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Abstract 

A recently, propoSed const'ruction of the standard model of electroweak interac,. 
tions which is based on a noncomrnutative, grade~lalgebra>provides a. novel geomet
ric interpretation' of spontaneous symmetry brea.king: The theory is characterized 

. by the presence of a constant background curvature which ,is invariant under all con
stant, generalized gauge transfQrmations and which singles out a specific direction 
in the internal symmetry space. As. that direction is given by the charge opera
t,or the residual symmetry of the theory must be the isotropy group of the charge 
operator,i.e. the well-known U(l),.~.·of.electromagnetism. Thus, spontaneous sym
metrybreaking from the original SU(2) X U(l) to U(l),.m~is, a. consequence pf the'" 
noncommutative geometric structure of this approach. 

. " 

• Talk given at the meetIng on "DYIl-amics of Complex> and Irregular Systems" held in. 
Bielefeld, December 16 ~. 20, 1991. Work performed in the framework of PROCOPE 
exchange project Mainz - Marseille-Luminy. 
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1. Introduction and Motivation 

1.1 General Remarks ,ant;, SurtJey 

Recently, a,ttempts' togo beyond the conventional geometric framework of Yang~Mills 
theories making use of ideas of A. Connes' noncommutative geometry [1], have b~ought 
forth 'some promising,results. To ·quote just a few of the~e,these novel approaches pro-., 
videa certain unification of ' the bosonic sector of the standard model by making the' 
Higgs ,fields part of a generalized con~ectioh and by fi~itig unambiguously their internal 
quantum numbers [2, 3]. As far I as the fermionic sectoris concerned, 'they are strin
gent enough to eliminate from the start most of the arbitrariness in the conventional 

. cOIl:struction of the, standard model. It seems 'even th~t they'impdnt a. certain pattern 
onto the mass matrices '[3] and, hence, the generational mixing of quarks and leptons 
features which are norma.ly alien to the usual Yang~Mil1s construction. Thus, it seems 
that noncommutativ~ geometry steps in where the predictive power of standard gauge 
theory ends. ' . 
'In ,this contribution I 'discuss the specific example of spontarleous symmetry breaking in 
the electroweak sector of the standard model. After a short reminder of· its traditional 
construct,ion, with special emphasis on the arbitrariness in introducing the fermionic 
matter fields,I describe a possible generalization of Yang-Mills theory based on a graded, 
noncommtitative algebra that leads to precisely the minimal model, however, without 
recurrence to the ~mpirical input on; whic;h ,the historicaltonstruction .Is based [2, 3]. I 
show that the generalized ( super) connection, and, likewise; the corresponding general,
ized curvature,' conta.in .two parts, one of which is the well-known Yang-Mills connection, 
or curvature, while the second is an a.bsolute element invariant under all constant, gen..: 
eralized gauge transformations [4,5]. Regarding the latter, the constant curvature'is 
seeD! to be -proportional' to the charge operator which singles, out a specific direction in 
the internal symmetry space. It is then not-surprising that the Lagrangian constructed 
from the generalized curvature can have. nomQre symmetry than'the isotropy group of 
this absolute element or backg~ound field, i.e. the well-known U(I) symmetry ofelec
tromagnetism. Only when this ba.ckground field is taken out, by hand, does one recover 
the full hidden symmetry SU(2) )( U(l) on which the electroweak sector of the standard 
model is huilt. The geometric thara:tter of this description becomes clear, for, instance; 
by the ~nalogy to the study of atomic spectra in pres~nce of a universal, constant mag
netic background field: The observed, "effective" physics r~veals no more than ~he axial 
symmetry due to rotations about the direction of t~at magnetic field. The full rotational 
.symrrietry is hidden and becomes evident only aft~r taking out the background field. 

1.2'Oonventionaf Construction of the Minimal Model 

The minimal model is b~ilt on two rather different pillars: Ya.ng-Mills theory and empiri;. 

, cism of electromagnetic, weak and strong interactions [6, 7]. The first offers a. (partial) 

unification of the "radiation" sector, 'i.e. the intera.ctions' of the gauge bosons, but not 

much more. The second, is the essence <?£ several decades of experimentalexpetiehee. 
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In pa.rticular, there are but little theoretical constraints to guide us when introducing 
the'fermionic matter fields into the ,model. Yet, the physics of quarks and leptons shows 
somerematkable regularities for which no deeper reason is apparent [8]. In other terms, 
th~ framework of pure Yang-Mills theories is too wide, and possesses too little structure 
-yet to make the observed, and quite remarkable, regularities offundq,mental fields a.nd, 
interactions follow from a unifying principle. 
This' state 'of ,affairs reminds one of an impr~ssive installation that can be visited at the 
new Museum of Modern Art in Frankfurt [9]. At first sight it seems to consist of orie 
large, empty and alm~st dark room. Tbe large rectangular surface that one di~cerns at 
the backside of the room and that is barelyillurninated, at first looks like a window or 
a picture. But when one approaches and tries to touch it one reaches into emptiness. 
One, discovers another empty room that lies behind the opening and that is· lit by an 
invisib,1e source of light. The're is a structure that one perceives after a' while - provided 
one ~as ample time and patience':'" but cannot explain. 
The bosonic sector of the standard model consists of the gauge bosons obtained in 
gauging the structure group G == SU(2)L xU(l) 'x SU(3)c, and a set of scalars which 
serve the purpose of hiding the original SU(2)L x U(l) symmetry of the e~ectroweak 
sector, through spontaneous symmetry breaking, in favour of the residual symmetry 
H == U(l)e.m.. For this,ptirpose the scalar' multiplet (Higgs fields) must hav~ an elect!!"" 
cally neutral component along the homogeneous space GIH but, for the rest, could be 
anything. As is well known it is the empirical input [10] 

M2 
p, M2 ~ 8 = 1.003± 0.004 (1)

zcos· w 

which constrains the weak isospin of the Higgs multiplet to be t == ~. In the fermionic 
sector of the model the observed maximal parity violation in charged weak interactions 
tells us that the basic building blocks, are fermion fields of definite chirality. In the case 
of one lepton family, for instance, these are a doublet of left-chiralfields, (VI, fi), ,and a 
singletright-chiral field fi. The eigenvalues of weak hypercharge are fixed by requiring 
that neutrinos d~couple from . photons and that charged leptons and quarks have pure 
vector (parity conserving) couplings to the photon.' Fortunately, these assignments are 

, ip agreement with the conditions obtained by requiring chiral anomalies'to be absent 
[11]. Fi,nally, in a fr.amework based on Lie groups only, there is no natural pIaGe for 
generational mixing without invoking new physics outside the standard model. Indeed, 
as the multiplets are then always fully reducib.1e the gauge bos~nscannot mediate be

, tween members, of different multiplets and inter-generation transitions must be due to 
a mechanism outside the theoretical framework from which one started. ' 
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2. Graded Algebra flndElectfowealc lnteractions 

,2.1 Construction of Gfl1l.erfl,lized Oon'n-ectionand Curvature 

The approach tOI the stftudardmcidel making use of a noncomm':ltative· graded algebra 
that I shall use 'below is described in more detail in the contribution by a. Coquereaux 
to 'this meeting. and I refer, to his talk for details of the 'construction. The ~pproach is 
based on an infinite dimensional graded algebra which, for the purposes of electroweak 
interactions alone, is given by SU(211) ®A*CM). Its elements are form~v~lu.~q'-matrices' 
whose supertrace vanjshes ' 

Str 4~,= tr (rA);:::O , (2) 

where r ;::: qi'tg(l, 1; -1). The algebra is equipped with a graded cpmmu~atQr 

[A,B]g := [Ao,Bo]+ [Ao, BlJ ,+ [A1,Bo]+ i{A1,8+} l 

where 'the subscripts 0 and 1 denote even and odd parts' of the matrices, respectiv'ely, 
and (besides the usual Cartan derivative de ) a discrete exterior "m~trix" derivative dM 
which is defined by \ 

(4) 


Here 11 i,s a constant, odd element of the alg,ebra which is expressed in terms of odd' 
generators of SU(211) as follows [4,/5J . ; 

(5) 


This discrete derivative is obtained 'from th~ correspondia.g derivative in an ambient, 
space of 4x4matrices where 7] is of the form 

with U E U(2), and by projecting 'back to dimensIon 3 by means of the proj~ctiQn 
operator p = diag (1,1,1,0) [3l As shown in ref. [5] it can also be formulated directly in 
dimension 3 from the start. While dM in ,dimension 4. is ni1poten~, its projectioJ+ (4.) i~ 
not. Indeeed, withd denot~ng the combiIled exterjor derivative (Le. Cartan and matrix , 
derivative)6ne has 

d2A :;= d~A = i[1J2) A] 
j 

In dimension 4 the matrix ",2 IS a multiple of the unit m~trix. Its projection to dimensjQn 
3 is not. 
The'generalized conn~ction has tpe form 

, , 

.A = i (aW. f +~W8Y) +;;.. (~(Q)O+ + ~(+)O- + ~(O)O~ +~(+)O~), . (6) 
\ 

~here W ~d Ws' denote the I-forms describing thegp.ugeC;fields of BV(2) andU(l), 
respectively, while, (rp(O), rp(+») denote the O-forms describing the n~utr~andchp.r~ed 
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Higgs ~elds. The constants a and b, are normalization factol:"s, a is a parameter with 
dime,nsion of 'amass. The I-forms being multiplied by even ~atrices, the O-forms by odd 
.mat'~ices, it is clear that the total grade of A is odd. 
There are two equivalent ways of constructing the corresponding ~generalized curvature: 
(i) One embeds the connection A in the space of 4 X 4 matrice'S, constructs the' covariant . 
derivative '\73x3 == pd+Aand projects back to dimension 3. Thecurvature is then'found 
to be [3] I 

iF == ? +p . dp . dp , (7)
I 

where the first term is given by 

? == p' (dA)·p + i[A"A]g (8) 

while the second term is a constant matrix that can be expressed'in terms of the mat,rix 
r and of generators of SU(2\1), viz 

p . dp . dp == -i .(13 -1Y) :+ ifr . (9) 

. - ,

(ii) ,Alternatively, the curvature F,eq. (8), is obtained by generalizing the structure 
equation in dimension 3, viz 

(10) 

where d, the combined (Cartan and matrix) derivative, is formulated in the space of 3 X 3 

matrices from the start. 


e.e Generalized Gauge Transformations 

Gauge transformations are defined in formal analogy to the case of conventional Yang~ 
Mills theories as follows . 

A'== A + d£ + [A, £]g ; (11) 

Here, E is an element of SU(211)®A*(M) whose total degree is zero. It may be written 
in terms qf eve~ and odd generators of the algebra, viz' , 

£ == i (0.1. i +,BYe8) + i1' (n+Wl + n-W2+ n~Wl +n~W2) . (12) 

where eand.e8are O-forms, Wt, W2 are 1-forms. In the sequel we shall only consider the 
even part of £, eq. (12), which will qe seen to be the direct generalization or gauge 
transformations in Yang-Mills theorie~. The odd part, when applied to gauge and mat
ter fields of the theory, leads olit of the original set of fields and must be considered 
separately [3]. 
Making use of the definition (4) .one verifies that there is exactly one nontrivial constant 
background conn~ctionwhich is invariant under all gauge transformations (11) with 
constant coefficients eand"ea. It is given by 

Ao == -T/ ==, -i (n+ +n~) (13.) 

5 
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The corresponding, C9Il$ta.nt curvat~reis calculated from eq.(10). It is 
-, 2
:Fo == -ifJ 

This is an even element of the algebra and, via the graded commutator {O+, O~} == 
13 + !Y, is seen to be ' , , 

.Yo == i (13 +J~) 'iQe.m. (14)c 

Thus, Yo is identical with the electric charge operator. It 'singles out a specific direction 
in the four-dimensi~nal internal symmetry space, and in the eight-dime~sional repre
sentation space of the graded algebra. As such, it represents an aQsQlqte element of the 
theory. Its role becomes ~b::arer if we subtract the constant, invaria:p.t, connection from 
A, and" likewise, take out the c.onstar;ttbackground curvature from the full generalized 
curvature, viz ' 

As :=A-Ao, F-Yo. (15) 

Looking back at eq. {6} one notices that: A6 'is giV"en by the sp,meexpression with the 
physical Higgs fields ~(i) replaced by the (unshifted)fieIds O(i·), 'the relation between 
p~ysicaland unshifted fields being , 

0(0) == ~(o) 0', 0(+) ==,~(+), (16) 

Working 'out the effect ~f the ga.uge tra.p.sformations (11) on A6and F8 shows that the 
latter transform exac;tlylike ordinary Yang-Mills connectIon and curv(i.ture"respectively. 
Indeed, restricting to the even part in eq.(12), one finds ' 

.A.~ == Ae+ dee,+ [A6, e]', :F8 F6,+'[F6, e] 

with de the usual (Cartan) exterior qerivative. , 

2.:1 The Lagrangian 

, As described in the contribution of'R. Coquereaux to this meeting and in refs.' [2, '5] 
the lagrangian is obtained from the trace of the scala.r product of thecurv(i.turewitn its 
conjugate, 

(, == -:~tr. (:Ft.1'),- (17) 

the scalar product being the natura.! scalar product of k-forrns, k == 1,~, 3' Qver M--. 
Working this out [5] one obtains ,the bosonic sector of the LagrangiaIl of the standard 
model of electroweak interactions, with the Higgs pGiltential given by 

2. ~ == :2 {(}(O)(}(o) + 0(+)8(+) - a ) 2 +'const., (18) 

The Higgs potential (18) has a local ma)ci~um at the origin and a circle of degene'rate 
minima with radiusu/g.1 Note that thegelleralizedconnection (6)'conta,in~ thephy~i~td 

, IThe connectio~ is defin~d such tliM it conta.ins the' cOlJplina co~'ta~t 9 ~ • f~ptor. This. m~~nl.' 
that the fi~lds must berescale,cl by that factor at the end. T~-e factor g~ ill the deqqmiJUl!.tor in ~q. (18) 
is then cancelled. ' 
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Higgs fields which are related to the unshifted fieldshy eqs. (16). 

3. Interpretation and Outlook 

3.1 Spontaneous Symmetry Breaking 

The construction of the standard model sketched above leads to the correct forIn of the 
lagrangian:. The symmetry SU(2) xU(l) is hidden, it is spontaneously broken down to 
the expected residual symmetry U(l)e.m.. The cause for the spontaneous breaki:p.g of the 
original symmetry must be sought in the noncommutative algebraic structure en,coded 
in eqs. (2'...;., 5). This may be seen more clearly by replacing the matrix TJ of eq. (5) by 

and ,by letting the factor p run from p = 0 .to P - 1. In thefor!.!J.er case the effect of 
the discrete derivative- (4) is zero~ In the latter we return to the full noncommutati~e 
structure. With TJ replaced by ij the invariant connection (13) is multiplied by p, the 
,constant background field (14) is multiplied byp2, and .the constant (J'2 in -the brackets 

, on the right-hand side of eq. (18) is replaced by (O'p)2. Thus, if we set the parameterp 
equal to zero, i.e. if we, "take out" the new, noncommutative structure and return to the 
standard framework of Yan,g-Mills theory, the invariant background field and all effects 
of spontane~us syIIlIrietry breaking disappear. We conclude tha.t the noncommutative 
algehraic extension of the theory implies, as a necessary and unavoidable consequence 
'spontaneous breakdown of the gauge symmetry that would be there in the pure Yang
Mills theory. The interpretation is a geometric one because' symmetry breakdown 'is 
traced backto the presence of the invariant background field Fa which is characteristic' 
for the nopcommutativity of the. underlying algebra. As the theory contains this field 
as an absolute element it is ,not surprising that the final lagrangian has no more ,sym
metry than the isotropy group of this field, i.e. the U(l) of electromagnetism. This is 
why I rpade the comparison to atomic physics in the introduction (sect. 1.1). If our 
universe contained a constant, magnetic background field, atomic spectrosc'Opists w?uld 
deduce from their data axial symmetry of the underlying hamiltonian, corresponding to 
rotations about the direction of the field. The full rotational Sq(3) symmetry would be 

" discovered only after subtr,cting by hand the effects of that background field. 

9.2 'Outlook 

The lagrangian, that we obtain in this extended gauge theory is precisely the one of the ~, 

stan<;lard model. This is gratifying because we obtain the right 'degrees of freedom and 
the right number of fields. This is different from earlier work which attempted to gauge 
the graded Lie algebra SU(211) [12] but ran into difficulties that could not be solved as 
yet [13]. QUantization, in our scheme, proceeds in th~ standard way, and is identical to 
the case of the usual standard modeL 
On the other hand, this.approach raises new questions. Our con~truction is, a classical 
one. The graded algebraic structure does not manifest itself in new invariance properties 
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that could' have a chance of surviving the quantization procedure. It is likely that' the" 
relevance of the graded structure for the standard model is justified by thefermionic 
matter fields, cf. ref. [3]. Indeed, as shown there quarks and leptons fit very naturally 
into the algebraic framework of the theory and much of the apparent arbitrariness in 

,	the usual procedure' of introducing matter fields into the standard model is eliminated. 
Fo;r instance, maxiIIlal parity violation 'in charged weak interactions is nat'llral because 
left-chiralfields and right-chiral fields in representations of SU(2 11) fall into different 
multiplets of weak isospin with differentdiI!lensions. The same difference of dimensions' 
is relevallt for the specific propert/ies of the bosonic sector discussed in this contribution. 
Thus, 'for the first time, there isa link between the phenomena of parity violation and 
of spontaneous symmetry breaking. 

I 
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