.[9] The threshold dependence of charm quark production was corrected with the slow rescaling model,[10] where the relevant charm quark mass parameter, $m_c = 1.34 \pm 0.31 \text{ GeV}$, was determined from our data.[9] Radiative corrections followed the calculation by De Rújula et al.[11] and the cross-sections were corrected for the massive W-boson propagator. The
charm-threshold, strange sea, and radiative corrections were largely independent of Q^2. For F_2, they ranged from $\pm 10\%$ at $x = 0.15$, to $\pm 3\%$ at $x = 0.125$, to $\pm 5\%$ at $x = 0.65$ over our Q^2 range. For xF_3, they ranged from $\pm 1\%$ at $x = 0.15$, to $\pm 1.5\%$ at $x = 0.125$, to $\pm 2\%$ at $x = 0.65$. Resolution smearing was corrected using a Monte Carlo calculation which incorporated the measured resolution functions from dedicated test run data.[5] We have excluded the highest x-bin, $0.7 \leq x \leq 1.0$, due to its susceptibility to Fermi motion (which was not included in the smearing correction).

To measure S_{GLS}, the values of xF_3 were interpolated or extrapolated to $Q^2_0 = 3$ GeV2, which is the mean Q^2 of the data in the lowest x-bin which contributes most heavily to the integral. Figure 1 shows the data and the Q^2-dependent fits used to extract $xF_3(x, Q^2 = 3)$ in three x-bins. The resulting xF_3 is then fit to a function of the form: $f(x) = Ax^b(1 - x)^c (b > 0)$. The best fit values are $A = 5.976 \pm 0.148$, $b = 0.766 \pm 0.010$, and $c = 3.101 \pm 0.036$. The integral of the fit weighted by $1/x$ gives S_{GLS}. Figure 2 shows the measured $xF_3(x)$ at $Q^2 = 3$ GeV2, as a function of x, the fits and their integrals. The measurement of the sum rule yields:[12]

$$S_{GLS} = \int_0^1 xF_3(x) dx = 2.50 \pm 0.018 \text{(stat.)}$$

Fitting different functional forms to our data,[7] gives answers within $\pm 1.5\%$ of the above. We estimate ± 0.040 to be the systematic error on S_{GLS} due to fitting. The dominant systematic error of the measurement comes from the uncertainty in determining the absolute level of the flux, which is 2.2%. The other two systematic errors are 1.5% from uncertainties in relative ν to ν flux measurement and 1% from uncertainties in E_μ calibration.[7] The systematic errors are detailed in Table 1. Our
value for S_{GLS} is:

$$S_{\text{GLS}} = \int_0^1 \frac{x F_2}{x} dx = 2.50 \pm 0.018 \text{ (stat.)} \pm 0.078 \text{ (syst.)} \quad (5)$$

The theoretical prediction of S_{GLS}, for the measured $\Lambda = 210 \pm 50$ MeV from the evolution of the non-singlet structure function,[7] is 2.66 ± 0.04 (Eq.1). The prediction assumes negligible contributions from higher twist effects, target mass corrections,[13] and higher order QCD corrections. The world status of S_{GLS} measurements is shown in Fig.3.

We thank the management and staff of Fermilab, and acknowledge the help of many individuals at our home institutions. This research was supported by the National Science Foundation and the Department of Energy.

⁸An next-to-next-to-leading order calculation predicts $S_{\text{GLS}} = 2.63 \pm 0.04$.[14].
References

[5] Small x events have small angles. The muon angle resolution of the CCFR detector is about 1.3 mrad at the mean E_μ of 100 GeV; for details see W.K.Sakumoto et al., Nucl. Inst. Meth., A294, 179(1990).

Neutrino '00.

[11] A.De Rújula et al., Nucl. Phys., B154:394, 1979. We have estimated the effect of using the more detailed radiative correction calculation by D.Yu.Bardin et al., JINR-E2-86-260 (1986). The difference between the two corrections was generally very small, except at the lowest \((x = 0.015)\) and the highest \((x = 0.65)\) \(x\)-bins. Our structure function results would, thus, change by a few percent if the Bardin's instead of the De Rújula's calculation were used. In a future publication we shall present our results with Bardin's calculation.

[12] Our present value of \(S_{GLS}\) (2.50) is lower than the earlier preliminary presentations (2.66) [see S.R.Mishra, Talk at Lepton-Photon, 1991, Geneva]. Two small changes in the assumptions of the analysis lowered \(S_{GLS}\). These changes, we believe, are more accurate than those employed earlier. See Ref.[7].

Table 1: Error on the Gross-Llewellyn Smith sum rule: The statistical and systematic errors on \(S_{GLS} \) are presented.

<table>
<thead>
<tr>
<th>Error</th>
<th>Variation</th>
<th>(\Delta S_{GLS})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical</td>
<td></td>
<td>(\pm .018)</td>
</tr>
<tr>
<td>Systematic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fit</td>
<td>different fits</td>
<td>(\pm .040)</td>
</tr>
<tr>
<td>(\sigma^{\nu N}) Level</td>
<td>(\pm 2.1%)</td>
<td>(\mp .056)</td>
</tr>
<tr>
<td>(\frac{\sigma^{\nu N}}{\sigma^{\nu P}}) Level</td>
<td>(\pm 1.0%)</td>
<td>(\mp .034)</td>
</tr>
<tr>
<td>Energy Scale</td>
<td>(\pm 1.0%)</td>
<td>(\pm .001)</td>
</tr>
<tr>
<td>Rel. Calibr.</td>
<td>(\pm 0.6%)</td>
<td>(\mp .010)</td>
</tr>
<tr>
<td>Flux Shape</td>
<td>smoothing on/off</td>
<td>(\pm .006)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>(\pm .078)</td>
</tr>
</tbody>
</table>

Figure Captions

Figure 1: Fits to \(Q^2 \)-dependence of \(xF_3 \) in 3 \(x \)-bins (the 2 lowest \(x \)-bins and a middle \(x \)-bin). \(xF_3 \) at \(Q^2_0 = 3 \text{ GeV}^2 \) (squares) is obtained by interpolation, as in the 2 lowest \(x \)-bin and shown by a dark symbol, or by extrapolation as in the middle \(x \)-bin (dark symbol).

Figure 2: The GLS sum rule: The squares are \(xF_3(x, Q^2 = 3) \) and the dashed line is the fit to \(xF_3(x, Q^2 = 3) \) by \(Ax^4(1-x)^c \). The solid line is the integral of the fit, \(\int_0^1 xF_3 \). The diamonds are an approximation to the integral computed by a weighted sum \([S(x_j)]\) of \(xF_3 = xF_3(x_i, Q^2 = 3) \), i.e., \(S(x_j) = \sum_i \Delta x_i xF_3 \).
Figure 3: GLS sum rule as measured by previous experiments and these data. The references for other measurements are: CDHS[15a], CHARM[15b], CCFRR[15c], WA25[15d], and CCFR-NBB[3].
GLS Sum Rule: CCFR Data at $Q^2 = 3$ GeV2

\[\int_0^1 F_3 dx = 2.50 \pm 0.018 \pm 0.078 \]
The Status of S_{GLS} Measurement