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‘ “A\b‘strac’t We bring togéthcf for the first time the coefficients in covariant gnuge; of all

the candensates of dimension four or less in the operator product expansion (OPE) of
the qua.rk gluon and’ ghost ptopagators It is stressed that contrary to general belief the
condenutes do not enter the OPE of the propagators in gauge-invarient combinations like

; < miln,b > and < G? >, The results are presented in arbitrary dimension to lowest order in.

' the light quark masses for the SU(N.) internal symmetry group. All terms which, through

~ the equations of motion, may be viewed as bemg effectively of order o, are included. The
o 1mportance of the equations of motion if one is to fulfill the Slavnov-Taylor identities is
‘ demonstra.ted We briefly consider the equivalent, but less complete, calculations in other
'gauges and give an overview of the status of the OPE of the QCD vertices. Finally we
.discuss what these nonperturbatwe structures tell us about the correct solutions-of QCD

and pomt out their sxgmﬁcance for the Founer acceleration technique as applied to lattice
QCD ~ : :
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1 1. ‘In{trOduction’

That the operator product expansion (OPE) of gauge-inva‘,’riantcorrelation functions yields
important non-perturbative physics is evinced'by the success of the QCD.sum rules pio-
_ neered by Shifman, Vainshtein and Zakharov[!'2. This has also lead to some models which
~ in various ways attempt to include condensate eﬁ'ects{ l. In this article we w111 present

the OPE of the (gauge-dependent) QCD propagators Although this has attracted contin- -
ued interest, it has been misunderstood nght from the earliest works i in this areal®]. The “

error has been to tacitly assume that only gauge-mvanant condensates, like < mz/n,b >
and < G? >, enter the OPE of the propagators (Thrs 1s also assumed in the models of
'Ref.3). In fact, as will be shown below, this is not the case and the non- perturbatlve

effects in the OPE of these Greens functlons are far richer tha.n assumed. Indeed the OPE.

of gauge-dependent quantxtles dlﬁ'ers fundamenta.lly from that of QCD sum rules

Why should one be interested in the OPE of these ga.uge-dependent quantities? Next
to nothmg is known about the form of the non-perturbatlve solutlons of QCD and that

information that the OPE ylelds can give us valuable clues and constra.mts on these”
'Here we will prlmanly dxscuss the non- perturbatlve propa_qators given by the OPE. ‘What -

is now known about the vertex structures w1ll also however, be sketched. Furtherrnore
“inside perturbatxon theory at least, there is some gauge-invariant mformatlon in the quark

propagator, namely the pole mass[5] and it is clea.rly of interest to see what the OPE says- 3
about this quantity. Knowledge of the propagators can also be of use in lattice QCD, as.

- will be discussed in the conclusmns

We give the OPE results for a general S’U (Ne) symmetry group in D- dimensions. |
This last means that the OPE results may’ be later used i in conjunction mth dxmensmnal
regulansatlon Ga.uge-mvanance implies that there are many different ways to formulate o
the theory. The results presented here will mostly have been obtained in the general' |
Lorentz class The use of a class of gauges with an explicit parameter helps one to see |

what is gauge invariant and what is not.. One cannot here employ Fock- Schwmger gauge,

(2, — 2%)A¥(z) = 0, which is commonly used in QCD sum rules!®, since the perturbative -
gluon propagator in this gauge is neither tractable nor part:cu.larly well- deﬁnedm In -
denvmg this non—tra.nslatlonally invariant pro;)agator one comes across various dlvergences ‘
- whlch need to be regulated experience in axial gauges teaches us that such regularisations
need to be handled very carefullyl®]. ' In those sum rules where no perturbatlve gluon -

propa.gators occur this gauge may. be used

We ‘will present the Ieadmg terms in the OPE of the propaga.tors By thls we mea.n: )
~ that one’ ‘considers the lowest dimensional condensates (dimension four or less) and works
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- to effective order o, in the coupling. “Effective’ signifies here that we include terms which,
- although superficially of higher order in the coupling, are related via the equations of
mdtion to terms of order a,. This will be explained in detail below. The results are for
light quafke only; terms of order m in the coefficients of gluonic and ghost cond’ens‘ates

and those of order m? for fermionic condensates have been neglected.

" The main conclusions from this review are as follows. The quark pole mass seems to
become explicitly gauge-dependent when condensate effects are included, gauge-dependent
. combinations of condensates enter the OPE of the propagators and the nbn-perturbative .
corrections are not multiplicative corrections to the perjurbativestructures. In fact, it
seems that when non-perturbative effects are included a sort of “Murphy’s law” appears:
- any Lorentz structure that can enter does. This conclusion is of importance for people
trying to solve the QCD Schwinger-Dyson (SD) equations and for model builders.

In Sect. 2 we discuss the basics of the OPE and give conventions. The consequences of
gauge-invariance for the OPE of QCD sum rul'es' are discussed. In the next ‘three sections
‘we respectively give the form of ‘the quark, gluon and ghost propagators coming from the
OPE. It is shown that the OPE of these propagators is distinguished’by the appearance
of gauge-dependent condensate combinations. In Sect.6 our more limited knowledge of
the OPE of the propagators in other gauges is reviewed. Finally in Sect. 7 we very briefly
- discuss the OPE of the vertices and present conclusions. We hope that this review will
provide a compendium of results and a feel for the physmal consequences of the non-
- perturbative effects described in part by the OPE.

2. The Operator Product Expansion

The OPE in covariant gauges comes under a variety of nafnes (the plane wave method!®],
co-ordinate space approach!!®! and moments rnethod[n]) but they may all be seen to be
'cq\ﬁ\?alent[""]. Here the scheme of Ref. 11 will be followed. We prefer this method for its
simplicity; We stress however, that the results are reproduced in the other approaches, The
method and the subtlety that certaiﬁ combinations of condensates vanish as a consequence
- of the equations of motion!'® will be illuStr'ated through the example of the fermionic
condensates <myy>, <¢z@¢ > and <4 g4 >. This is somewhat sxmpler than the case
of gluonic condensates, where more operators appear. ;

*The nomn-perturbative propagator is defined as the difference between the full prop-
agator and thé’ perturbative part. In covariant gauges the full quark propagator may be

. written as



S(k) = Spef’t(kr) + Snon?ert‘(k) — S?eri(k) + gi(k2)+ E(kz) ) (21) .

From this we obtain the relationships!!1]

/ de'mB(k,) _<mpy>
E?>—p? ( , :

2m)D. 4N, ’
| A i (2:2)
dPk - < Yigy>
sz k2 =——
»/k"z-p»’ . (2W)D ( ) 4N, ‘ ‘
Note that in Ref.11 the latter rélation was expressed as [« ——@1‘-—- + O(g). While

this formally follows from the equation of motion, we will see below that it must be used
cautiously. In Eq.2.2Dis the spatial dirnension, m is the quark mass and we have assumed ‘
an SU(N.) symmetry group. The integrals are cutoff at the renormalisation point, ;; , be-
cause perturbative éﬂ'ecté should dominate beyond this point in the full propagator. (Thus
if one were to know all the perturbative corrections, the cutoff would be unneCessary).

In a similar way (14 we can find the relationship determining the mixed condensate

 dPkdPl, =, . |
/ iwtr[rﬁ(k,l)’mtc] = - <dodv> . @3
k212> —p2 ) o ' '

OPE corrections are now calculated in the followmg way. The full Feynman diagram is:
written down and the equivalent perturbatlve one subtracted. The loop momenta are
expanded in inverse powers of ‘the external momenta (recall that the OPE is only valid in

the deep Euclidean region, where this expansion makes sense) and moments are identified

with condensates in the manner described above

An example of the application of this method to QCD sum rules was given in Ref. 14.
The coefficients of the condensates given by Eq §2.2 and 2.3 in the vector two-point sum:
rule were found to leading order. It was seen that the condensates < $idy > and <Pgdy>
entered in such a way as to form the condensate combination which vanishes through the
quark equation of motion and to leave remaining just the usual gauge-invariant quark
condensate, < m¥1 >. This is a cohséquenée of the gauge-invariance of the sum rule,
which means that the only condensates which can enter are either a) gauge-invariants, b)
such that they vanish via the equations of Vmof.i‘o‘nv or ¢) because they are BRS-variations
of other operators. Thus the coefficient of the mixed condensate does not need to be
(é.nd is usually not) calculated because knowledge of the coefficients of two of the three

condensates suffices to, perform the rearra.ngement into < my1y > and the equation of
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- motion condensate The neglect of all the terms like <¢z@1,b > and <¢g4¢> has led to
- incorrect condensate coefﬁments in the OPE of the propagators i in the past{151

Certa.m combinations. of gluomc and ghost condensates. also vamsh in the way. de- R
Ascnbed above. This has been used in various sum rule calculations(1%:16. For completeness
and because they wlll be needed below we now glve all three equatmns of motlon '

J(‘i¢‘+g4—‘m)¢=0,}'»ﬂ - - S o (249)

(6 As a Ao)z +3gfabca AaAbAc +(gfabcAbAc)2 d’ﬂgdﬁb __'_’-anco, ;0, (2-4b)

‘lagdca _ éfabca“EaAzcc'_;; 0. o » . - ) : - , (246)

Itis clear that the vamshmg of certain comblnatlons of condensates through the equa- '
‘tions of motion must be taken into account. Otherwnse, for example, ‘the sum rules would
seem to become gauge-parameter dependent. Another method to remove the equatlon of
motion COntnbutlons is to give the condensates a momentum which only gets taken to
zero at the ‘end of the calculation. This non-zero momentum insertion (NZI) method is
descnbed m Ref 17. ‘ » ‘ ’

There is a fundamental dlﬁ'erence however, between the QCD propaga,tors and sum

rules, na,mely the former are gauge-dependent. This means that the condensates do not

“have to appear in particular combinations and so it is necessary to calculate all the coeff-

*[c1ents of all condensates of a particular dimension. A remnant of gange-mvanance 1s here, ,

“ as we shall see in Sect. 4, provided by BRS invariance and the Slavnov?Taylor identities

’ (STI s) Othermse there is no reason to assume that only the condensate combinations |

‘ Vallowed in the sum rules must appear: here With these remarks, we are now in a pos:txon
R 'to conmder the OPE of the propagators ’
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3. The Qﬁ‘ark‘ PropegatOr

‘The leadmg order terms in the OPE of the quark propagator follow irom the chagrams of ,

Fxg 1. They yleld the followmg self-energy[n'” 18,19],

TO,

2(p) = prapm | (V2 = D(D(D -1+ +2(2 - D)ég) <>
+2(D* = sD+4- N¥D-1)+ (2- N2))$+ @ DD -1+ ,e)m]-'<*%/?g,4¢> o

D2
'fD+2

[4NC(D; 2)p | < A“A“ > -ijckD« < (6“243 - 5»:4:)2 >
| _4N=V(,D'»J.52‘)‘%‘9f'°“6g,42‘4245‘ > 20 - 4><<9A‘A“>2
+ N <( d;bCAb A;c )2 k> +2N (D N 4) <(gf°b°Ab A‘ )2 ]}
S | (3 1)

- Note ‘that unsumrned colour mdlces have been dropped The qua,rk equa,tron oi' motion:
(2.4a) has been employed to eliminate < P$ify >. There are no ghost condensates in -

leading order in a,. in the OPE ‘of this propagator. We dld not make use here of the =

‘ gluon equatlon of motron since it would introduce ghost condensates that otherwise do V

not enter this self-energy in leading order. The correct coefficient of the abelian condensate L

<(8,AL - 8, A2)? > has prekusly[ ] been erroneously identified as the coefficient of the
; gauge—mva.nant < G?>. The coefﬁments of the condensates with three and four gluons.:
 are glven here for the first time, and we see that the condensates do not cornbme to formv;: a

<G2

Smce gauge-dependent condensates appear, it should not be surprising that the d1-: o

mension two, Lorentz-invariant condensate < A? > has a non-vanishing coefficient in-
Eq.3.1. (In QCD sum rules exp11c1t calculation shows that its coefﬁcxent is zero, which isa

consequence of gauge-i nvanance ) We cannot yet say what values these gauge-dependent o |

" condensates ha.ve

If we were now to neglect terms superﬁcm.lly of order g and all purely gluomc conden-

sates, we would regam the result of Pascua.l and de Rafaelmi .
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2 _1ra, rﬁ_ — ‘ ‘
Bp) = e s (R L s -1ke), 62)

which is a genera.hsatlon of Politzer’s original ca]culatlonm4] from Landau gauge to an

arbltrary Lorentz gauge®. ; ,

| The authors of Ref. 19 saw that their result was gauge dependent and said that this

precluded a phys:ca.l interpretation for the mass term in X. It has been argued since by

~ Elias,-Scadron and collaborators in a series of papers that the pole mass is gauge invariant

when fermionic condensates of dimension four and five are included?®. To see this they

must assume that the mass of the soft quarks is not thé current one, but is itself equall'

to the pole mass. It is not clear to us if this is justified, or indeed what the numerical

consequences of such an idea would be for QCD sum rules. It is however, then evident |
that the {-dependence of (3.2) vanishes at p = mpgle. From (3.1) however, we seell4]

that the mixed condensate terms < ¥g4y > do not, unlike the corresponding terms in

QCD sum rules, simply vanish - even at the pole. The gluonic condensates also do not
' arrangé themselves in a gauge-invariant way. It appears that there is a clear difference
here between the OPE and perturbation theory, where even at two loops!®! the pole mass
is gauge-invariant. One way out of this could be that higher order moments (involving
condensates like < V(@)Y >) yield, through repeated application of the equation of
motion, terms that at the pole cancel the extra terms we see above. The other higher order
in the coupling terms so generated would however, also then have to so vanish, which they
- will if the pole is gauge invariant. This requires further study. Certainly however, such
a summation “to all orders in the masses” does not seem to be a consistent expansion
- for such evidently gauge dependent quantities as the propagator away from the pole[18},
since terms which are only superficially of higher order in g are unjustifiably neglected.
Leaving aside the qﬁestioh of the validity of the OPE at the pole mass found in Ref. 20,

MPpole = 320MeV, the formal gauge-dependence or independence of the pole may provide

a distinction between perturbative QCD and the OPE.

In general from (3.1) we see that gauge-dependent admixtures of condensates appear.

This, as we shall see general feature, means that it is impossible to give numerical values
to the condensates entering the OPE of the pfopagators. In fact new, exotic condensates
~ involving anticommutators of the vector potentials appear, which cannot contribute to
<G?> in any way. Nevertheless, when gauge-independent quantities are constructed from
these propagators and the analogous vertices, only gauge-invariant condensate combina-
tions can appear. )

3 These authors also corrected an overall factor



4. The Gluon‘Propagatorr‘

The OPE of the gluon propagatbr is thé most complicated of the three. ;This‘is‘bec‘a'u's'e

. gluon, ghost and quark condensates all entrér here in leading order.- It is also however,

constrained by the relevant STI.

The OPE of the polarlsatu:)n[11 17.21-23) j5 obtained from the diagrams of Fig.2. The

full result is , - -

87N o 2(N2 - 1)

<> +3(D =31 +8) <Pgdv>

| -
+ —35———§p <A“A°

32 — 18D — 6D? + 3¢(D? — 3D — 6)
4D —1)(D +2)

< (8, 4% — 8,A%)" >

_ 14D -20+2¢(5-2D) _

abc a gb yc
2(D_1) <gfro,ATAL AL >

vpu

_ D? +10D —12 + 3¢(3 - 2D)
12(D-1)

<(gf**cALA7) >

11D — D? — 33 — 35
24N.(D +2)

x <8(2(A%AL)? +(A“A“ )2) + N, (2(gd°b°A" Ag)? +(g d“"‘A" AS)? >] g,w(p)



D(]:;vg 1)(4 Dng" p) — p;py) <¢(t@+g4 m)

-

| x <20 — -(a AL~ B ALY — 39f* B, AL AL A -(gfbeA;A5)2+$gA¢>

ol 1 _pupy o' a ,’ _
+ (Eg;f,,(p) + §D, ;2 ) < &%0ec —~_qf“k6uc“AZc°>}.
/ o (41)
This is clearly a complicated expression! However, we can straighifbrwardl‘y see that

the polarisation is transverse, i.e. the STI is fulfilled. This is because the combination
of condensates in the longitudinal part of the polarisation vanishes as a consequence of

the equatlons of motion and these terms (the last three) can be dropped in (4.1). The
transverse part is however, gauge dependent. There is both an ‘explicit gauge- parameter

-dependence and the condensates themselves appear in gauge-dependent ways.

Herev we also note that the assumption that only gauge-invariant condensates enter

the OPE of the propagators has been responsible for disagreements in the past. Most au-
'~ thors have calculated the coefficients of the operator < (8,42 — 8, A2)?> , but Larsson!!®]

calculated the coefficients of < (gf**°4} A2)? > in the quark and gluon propagators. Both

sets of authors assumed that they had calculated the coeﬁicients“ of < G? >, and contradic-

tory results were published. The full equations (3.1) and (4.1) explain these discrepancies.
(Note however, that some factors in Ref. 15 are also incorrect.)

5. The Ghost Propag’atoi'

The effective ghost propagator acquires the following non-perturbative corrections!!1:23] {0

its self-energy from the diagrams of Fig. 3

.



47 N.a,

. 1 ' '
m{(l—D-FEE(gD“s)) aDC > +p <AaAa

(p*) =

2-D

. a a‘2 _l _ rabe a2b s
+ o ECEER <(BuA; - 0,45 > -5 <gf 5nAuAuAy
m———— 2 Aa a AaAa 2 dabcAb A¢ 2 dabcAb Ac 2
4N,,(D+2)<8(( ‘4) +( ))+N(2(9 LAD) + (g 2>

-

- 4D +1) <§°n¢°‘ +gfoctale >}
' | (5.1)
Again the corrections are‘»gauge-deperident; There are no quark condensate contributions
to the ghost self-energy in this order in the éouplihg It should be stressed that there is no
reason to con51der these corrections less important than those in the other propaga.tors
Although it is often assumed that unphysical degrees of freedom like ghosts do’ not receive
«non-perturbatnre correctlons{""ﬂ we see that this is not the case. This should not. be
surprising, since the fermions in the Lagrangian and the three non-longxtudmal gluons are

not the physical degrees of freedom in the covariant formulation of QCD.

6. Non-covariant Gauges

The Fock-Schwinger gauge has the apparent advantage over the covariant gauges that the
- vector potential may be written in terms of the field strengths. For the choice 2o = 0
- for example, one has: 4, = fo adaG ,,,,(a:n)w" This makes for a very simple form of the

~gluonic condensate corrections to the quark propagator!®!

Ca,mm

B=0F <G>, (Ne=3,D=4). - (6)

‘The most direct prbblem with this gaugel”), as stated in the inﬁroduction, is pertﬁrbative‘.
No gluon propa‘gator’ is known and it is by nbvrileansr obvious if ghosts really decouple. It
is thu's‘notk possible to write the equivalents of Eq.’s 3.1, 4.1 and 5.1 in this gauge. (The
use of two different gauges, one for pertnrbation theory and one for the condensates has

4 Non—peft‘urbative problems are briefly disi:ussed in Ref.25
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been argued(?®] to give gauge-invariant results on—s‘hell,vbut off-shell this is certainly,'nof )
*;thecase) - SR | o g
In axial gauges there are a.lso many subtleties i in perturbatlon theory. Genera.lly it is

. neceasa,ry to regulanse ‘these gauges[”] and it is still unclear if this can be done in such
‘& way as to retain the attractive features of these formulations of QCD[”] In Ref.29 an
attempt was made to consider OPE corrections to the propagators in axial gauges and to
a lesser extent, in Coulomb gauge The results are not complete because only terms that

were superﬁcmlly of leachng order in the couphng were retained. The results do' glve us
some useful mformatlon however. F 1rst1y, the quark condensate contnbutlons to the qua.rk .
propagator in axial gauges was ' ‘

ey (N2 1) <m@y> (1, nPp \ 2 . tpem, 2 2P N
Elp) = — 2NZp2 “{m(2+(p~n)2) p’+ﬁ’(p’n?+p'n (P'n)”)}’ (62).

" which yields the same gauge-invariant pole mass as one finds from Eq.3.2 above. But

recall that terms like <ypgdy > were neglected so this is incomplete. Secondly, the quark
‘ condensate contribution to the gluon polansatlon was (the equation of motlon has been

xmplmtly used and agam the <¢‘94¢ > terms have been dropped)

i

. ' 81!’&, <Tn¢¢> _L(I) 1(2) ¢\
,,,,(,,) N (9 - 93 ), |
| - B (6.3)
Puby gw(p-n) (P T+ PP N | Mully
g;ﬂ”(?) ""guv ‘“2’ g (2)( ) '“P 22 ) ( : T pin? : + ;24

This fnlﬁlls the STI and presuma.bly the terms dropped from the equa.tlon of motion will
not change this. The mgmﬁcant feature to mote is that in axial gauges (wn‘,h the extra
- vector, 7, ava.:la.ble) two tensor structures are compa.tlble with the STI and that both of -
‘these appear; i.e. new structures other than the perturbatwe one enter. ‘We will return to

B thls xn the conclusions.

The question of whether ghost and longltudmal gluon condensa,te decouple or not
cannot be answered from the work of Ref. 29, since the equa.tlons of motion were not taken
into account. (

11
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T Discussion '

The most gla.nng d:ﬁ'erence between the OPE of the propagators and that of QCD sum
rules is that the condensates enter here in gauge-dependent combmatlons whose numerical |
values are unknown. As has been seen, ‘the coefﬁc1ent of <(8,A% — 8,A%)? > is not the '
coefﬁaent of <G?>! Thus the mformatlon coming from the OPE about the solutlons of
QCD is more subtle than is generally beheved["’] - '

'That the condensates do combine correctly for gauge-mvanant quantxtles, was seen
both in the QCD sum rule calculat:ons refered to in Sect. 2 and in ca.lculatlons of the
. effective potential of QCD[31 L . - '

The OPE in axial gauges revealed that new Lorentz structures appear, (6 3) The OPE
of the vertices in covariant gauges displays this phenomenon to a far greater extent This
was first seen in Ref. 32, Where the OPE of the QCD three-pomt functions with ferrmomc
condensa.tes was mvestzgated It became clear that the OPE effects did not merely yleld

a new multlphcatlve factor in front of the Lorentz structure of the perturbatlve vertex. o

Non-perturbative effects in. standard model three- and four-point functions have also been.
“~1nvestxgated[33] In none of these approaches were condensates that are only superﬁc:ally :

of higher order in the couplmg retained. Such full ca,lculatlons of the OPE of the three-

point functxons are now being carried outl34, Indeed there is already evidence that use of

‘the equations of motion alone does not suffice to satlsfy the STI for the three-pomt gluon:
‘vertex and that at least some of the exotic condensates 1nvolvmg anticommutators, ~ d‘b" -
need to be set to zero to fulfill this 1dent1ty[35] If this proves to generallv be the case it

will lead toa mmphﬁcat:on of the above results. '

The results presented here should provxde useful information about the complex struc- s

ture of the solutions of the QCD SD- equatlons This was already noticed by the authors . =

of Ref. 36, whose results we ﬁ,nd very proxmsmg although they still face Vanous difficulties:
e.g the values for both condensates < P3¢ > and < G? >, have the wrong s:gn This

certainly is a consequence of the fact that the most genera] a,nsatz has not been used. In

~ particular the ghost Greens functions were approximated by the pert,urbatlve ones. Here
we expect thatthe OPE of propagators and vertices may help to restrict the ansitze for
the solutions. It should however be kept in mmd that the OPE results are. only valld in
the deep Euchdean region. ’ o
The OPE leads to a plcture of pmpagators which, whlle obeymg the STI have runnxng,

gauge-dependent masses. This has consequences for the Founer acceleratlon techmque[”]
‘in lattice QCD. Here an ansatz for the two- point functions of the theory is used to combat
critical slowmg down. Generally it has been assumed that the eﬂ'ectlve pr0pa.ga.tors are

12



well described by free ones with constant mass terms(38. In non-confining theories Fourier

acceleration has been successful. It is not surprising that this has not been so much the
case for QCD simulations!®®) ar
Jona-Lasinio (NJL) model, not emerge from the OPE, but it is not intuitively favoured
since such propagators, like the NJL model itself, do not say anythmg about confinement.
It would be of great interest to use a running mass ansatz (to be numerically optimised)

in the Fourier acceleration of lattice QCD.

; In the above we have discussed the usual formulatlon of QCD A gauge-invariant
version of the theory has been suggested by Cornwalll*®], and in Ref. 40 the OPE of the

 effective gluon propagator was investigated. It appeared that the propagator was gauge-

invariant even when mixing with equation of motion condensates was taken into account,

but the three and four gluon operators were not calculated. Further work is necessary both "~

here and to see how quark condensates enter in this schemel*!). The OPE of supersym-
i m‘etr’ic" QCD has been considered in Ref.’s 42 and 43. However, it was assumed there that
only gauge-invariant condensates enter the OPE. Finally we note that the renormalisation

group improvement of the results reviewed here is highly desirable. :
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, Figure Captions

Fig.1 Dxagrams with leading OPE contnbutlons to the quark propagator. Non—perturhutxve propagators
and vertices are represented by dashed circles:.

Fig. 2 The leading OPE corre;tions to the gluon propagator.

Fig. 8 The leading OPE corrections to the ghost propagator.
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