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ABSTRACT 
. . 

We perform a full multipole decomposition of the kaon-photoproduction operatot in 

the diagrammatic approach for the process p(,",(, K+)Ao. The multipole analysi's is carried 

out by expanding the standard functions 'i(W, cos 8) in terms of partial amplitudes. 

To facilitate this procedure we have developed a general computational technique for 

calculating the corresponding multi poles directly from their Feynman amplitudes. 
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1 Introduction 

Four'decades ,ago, 'Che'w;' Goldberger, Low~ and N ~bu [1] proposed a method for calcu

lating the r,elativistic dispersio~ relations for photopion production. The application of, 

dispersion relatjon techniques to strong interactions will generally permit ~ne to det~r-

mine the meson-nucleon coupling constants from the experimentaiscattering crOS$ section~ 

However, for K A-photoproduction 

this approach has been less' successful. Instead, the' full multipole 'decomposition of this ' 

process seems to be a promising method ofestablishing a 'mathematical correspondenc~ 

between the coupling constants 'and experimental data., The purpose of understanding its 

. reaction, mechanism is to gain' further knowledge of the fundamental kaon-hyperon-nucleon 

coupling co~starits. In addition, i,mprovements in the basic bon photoproduction o.perat~r 

, . can then be used in investigations of,kaon photoproduction fr.om nuclei~asdiscussed by 

Bennhold' and Wright [2). 

'I~ order, to~ carry out this analysis the hadro~ic transition' current J S" has to: be 

contracted with.tHe polarization four-vector e:" of the photon wave with distinct helicitYA . 

This will allow' the· expansion of the Lorentz invariant ,quantity ,e:"JSIA in terms ~f four, 
- . . ' . 

independent fundamenta1( CGLN) f~rms which are chosen such that their coefficients, can 

be identified with the Feynman amplitudes 9£ the proc~8 in consideration. Subsequently, 
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we can, complete the multipole analys~s by expanding the resulting functions§i'(W,:cos 9) 

,in terms iof-parti~l a.mplitudes referring to the relativeorbital8,ngular momentum and 

< , 

parity of the final state [3]. 

The K A-photoproduction reaction has contributions from several diagrams consist· 

ing of Born, terms anclresonances in the various, channels. [4, 5]. ,These diagrams lead 

to a set· of amplitudes which originate from the exchange o~ particles or the exlstenceof 

intermedIate states. The direct a-channel comes from an exchange of a nucleOn, whilet~e 

u-and t-channel ~ccount for intermediate hyperonicand kaonic resonances 1 , respectively. 

Thus, every set ofamplitudes corresponding to Born terms or individual re,sonancesgives 

rise to multipoles which are restricted by the selection rules of electromagnetic excita

tion. Finally, they can be summed up to obtain the total contribution to the production 

amplitude. 

OUI,purpose here is to extent this formalism and' develop a general computational 

sche~e forobtaini~g the v~rious multip?lesdiiectly from their corresponding Feynman 

amplitudes. In this framework the otherwise complex c;alculations are then reduced to 

, the 'manipulation of operators, and will therefore facilitate this procedure considerably. 
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,2S-Matrix and "Invariant Kinematics 

'The S~matrixelement for the'photoproductionp~oeess in first order can be defined as
\ 

.5'jl 

(2~1) 

where the covariant matrix element is' defined by 
I. 

B -' J5,",""'Ji - UA ~'"' " ,Up (2.2) 

The explicit form of the covariant m~trixelement is 'derived by means of Feypman di· 

agrams, where the e~change of the E hyperon, fis included in ~he Born terms [4]. The, 

hadronic transition curren~ operator J5',.., incorporates the¢xchange of various heavy par· 

ticles [5] and is a pseudo. vector due to the intrinsic negative parity.ofthe kaon. The 

energy and, momentum of the particles involved' are labelled by obvious subscripts. 

In theK+ - A center·of-momentum frame the f0tlr-moIIlenta take the specific form 

'p..,= (k k) 

with the' following r~~ations 

-Npte that by convention the normalilationconstantsfor bosons'and for fermionsdiffer. For the free , 

boso,nwavefunction ;-; =~t while foJ' Dirac spinors .fi,., =i. 
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I 

PI - IPKI - IpAI - q. (2.4) 

w~ ~i1rdenote the unit vectors in phase space by Ie =Ic/k and , ~qlq . An alternative, 

non-cOvariant ehoi~e for· the two .independent. kinematical variables in this coordinate 

, system are' the total energy W and the scattering angle 8 . . , 

W -, W+EA 
·(2.5) 

z - coslJ 1:-,.t 


It is convenient to introduce the telatedMandelstamvariables in this systemt 

~) " 

Inversion ~eadily gives 

(2.7) 


where the following helpful relations have been used* 

. tThe metric tensor hunegative signature" In general we. will follow the conventions introduced by 

J.D. Bjorken and S.D. Drell, Rel.timtic Qa.Atam AlecA.Aic.t,{McGraw-Bill Book Company, New York, 

1964). 
f All equations on, this page have been derived by constructing Icalar combinations (2.3) in the, c.m. 

frame. Similar re~ations have ~eeD stated before in the context of pion-photo production [3J. . 
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i W'"7"'Mp2
k 

2W 

(2.8) . 

W' ~MA2 + MK2 
w 

'2W 

w2 +MA,.- MIt' 
,2W 

Some other u$eful identities ar~ 

/' 1 

q (E " MA2)'A- 2 

W.+Mp 
. (2.9)

(2W)i • 

W-Afp 
'. (2W)i 

3 'Multipole D'ecomposition 

It is particularl~ 'usefw to analyze' the,.ph~topr~duction amplitude,in terms of Jour inde.: 

pendent, fundamental forms Mi 

4 

f" J5" -' L: ~(s,t, U)Mi " .. (3.i) I, 

i=l 

". \ I 

where the coefficients ~ d~p~nd on the Mandelstam invariants a~d embody the various 

, ;crossing combinations of t~~Feynman diagrams under considerati~n~ The quantities Mi 
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have to be Lorentz and gauge invariant [1] and the most commonJinearly int;lependent 

M1 - - i,.5 F,w,.fJ,.'f,I 

M2 - 2,.5 F,w ppfJpA'f,I 

Ma ,.5 F,w ,.fJpp'f,l-
5F, . fJ 'f,IM4 - ,. ,w'Y PA (3.2) 

with 

(3.3) 

Parity and angular momentum conservation provide a powerful means for ~la$sifying the 

possible transitions in the K+ - A center-of-momentum system. Thus, in order to expand .. 

.AJi in the form of the orbital angular momentum operator acting on an infinite series of 

Legendre polynomials it is convenient to define 

where the two projection operators nita, with 0 :;.;: ±, have been introduced to separate 

the two distinct cases of the possible total angular moment~mcoupling in the final state. 

Their action on the Legendre functions is readily given by 

... (1 1') ,..,.. d
(21+1)n'~a = l+2+ 0 2 -oio-o(qxk)dx ·(3.5) 
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, ',' k A :l/4/;h"~;;;r.·" ),~:.' ';;'<4,} ¢ :}/'.t~~*';;·\~:~~t;,::~t'(,:.:'tt!f~';?0t~~~~,P~tt~:~t%i\7" .L~J 
j ,_ ,_ : l ~ ~ ...:;;:' 

Each factor i"a contains two parts due to' electric and magnetic transitions and ~atisfies 

.the conventional selection rules 

(3.6) , 


where l., specifies' therelative~rbital angularmoirientumo~ the initial state. 

Substituting these expressions in eq. (3.4) ,and carrying out the operatIons implied 

is tedious, but does not pose major difficulties. For a more detaUed exposition of the 

procedure we refer to a paper by Gourdin and Defour [6}. By expressing' the matrix ' 

element eq. (2.2) in terms of two-componentspinors representing the spin of the proton 

and the A-particle in the c.m.' frame it iii convenient to ,introduce the well-known functions· 

$iCW,cos8), [1]. In the subsequent part of this work we wili make use of the standard 

matrix notation as presented in ref. [3J. Thus, afterasseinblin~the Feynman amplitl1~es Ai 

and the multipoles into vectors, 

d(s,u)  (3.7)and J4. 

the following relation is obtained 

+1 . 

, ..Ai(W) = Jclz D,(3:)C-1(W)B(W,3:)d'(,W,3:) , (3.8) 
-I ' 

where B(W,3:),C-1{W)and D,(3:) aJ.)e 4 X 4 m~trices analogou$to those of pion~ 

photoproduction and all '-,{W, cos 8) have already been substituted fo~. For the sake 
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of completeness'their explicit form is given in the appendix. To establish a general for

malism which 'is independent of the specific expressions of the~mplitudes Ill, we define 

the opera.tors 

1 +1 . 
. ,110(1, W, . ) - 2kq jdz DI(z) C-1(W)B(W, z) [ · 1 

-1 

(3.9) 

_ 2- j+1dz D,(z)C-
1
(W)B(W,!J:) [ . 1. 

2Jcq t. - z
-1 «aa 

where the parameters ei contain the typical kine~atical quantities due to the propagators 

underconsidere.tion, and the angular dependence in the denominator has been separated 

out completely. In general, the ~roperties of these operators are specified by their action 

,on a set'of unit vector.s ei and combinationsznei, with nany integer and i= 1, ... ,4. 

However, here we have only included Zel; which'is the only ,additional term needed to 

calculate the multi poles, arising from the Born graphs, due to an explicit dependence of 

. A~orn on t. In the most general case ofa more complicated angular dependence the 

amplitudes can be expanded in a power series of z. Thus, for our purposes { ei, xel Ii = 

1,'~ .. ,4}willsuffice., The operator 00 acting on these unit vectorsei will again reproduce/ 

·~·linear combination of those with specific kinematiccofactors. But, in the case oiO" i =F 

0, this procedure will lead to the more complicated set of projected basis .vectors { w" I Ie = 

1, ... , 6} due to the, additional pr,opagator structure of the denominator. Symbolically: 

e·, Ii = 1, ... ,4 } t--+ { e,,1 Ie = 1, ... ,4 } 
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V Oi( . ): {ei , :z:e1.1 j % 1, ... ~4 } 1-4 {.Wk IIt = 1,. e .• , 6 } (3.10) 
i~O 

This projection will take a particularly ·simple form, if we choose 

, 47r"1 (W, ei; l) 

47r W2(W, e.; I) .-

47rW3(lV, eiil} 

47r W4( W, ei; 1) 

41t ws(W, eii I) 

47r W6(W,ei; l) 

1 

2(1+ 1) 

1 
2(l + 1) 

-I 
2(1 + 1) 

1 
2(1 +J) 

,1 
2(1+ 1) 

1 
2(1+ 1) 


Q,(ei) 

!:p-Q,(ei) 

Q,(ei) 

-!:p-Q,(ed 

Q'+1(ei) 
¥ Q'-1(ei) 

Q'+1(ei-) 

-¥ Q'-l(ei) 

R,(ei) 

¥ R,(ei) 
R,(ei) 

-l:f! R,(ei) . 

R,+1(ei) 
ill . 
, Rz-l(ei) 

R'+1(ei) . 
-!j1 R,-l(ei) 

Tr(ei) 

:~ [¥f Tr(ed 
_1 

I Trfe.) 

W ITr(e.) 

·71+1«(.) 

-~ TI-l(ei) 
0 

0 

(3.11 ) 


where· Legendre functions of the second kind as well as combinations of these have been 
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used [5, 7,8] 

The six projected vectors, Wi arise exclusively from the t~rm-Dl(:z:)(ei -- :z:)~1 in eq. (3.9). 

Upon carryi;ng 6ut the ,complete operation Oi( . ) ,with i = .0, ... ,4 ,'we also expect a 

contribution from C-1(W) B(W, x) , which contains the masses and energies of the proton 

and A-particle. Using the shortb,and notation 

px - (Ep ± Mp)!
1 


AX - (EA ± MA)t (3.13) 


1(EA ± MA rA~  . 2W .. 

and exploiting the orthogonality of the Legendre polynomials gives in a straightforward 

mann~r the following chart, which explicitly displays the transformation properties of the 

operators Oi( .). With its help we can at once evaluate the multipoles A,(W) as defined. 
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in eq. (3:8). 

o 


o 


-A-P+6'2 
1 

24'11' 

A+P-cu 

o 
1-1 

1611' q. 
o 

-A-P-Cl1 
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1 ... 
_W-1 

1611' 

1 
+ 

2411' 

-A~511 

(3.14) 

And similarlyfor the case i . -I 0 

n " A+.P-./~'S + A-P+wsUi e2 - 

lA-P- -1 ".2 q W2 
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o 


o 


A AJA el A+P+ .el A'-P~ " Uje. = .-- . WI -.- W2 
2W' 2W" 

alsoi f:. 11 1+ -A+P+W3 + -,'A-P-W4 
2-W: 2W 


A+ " 
w.Ws 

(3.15) 


4 'Applications 

After having developed the framework of multi pole expanI;Jion in. the previous section 

we are now in the position to economically calculate. the muJtipole amplitudes a:rising 

from the various resonances. To demonstrate our method we carry out the, multipole 

decomposition of the prominent spin i resonances, inthes- and u-channels ~ given in 
refs. [5] and (9]. We have ~lsoworked out the multipole amplitudes resulting'from the 
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• 

Bom terms [lO],_but -these,disagree'with the results of ref. [5, 8].1 

'. The evaluation of the 'Iriultipolea originati~g- from the' spin ~ resonances ,inthes

channel is easy to carry·out. The Feynman amplitudes 'are given by 

'% (4.1) 

Relation eq. (3.8) is expressed in operator notation as 

vlt,i±(W) - 2kq 00 Al± (4.2) 
.. 

or'equivalently 

(4.3) 

To per,fortn the actual computation the chart in the, preceeding section provides the ex-

plic:it solutions for 00el and no e3. The result has a simple form, since the generating 

lIn these references the specific decomposition 

lew to .an 1ncq'mpatible identification of the Feynman amplitudes unless the s~gnof the second column 

~-the matrix ,D, of ref~ [3} is changed. 
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amplitudf!s dt± are independent ofm. 

'[,,' 'MN- -M" +' ,,"A+P+ "J
' " Aw ±, , 510 

M/J- =F M", , MN- +M" 
,(4.4) 

o 

For the operator 'algebra iit the u-chann~l it is necessary to introduce the parameter 

(5 -
MI - Mf-+ iMy.ry. ~ 2kEA 

2lcq 

which corresponds to'a new'~perator 05 according to eq. (3.9). The Feynman amplitudes 

from refs. [5] and ,[9] are conveniently written as 

± (~~6) 

'so 'that similarly 

(4.7) 
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Again we'can replace 05 el. and 05 e. by linear combinations ofWI, ... ,W6' The procedure 

will be more transparent 8.fter ,introducing the matrix 

(4.8) 

and collecti,ng the different coefficients of Wi. N.ow the result reads in compact form 

D,Y.(i%).(.W) _ dJ (t ) VI:)%
~l ., \5 .ns , (4.9) 

where 

(4.10)w 

A-P
± ---

W 
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Appendix 

If ~e adopt, the standatd'matrix notation as previously introduced in the' literature for 

pion photoproduction [3], the matrics involved in themultipole definition eq. (3.8) have 

the form 
W'+Mp 14 -:- MIL 2 

-:-1 0 
2' 2(W - Mp) 

- M 2'W-Mp 11.- A., 1 B(s,u)  (A.i)0 
2 2(W+ Mp) 

0 W-Mp 0 -1 

0 W+Mp 0 ~1 

The result for Dl(x) is constrained by the following relations 

+1 

jdxD,(x)G",(x) - D,,,,1 
-1 

(A.2) 
+1 

and j d; [D" G~] - o· , 
-1 

, where 
prH p,'-1 I P!+1 (1+ t)P!-1 

0 0 -(I + I)P,' -I P,' 
G,(x)  (A.3) 

R" R" R" R"'+1 '-I - '+1 1-1 

:-R"I 'R" P/' -,R"-:-' I 

After exploiting the following mathematical properties of the Lege~dre function 
• ,I '. ' 

j
+1 

th: P~(zyI;(z) - 2e(lc, I) 
-1 

+1 , 

, j'd~ p~/(z) P,(z) - [lc(lc+ 1) - 1(1 +1) ] e(lc -,I, l) 
-1 
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1 	 m,n e No: m>n. 

A ·m+n odd 
where 9(m,n) 

0 	 otherwise 

... R1 {
2(1 + 1) , 

the unique solution is found to be 

D,(z) 

1 
 l+I' 1 	 }F'z-l -.-(F'z+t - l1-t} (P,- F'z-2)
21 	 21 +1 21- 1 . 
 (A.5) 

1.
1 { F'z .F'z+1 ~(P'+l -:- F'z-t) o }2(1 + 1) . 21 + 1 


1 1
{-p, 	 o }..;...F'z-t 	 -.-(F'z-t - F'z+t)
21 	 21 + 1 ' 
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