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Abstract 

By using zero-norm states in the spectrum, we explicitly demonstrate the 

existence of an infinite number of high-energy symmetry structures of the closed 

bosonic string theory. Each symmetry transformation (except those generated by 

massless zero-norm states) exists only in the a'~ 00 limit, and relates infinite particles 

with different masses, thus they are broken spontaneously at the Planck scale. As an 

application, the results of Das and Sathiapalan which claim a-model is 

nonperturbatively nonrenormalizable were reproduced from a stringy symmetry 

argument point of view. It is conjectured that string theory can be regarded as a 

spontaneously broken Yang-Mills type theory with infinite dimensional "gauge group" 

constructed by an infinite number of zero-norm states in the spectrum. 
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Analogous to the statement that quantum field theory is a quantum mechanical 

system with an infinite number degrees of freedom, string theory can be regarded as an 

infinite generalization of local quantum field theory with consistently self-organized 

couplings. In going from quantum mechanics to quantum field theory, one suffers from 

all kinds of high-energy divergences in the perturbation calculation. But instead, in 

string theory, one removes these unwanted divergences by building in an infinite 

number of high-energy symmetry structures[1] miraculously when considering the 

quantunl theory of a free string. In fact, there exist many nonrenormalization theorems 

which have been proved up to the string two-loop order[2]. It is believed that this 

remarkable property of the string is due to the existence of these infinite symmetry 

structures of the theory. Thus, from a theoretical point of view, the study of 

nonperturbative, high-energy ( a'...,... 00 ), stringy regime of the theory is as important 

as, recently developed, 2d quantum gravity[3] which promises to extract 

nonperturbative ( strong-coupling regime) information of the string. One hopes that the 

understanding of both nonperturbative regimes[ 4] of the theory may help us to uncover 

the II unbroken phase" of string theory and shed light on determining its true vacuum. 

Gross has shown[l] that there exist an infinite number of linear relations 

between the scattering amplitudes of different string states as a'...,... 00 • He then 

conjectures that an infinite-parameter symmetry group which is broken spontaneously 

at Planck scale get restored at very high-energy, or M2Planck _ l/a'...,... 0 . On the other 

hand, it was well known that a-model can be used to study the dynamics of massless 

string modes[5]. This has also been generalized to include higher massive modes[6-8]. 

Based on the formalism in ref[7] , it was proposed[B] that by requiring the decoupling 

of both types of zero-norm states (for the bosonic string) in the spectrum, one can 

derive the complete gauge symmetries at each fixed mass level. The usual massless 

Yang-Mills gauge symmetry and Einstein general covariance can also be generated in 

this way. It was remarkable to discover that many higher symmetry transformations 

relate particles with different "spins"[B]. In this formalism, the dimension of the 
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"symmetry group" is directly related to the (infinite) number of zero·norm states in the 

spectrum. Instead of using the usual o·model loop ( or a' ) expansion[S], it turns out 

that the weak background field approximation (WFA)[8,9], valid to all orders in 0.', is 

the appropriate approximation scheme to study the high·energy symmetry of the string. 

However, the calculation was done only in the lowest order WFA. To this order of 

approximation, one cannot see the transformation of background fields between 

different mass sectors, and hence the spontaneously broken symmetries. The difficulty 

of higher order calculation which involves the operator product of two background 

fields is closely related to the nonperturbative (all orders in ai, hence corresponding to 

the high-energy regime) nonrenormalizability of two-dimensional a-model which has 

been shown by Das and Sathiapalan(10], and one is forced to introduce counterterms 

which consist of an infinite number of massive tensor fields into the theory. In this 

letter, we will explicitly demonstrate an infinite number of symmetry transformations 

between infinite background fields of different mass sectors of the close bosonic string 

theory. Specifically, we find that for each zero·norm state whose vertex operator can be 

written as a worldsheet total derivative, one can construct a symmetry generator which 

generates a symmetry tr~nsformation relating an infinite number of particles with 

different masses. Hence, combined with our previous results in ref[S] where string 

states at each fixed mass level form a symmetry multiplete was proved, we conclude 

that all string states are connected as an infinite multiplete. As an interesting application, 

we also reproduce the results of Das and Sathiapalan from a stringy symmetry 

argument point of view. 

In the generalized a-model formalism, let T <I> define a conformal field theory 

(eFT) with the most general background field couplings consistent with the string 

vertex operator consideration in the WFA, (a l =- 1) 

Tcp = - 1/211f,tvaXf,taXV + hf,t,vaXf,taXV + Mf,tv,u~aXf,taXVaxo.aXI~ + 

Df,tv,uaXf,taXva2Xu + Ef,t,a~a2Xf,taxaaX~ + Af,t,aa2Xf,ta2Xa + .... 

+ higher order terms (1) 
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with background fields (<1» equations of motion 

(2) 

where (3i are the renormalization group (3 function for each background coupling. We 

have used the worldsheet light-cone coordinates in (1) and neglected a si milar left­

moving equation [7,8]. In the first order WFA, we have calculated many examples 

which involve lower massive states[8]. On the other hand, it has been demonstrated[7] 

that if one can find an infinitesimal operator Q such that 

T<I> + [Q, T<1>] = T<I> +b<l> , (3) 

then the worldsheet generator Q generates a space-time symmetry transformation. In 

that case, T <I>+b<l> speci fies a new CFT with f3i [<l> + b<l>] =O. I n the first order WFA, 

it can be shown that the integral of each worldsheet (1,0) or (0,1) primary field 

corresponds to a Q which fulfills the criterion in (3). A key step, made in ref[8], was 

to realize that the complete gauge symmetries of the string which include those in (3) 

can be systematically constructed by using the well-known zero-norm states in the 

spectrum. Hence, as one expects for a unitary theory, all space-time symmetries are 

directly related to the decoupling of zero-norm states in the spectrum. In this paper, 

however, we will calculate the important higher order correction of the symmetry 

transformations. It is from this second order correction ( first order in the background 

fields and first order in the transformation parameters) that one begins to see the 

nonperturbative character (high-energy character) of the symmetry transformations, and 

hence the spontaneously broken symmetries. We will use equation (3) to do the 

calculation for Q constructed by those zero-norm states whose vertex operators can be 

written as a worldsheet total derivative. As an example, we give a class of type I [8] 

zero-norm states of the 'following form ( omit all spin indices) 
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where e is a 2n + 1 spin index parameter that is symmetric on the first n+ 1 and last 

n indices. It is orthogonal to k~ on each index, and traceless on any pair of the first 

n+ 1 , or any pair of the last n indices. In the second term, the index of k~ is 

symmetrized with the last n indices of e. The mass of the state is 

- k2 = M2 = 2n. (5) 

The corresponding worldsheet generator is 

(6) 


where e is now promoted to become a function of X, and the orthogonality condition 

stated above becomes divergence free on each index. Also, Equation (5) is replaced by 

( 0 - 2n) e = 0. Under these constraints, it can be shown that the integrand in equation 

(6) is a (1,0) primary field. The lowest order ( zero order in the background fields and 

first order in the e parameters) calculation of [ Qn , T<I>] gives 

(7) 

where the index v is symmetrized with the last n indices of e. Comparing with 

equation (1) and using the constraints on e , we find that equation (7) generates a 

symmetry transformation for a single nth massive level particle. The nonperturbative 

effects begin to show up at the second order calculation. In the following, we will use 

the lowest order results to calculate the second order correction of the symmetry 

transformation law. In general, one has to calculate terms of the following type, (we 

use complex coordinate in this calculation) 

(8) 
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and compare them with the first order terms of the background tields in equation (1) to 

see whether they satisfy equation (3) or not. It can be checked that the only dangerous 

terms which might violate (3) consist of operator contraction of the form < 8(X((0)) 

M(X(z» > in the integrand. To prove that those terms vanish, let 

8(X) =f dk 8(k) e ikx , M(X') =f dk' M(k') eik'x' , (9) 

where k = (ko, 12) is the 26d momentum. From the lowest order calculation[8], we 

have 

, (0 - 2n ) 8 0, (0 - 2m ) M = 0 , (10) 

which means 

k2 =2n , k'2 =2m . (11 ) 

Equation (11) looks like on-shell conditions although we are not calculating scattering 

amplitude.They are valid only in the lowest order calculation. So, for each fixed n C!: 1, 

one has to deal with integral of the following form (s s Min [n+ 1, m+ 1] ) 

I = f dk dk'8(k)M(k') rI: d~ <eikx(w) eik'x(z» <aX(oo)aX(z»s (aX(oo»ll+l-s (aX(oo»n J 2:m 

(aX(z»m+l-s (aX(z»m+l , (12) 

where m is any nonnegative integer. In the background field method, <eikx(w) eik'x(z» 

is defined to be 

<eikx(w) eik'x(z» =f[d1;] eik(x1w)+t5(w) eik'(x~z)+t5(z» e-S[x,tt5J-S[xJ , (13) 

where XI-! = X~+~I-! is expanded around a classical background X~ and 1;1-! is the 

quantum fluctuation. The worldsheet action is 

(14) 
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The calculation of (13) is straightforward, one gets 

(15) 


where Jt is an infrared cutoff. The factor IAk+k'''comes from the tadpole divergences 

which occured already in the V.R.V. of single vertex function. To cancel the infrared 

cutoff dependence Jt, we must require k+k' = 0 or equation (15) will vanish as Jt 

goes to zero.Hence 

<eikx(w) eik'x(z» = eikxJw) eik\(z) IO)-Z Ik+k,L for k+k'= 0 , (16a) 

= o for k+k' ~ 0 . (16b) 

By using equation (11) which is the result of the lowest order calculation, we note that 

equation (16a) contributes a factor 10) -z F(n+m) = 10) -z 14n in the integrand of I. But 

<aX(0))aX(z»s contributes I 0) - z 1-2s to I. Since s:s n+ 1, we conclude that I 

vanishes for n ~l. It is important to note that equation (11) is crucial to prove our final 

result, or I can be divergent for some range of (k,k'). In the concreteness, we give 

the n=l case as an example which corresponding to the worldsheet generator 

f
dO) -

Ql = - 8 ..v aaXl-laXVaxa . (17)
2Jti r' 

The calculation of [Ql, hl-l,vaXl-ldXv + ..... ] with all first order background fields 

included is straightforward. One gets the following infinite symmetry transformation 

bAa, ~ =0 , 
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(18) 

where the zero order ( in background fields) terms have been calculated in equation 

(7).The symmetric property of the spin indices on the r.h.s. of equation (18) is 

understood. One can calculate the transformations corresponding to all higher massive 

modes as well [11]. Each single transformation in equation (18) relates particles with 

mass di fference 1. Thus, this n= 1 massive zero-norm state can be used to generate a 

symmetry transformation which relates all particles in the bosonic string spectrum 

(except tackyon). Similar argument goes for general On cases. The symmetry 

generated by On relates particles with mass difference n. For the n = 0 case, I ~ 0 if 

m = O. In that case, one can still check that the contribution of I does not violate 

equation (3). Indeed, an explicit calculation gives 

(19) 

One can also calculate the transformations of all higher massive modes[11]. Note that, 

to any finite order calculation in WFA, the usual general covariance for graviton is lost. 

The symmetry transformation corresponding to 00 is the only symmetry which relates 

particles with the same mass. Therefore, one is tempted to argue that this infinite­

parameter II symmetry group" constructed from On is broken spontaneously down to 

00 , leaving the corresponding gauge particle massless. Presumable the Higgs 

mechanism is operating as suggested by the inhomogeneous terms of equation (18). All 

Goldstone bosons become the longitudinal parts of higher massive modes in the string 

spectrum. In addition to Olh one can also consider other types of zero-norm states [11]. 

There is another interesting implication of the present work. If one believes that 

the symmetry structures presented in this paper is crucial in the study of the quantum 

theory of string, then any truncation of massive modes would inevitably lose these 

important symmetry structures, and thus leads to meaningless results. This is just like 
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the case of Kuluza-Klein truncation[12]. In fact, when one proved the 

nonrenormalization theorems for massless external legs, the massive modes effects 

have been included in the string-loop diagram. Unfortunately until now, most 

researches of the theory of string are confined to the low energy regime. The results of 

this paper strongly suggest that nonperturbative string vacuum should be seriously 

considered. We believe that there are still many fundamental structures in the high­

energy regime which remain to be uncovered even in the critical string theory. An 

interesting application of the symmetry presented in equation (18) is the following: If 

one naively includes only the massless mode in equation (1), then symmetry induced 

by Ql in equation (IS) will force one to include all higher massive modes. This simple 

observation is consistent with the results of Das and Sathiapalan[ 1 0] and the fact that 

there are infinite couplings between infinite number of states of the string[9,13]. 

Finally, there are still many zero-norm states which cannot be written as a worldsheet 

total derivative[8]. A further studies are in progress. 

From the BRST point of view, the zeroth-order WFA of our approach is 

equivalent to the fact that the state QBRSTI1V> which is a zero-norm state should be 

decoupled from the physical S-matrix. This is analogous to the BRST formulation of 

usual Yang-Mills theory where we know exactly a priori what classical action is from 

the symmetry principle. It is thus easy to convince oneself that string theory can be 

regarded as a spontaneously broken Yang-Mills type theory with infinite dimensional 

"gauge group" constructed by an infinite number of zero-norm states in the spectrum. 
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