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ABSTRACT 

Among the reports on an analytic des cription of p article motion in 

123 
FFAG accelerators, , , the specific case of an integral structure machine 

is not treated in sufficient detail to yield quantitative conclusions starting 

from a set of general field coefficients. In parallel with computer studies, an 

analytical investigation of the unperturbed differential equations of a charged 

particle motion in a steady magnetic field has been made. A special technique 

is developed to yield the exact solution (in terms of power series) of the non

linear equation of motion in the median plane. Based on the results of the 

equilibrium orbits, betatron oscillation frequencies are obtained by the 

application of second-order perturbation theory of quantum mechanics. 

Analytical method has been programmed for the IBM 704 computer. A typical 

operating time of six minutes yields the betatron oscillation frequencies. 

*AEC Research and Development Report. Supported by the U. S. Atomic 
Energy Commission through ANL by Subcontract 31-109-38-1707. 
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1. EQUILIBRIUM ORBIT 

The	 motion of a charged particle in the median plane of an accelerator in 

4
cylindrical coordinates is 

d R'	 R = eR B 
z	 (1 ) 

pcd9 .I R 2 +R,i 

where Bz is the	 magnetic field in the plane and in general given by 
. 

inN9 
* 

B = - Bo~ G (R) e	 (2)z	 n 
n 

B is const.o 

Gn (R) is complex. 

The solution of Eq. (1) is nearly the average radius of the equilibrium orbit. 

Let the solution be R 

R = R e u (9) (3 )o 

j 21C./N 
Ro is defined in such a way that 0 u (9) d9 = O. u (9) is approximately 

equal to the deviation from the average radius of equilibrium orbit. We assume 

that the radial component of the particle's velocity in the equilibrium orbit shall 

be small compared with the longitudinal component. i. e .• 

1 1 dR r < < 1	 (4)
R d9 

or 

(5)f ~~, « 1 • 

Let 

= tan 
-1 

u' where u' = du (6 ) d9 

Substituting Eqs. (2). (3). and (6) into Eq. (1) lead to 

*All sums whose	 limits are not given are to be taken to extend from·· - 00 to 00 • 
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d .d9 sm eo 
~ - cos (;}.U = _ \ ~eu G 

n/\ L (R (u» e inN9 
(7) 

.?z.. 

where 

>-. = e Bo Ro 
pc 

(8 ) 

We introduce a new function 

F n (u) = eU G (u) • (9)n 

Then Eq. (7) becomes 

inN9
~9sin®-cos @ =-'>"'2 Fn(u)e . (10) 

n 
The magnetic field is assumed not to vary much over the radial extent of the 

orbit. We assume thai a Taylor expansion of the F n (u)'s in powers of u exist: 

i. e. , 
, ,,2 

Fn(u) = Fn(o)+Fn(o)u+Fn (0) ~ + ... (11 ) 

For a normalized field, F 0 (0) = 1, F ~j) < 1 when n t- 0 Let the solution for 

Z 
the equilibrium orbit be represented as a Fourier series 

inN9 (12)u = ~e 

n 
Using the notation in Appendix A, the results are summarized in the following: 

inN9inN9L F n (u) e = X- n -m Em e (A12) 
n n,m 

inN9 
e (A22) 

C inNS 
cos @ (A-23)n e 

n 

where 
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j = 0, 1, 2, 3, .•. (A-6) 

F (0) = F (0) F (1) = F' - F' ( ) F (2) = - nO, (A-2)n n' n n n 

(A-7) 

(r+3)/2A~ (T)
(- 1) --=.::.n__ d-- = 1, 3, 5, ... (A-24)

"I 
1/2 A~ (T) 

(- 1) t ! t = 0, 2, 4, ... (A-25) 

Therefore Eq. (10) becomes 

.£.. ~ S inNS _ ""> inNS inNSCn e n:-m Em e (13)dS L n e L 
n n n,m 

The recurrence relation of Eq. (13) is 

(i n N) Sn - Cn = - ~ 2.. n - m Em (14) 

m 

The important relation Eq. (14) yields the exact solution of the equilibrium 

orbit. When n = 0, 

(15) 

From Eqs. (A-30) and (A-6), Eq. (15) is equal to
 

1-A 2 (inNa)+'" = -AiF(O)+~ F(1)A1(a)+l~F(2)A2(a)+ .. ] (16)
 
o 0 L n n 2! L n n 

n n 

Equation (16) gives the value of A. . Since u'« 1 and F~j) < F~o) imply 

'A; (i n Na)1 < < 1 
I~ F (l) A 1 (a) I< < F (0) 
~ -n n 0
 

n
 

IL F~~) A; (a)\.c<: F~o) 
n 
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we get 

(0) r 2. 1 { 1· (1) 1 1 ~ (2) 2 }
"-F0 = ~ 1 - Ao b n N a) + .. ) / 1 +~) 2. F -n An (a) + (0) L F -n An (a) + .. 

F n 2!F n 
o	 0 

1 (1) 1 2 . 1 ~ (2) 2 
= 1 

- F(o) F -n An (a) - Ao b n N a) - (0) L F -n An (a) + ... 
n 2! F no	 o 

Let 

(1 7) 

then 

A(O) = l/F~o)	 (18) 

(1)	 1 ~ (1) 1 
L F_ An (a) (19)A - )"""=2 n- -~""::;-~o"""t"":'")

n 

(2) 1 2	 1 ~ (2) 2 
)-... = - (0 Ao (i n N a) - --=-To=:;)--"2 L. F -n An (a) (20) 

F ) 2' (F )o	 . 0 n 

(0)
For the normalized field. A = 1. When n is any integer except o. the 

recurrence relation Eq. (14) gives 

1(inN){A (inNa)	 - ~:A 3 (inNa) + ... } -f- A 2 (inNa) +.1..... A 4 (inNa) + ...}n 6 n	 n 3! n 

(21) 

or 

The coefficients au can be evaluated from Eq. (22). Let. 

(0) (1) (2) 
a = a +a +a + ...	 (23)n n n n 

Then 
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(0) 
a	 (24)n 

(25) 

The solution for the equilibrium orbit of a charged particle is completed 

and summarized in the following: 

U	 inNS
1. The orbit: R = R e and u = L ~eo 

n 
2. R o is defined such that ao = 0 . 

3. an can be evaluated from Eqs. (23). (24), (25) and (26). 

4.	 A is a dimensionless constant and defined as 
e B Roo

A = pc 

which can be evaluated from Eqs. (17). (is), (19). and (20). 

For a given val~e of Bo, the ratio Ro/pc can be obtained from A. . 

The relation between kinetic energy and A. is given 

B R = A (T + 2 T E )1/2o o	 o0.3 z
 

where T is kinetic energy in MeV
 

B o and R are in kilogauss and centimeters respectivelyo
 

z is the number of charges in a particle.
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II. BETATRON OSCILLATIONS 

A.	 Radial Betatron Oscillation 

Radial oscillations obey the same equation as the equilibrium orbit in 

Eq.	 (l). The solution is written in a different form than Eq. (3) 

R = R (l + v) = R eu (l + v) . (27)eq o 

The equation of motion is 

d (u' + Vi + vu') 1 ~ ( ) inNe= LFnu+ve 
de 1(1 +v)2 + (u' +v l +vu ,)2 ,; (l +v)2 + (u' +v' +vu,)2 n 

(28) 

For linear oscillation, only two terms are needed on the right-hand side of 

Eq. (28), i. e., 

F (u + v) = F (u) + F' (u) v + ...	 (29)n n n 

Equation (28) becomes 

v" + C 1 = -~ v L F' (u) e inNe (30)
n 

n 
where 

d	 V u' u,2 v '+V2 U u'v ''	 (31 ) 
de (l + u l )3/2 1 + u,2 

C1 represents a correction term which turns out to be small and is neglected. 

Then Eq. (30) becomes 

~ , inNe 
v" + .A v L F n (u) e = 0 . (32) 

n 
From Appendix A, Eqs. (A-13) and (A-l1) are 

einNeE' n-m m 
n	 n,m 

j = 0, 1, 2, 3, ... 
j 
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Substituting into Eq. (32), 

inNe
v" + 'A v 2 E o (33)n-m m e = 

n,m 

Equation (33) is similar to the equation 

2 
~ v + (E - g (e» v = 0 (35) 
de 2 

where 

inNe g (e) = L. gn e 
nto 

This is the Floquet-type equation. It can be solved simply by the 

application of the perturbation theory of quantum mechanics. Let an operator 

d2 
Hop = - de2 + g (e) . (36) 

Then Eq. (35) becomes 

Hop v = Ev • (37) 

Hop is Hermitian under the condition that 

We may consider Hop as a Hermitian operator and E is the eigenvalue of the 

eigenfunction v. When v is normalized, the average value of the operator 

Hop for the function v is 

(H)ave = v>:< Hop v de . (38)f 
If one of the true solutions of Eq. (3) can be expanded in terms of the complete 

orthogonal set of eigenfunctions v n ' 

v = L b v . (39)n n 
n 

Substituting into Eq. (37), we multiply on the left by v~ 
"< 

. and integrate over 

27[. We take advantage of the orthogonal character of vnls using the notation 
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Hum v; Hop vm dG (40)0 J
and find 

- E 0nk) = 0 . (41) 
k 

It is shown in algebra that Eq. (40) will have solutions if the determinant of 

coefficients vanishes 

detl Hnk - E 6nk I = 0 • (42) 

To determine the eigenvalue E from Eq. (41). we take the approximation that 

discards all nondiagonal matrix components Hnk for which n and k are both 

different from O. Then the equations become 

bn (Hnn - E) + bo ~o = 0 n -; 0 (43) 

L b H - b E = O. (44) 

2. bk (Hnk 

n on o 
n 

From Eq. (43). 

bn _ lIno 
n -; 0 (45)

bo E - Hnn 
Substituting Eqs. (45) into (44), we have 

H • H 
on no

E = H +E (46 )
00 :J. E - HnrO nn 

Substituting Eq. (45) into Eq. (39). the eigenfunction is equal to 

v = v + L. lIno (47)o n-;o E-Hnn 

when E "-J Hoo' we replace E in the second term of Eq. (46) and Eq. (47) by 

H and get the approximationoo 

E = 
~ 

Roo + L-
n I 0 

Hon 

H oo 

· R no 

- H nn 
(48) 

v = V o 
~ 

+ L 
n -; 0 

H no 

Hoo - Hnn 
vn . (49) 
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According to Floquet theorem, the solution of Eq. (35) is 

v = L b ei(~+nN)e (50)
n 

n 

Comparing with Eq. (39). we have 

ive 
V = e b = 1o o 

v = b ei(;+nN)e 
n n 

We get 

J ive +iI) e J 2 = e- H e de = 
op 

= Je -We 
(51 ) 

H no 

Therefore the eigenvalue and eigenfunction are 

E =,) 

= 
(nN)2 _ 4 V 2 (52) 

v = 
iJ e i(t> +nN)9 

e + L. _g=n--::"e _ 
n f 0 j} 2 - (V + nN)2 

(53) 

If we use "smooth" approximation, 1 instead of Eq. (52), we get 

E = 
gn . g-n 

n 
2 

N 
2 (54) 

If N is an even integer, Eq. (35) becomes Hill's equation. Under the conditions 

that 
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1. ~ gn should be absolutely convergent, 
n:f.o 

2.	 E - (J + nN)2 :f. O.
 

5
We get

2 2
sin ( ~ tJ ) = fj (0) sin ( ::- r-E ) (55) 

and 

L\ (0)	 (56) 

The determinantA (0) is obtained by the approximation made in Eqs. (43) 

and (44). Ll (0) can be used to study the stability region of the operating points. 

To evaluate the numerical values of tunes, we prefer Eq. (52) since it is a better 

approximation than Eq. (54). 

The radial tune J is 
Ir	 , 

n-m m n-m m 
-m E~ + 2 ~ 2 L	 E· E 

2 2 ,) 2 
n~l m nN -4J/r 

where 

"';"- E' = F(l) + ~ F(2) A 1 ( ) +1- ~ F(3) A 2 + ... (57)L- -m moL -n n a 2! L -n n 
m	 n n 

(1) L F (2) 1E = F + A (a) + ...	 (58)
n-m m n n-m m 

m 

(2)
E = F A 1 (a) + ...	 (59)

-n -m F~~+L -n-mm	 -lTI 
m 

Including second-order terms, the tune is 

(1) F(l)
F . 

n -n 
(60) 

If we take 



-12

1 (0)
A (a) ~ a = n n 2 2 (1)/ (0)

n N - F Fo o 

then 

(1 ) F(2) . F(o) /F(o)	 F(l) (1)
F	 ·F2	 -n n 0 20 1	 n -n 

=V \OJ +-- L	 2
r	 F(o) 2 2 (1)/ (0) + 

(F(0»2 2
F o 0 nfo n N - F o F o 0 n)l n N 2 - 4 V; 

B.	 Vertical Betatron Oscillation 

4Vertical oscillations obey the equation
2 

.Q.. z = ~ (R' Be - R B ). (61 ) 
de j R2 + R,2 + z2 pc r 

The field Be and B r are given by the relation 

~ 

\]xB=O. 

For linear terms in z, Be and Br are 

"d B e 1 aB z	 inNe 
= --z = - --z = _ B~ z 2.- G (R)	 (inN) e (62)Be oz R c e	 n 

n
 

d B ~Bz (R)
r	 n inNe
B = = z - Bo zL d G 

e r ~z dR =	 R~ 
n 

Substitute Eqs. (9), (62). and (63) into Eq. (61) and let 

(64) 

Then 

du .	 inNe ,",""(dFn (U) 
y " + C 2 de (InN) F n (u) e - L. du -Fn(u}einNQ] 

n 
(65) 

where 

(66 ) 

C2 represents a correction term which turns out to be small and is neglected. 

With the aid of Eqs. (A-5), (A-6), and (A-13), Eq. (65) becomes 
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inNQ
y" + AY L- IF (inl N)(in2 N) an2n3 -mEm -n -m E;" + n -m Em1e =0 

n, m n1' n2' n3 J 
n1 +n2 +n3::;: n (67) 

Similar to the treatment in radial betatron oscillations, we assume the solution 

for Eq. (67) is of the form 

.~ i(V +nN)9z
Y = L- Yn e (68) 

n 

and the vertical tune is 

j) 2 = _ A- {F(l) + '>(F(2) _ F(l») A 1 (a) _ F(O)j 
z 0 L. -n -n n 0 

n n 

F(o) _ F(l) ). (F(o) _ F(l) )
(

+ 2 /....:!: 2..- n n -n -n (69)
2 2 .1 2 

n~l n N -4// 
z 

If we take 

::;: 

then 

F(o) _ F(l) . F(o) _ F(l) 
2 n n -n -n 
(0) 2 

F n 2 N 2 - 4 J} 2 
o z 

The results in Sections I and II are general. These can be applied to 

various accelerators. An example of this has shown in Appendex B for a spiral 

sector accelerator. Here we emphasize on the application to an integral structure 

machine. 
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III. INTEGRAL SCALING IN FFAG
 

Let N and M be the number of spiral sectors and radial cuts respectively 

in an integral structure machine. The magnetic field in the median plane of the 

structure is periodic in azimuthal angle 8 and is expected to be of the form 

inCt(ln ~ - N~ imM8 
G (R)L gn, m e e (70) 

n,m 
or 

iLP8 
G (R) L aL (R ) e (71 ) 

L 
where 

R'~ 
G (R) = - B o ( r 0) (72) 

P is called the superperiod. It is the greatest comrr..on divisor of Nand M. 

We write 

- n N + m M = P (- sn + rm.). (73) 

Let 

L = - sn + rm ; (74) 

s and r are the number of spiral sectors and radial cuts respectively in a 

superperiod. It is clear from Eq. (74) that for a given L, there are infinite 

pairs of (n, m). If a pair (n, m) satisfies (74) for + L, there will be a pair 

(- n, - m) for - L. The magnetic field is expected to be real. This reality 

condition leads to the assumption that if n f 0, m f 0 

(75) 

(76) 

+io( 
t (a + d ) + i (b - c )	 -nm (77)gn, -m = nm nm nm =	 h -nm e
 

h -io(_nm
 

nm 

= t (anm + dnm) -- i (b - c ) =	 (78)g-n, m	 nm nm -nm e 

where hnm is real number. For n = 0, m f a 
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(79) 

- + . b (80)go, -m - aom 1 om 

For m = 0, n -I 0 

(81 ) 

(82) 

For both n = 0, m = 0 

(83) 

With the aid of the reality condition, the field can be expressed as the summation 

of the following terms: 

f a G (R) cos n (K In :: - NeJ cos mMenm o 

f b G (R) cos n [k In ~ - NeJ sin mMe nm r o (84) 
f cnm G (R) sin n lk In 1!.-  cos mMe r N~ 

· R
o 

f d G (R) sin n K In r - NeJ sin mMenm C o 

where 

f = 1 when n = 0 and m = 0 

f = 2 when either n = 0 or m = 0 (85) 

f = 4 when n 1= 0 and m 1= 0 . 

There exists a computer program (MURA F46) which calculates the coefficents 

aum' bnm, cn:rn' and dnm · The main discussion here is to use these 

coefficients to study dynamic problems. 

In Eq. (70). we would like to replace r 0 which is picked for the convenience 

of the computer program. by R o• the average radius of the equilibrium orbit. 

inKlnA ink In/b, HmM - nN)eo e 0 e (86)gnm e 
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where 

R ):i
B = B (-2 (87)1 o r o 

The coefficient aL in Expression (72) is 

inK(u +u) 
gnm e 

o (88) 

The sum L is over all the pairs of (n, m) for a given L. 
R (n, m)L 

u = In ---2 and u = 1 n RR . The function F L (u) is o r o 0 

= u({ + 1) ~ g inK(uo +u)F L e L- nm e 
(n, m)L (89) 

euat + 1) L=
 
(n, m)L
 

Therefore 

= L hnm ei(nkuo -~m) (90) 
(n, m)L 

(91 ) 

= (92)L 
(n, m)L 

Take the proposed 500 MeV machine6 for example: 

N = 16 

M = 72 

P = 8 

r = 9 

s = 2
 

~ = 8.2
 

K = 75
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The pairs of (n. m) for L :::: 0 are 

::::	 (93)( ~). 
Equations (90). (91). and (92) become 

(0)
F = o 

F(1) :::: 
o (95) 

F(2) :::: (96)o 

where 

~ :::: tan -1 ~ + 1) 
,-n n K 

Equation (18) gives 

A (0) ::::	 _1_ :::: 1
 
F(o) a + 2 h92 cos (9 Ku - 0( 92) + ...
oo	 o 

o 

:::: 1 2 -
h92 

cos (9 k u - 0( ) + ... (97)
a	 0 92oo 

The magnetic field is scaled for a finite number of points in the radial direction 

and its shape repeats itself nine times (r :::: 9) in a superperiod. Therefore the 

dynamic quantities will be periodic with period of nine in that superperiod. A 

and tunes are periodic functions of R o or energy. For the whole energy range. 

their deviations are small. We may consider that the constant parts are due to 

the scaling field and the deviations are due to radial cuts in the spiral geometry. 

In general. the tunes and A. are expressed as follows: First. the constant parts: 
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1 
(98)

a00
 
.~ h ei(nKuo -o(nm)
 
.£- nm
 

= (n, mh,
 
(99) 

aoo (L2p 2- ~ + 1») 

~ -f- (Ii! 2 2" ( 2 2 2 2)J 2 = (fc + 1) + (~0»2 L. C- f l~ + 1) - (n K) )a.um + born + com + dom
 

r n = 0 ~ = 0 (- sn + rm)2 p2 - ~ + 1)
 

, except both n = 0, m = 0
 

+ (~O»2 i:t... f~ + 1)2+ (nk)2)(a;;m + b;m + c;"" + d~) ~100) 
2 

n=om=o (-sn+rm)2 p 2_4V 
r 

except both n = 0, m = 0 

f (- sn + rm)2 p2 (aJm + b~m + C;~m + d~m) 
1 - ( k.+1 )' . + (XO »2 i i 

(- sn + rm)2 p2 - (k + 1)n=o m=o 
except both n = 0, m = 0 

~Q' 2) 2 2 2 2)f ~ + l)k - (n K)(~m + bnm + cnm + dnm 

n=om=o (- sn + rm)2 p2 - ~ + 1) 
except both n = 0, m = 0 

+ (}.O»2 ~ i _f--"G~_2 n........... +_(_n_K_)2y£-)~(:-a......m",---+_b--",n=m~+:-c=n=m=--+_d....::;n=m~) 
(101 )L (_ sn + r~)2 p2 _ 4 i \ 2 

n=om=o V z
 
except both n = 0, m = 0
 

where f is defined in Expression (85). 

"< ~ (1) (1)
"In L- FL· F , if a pair (n, m) for + L, there will be a pair (- n, - m) 

L -L 

for - L, and a pair (n, - m) for L' , there will be a pair (- n, m) for - L'. 

Therefore, dnm and bnm cnm are canceled out. The summation isanm 

simply equal to L L f C~ + 1)2 - (n k)2) (a;m + b~m + c;m + d~m) 
n=o m=o 

except both n = 0, m = 0 
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Second, the maximum values of the deviations: 

~~o) = (102) 

(103) 

+L hn1ffi1 hn2ffi 2 

(~I}"tl 1- (lJ1z'jbJz.) (104) 

where the pairs (n
1

, m 1) and (n
2

, m 2 ) correspond to a given L. The last 

term in Eqs. (103) and (104) are much larger than the first or second term. 

The relation of the pairs (nl' ml) and (n2' m 2) is 

= where ~ is any integer. 

The harmonics n of the original spiral field should be taken larger than r. 

Cole and Morton7 neglected all the harmonics n higher than r. The terms 
2 

in Eqs. (103) and (104) disappear automatically. This will explain why they 

get the conclusion that ;)r and ~ z are independent of energy. It is found 

that the pairs (-I, 0) and (r - I, s) yield the largest deviations. If we only 

take account of the interaction of pairs (-I, 0) and (r - I, s), we get 

2 h_ 1, 0 h - , s {~+ 1)2 +K 2J~ Gil: +1)2 +(r - 1)2 K2J)f
r 1

+ (<i + 1)2 +(r2 - 2 r + 2)K~/~2 p)2 - (k + l)J 
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The maximum values of deviations are 

(105) 

-v (106)z 

The actual range of tunes are 

radial. ,} + L1 .\I/ r - I/ r 
(107) 

vertical. . \ + ~ .)I/z-Lj,,//z . (108) 

There is a program. MURA F46. which calculates the magnetic field 

coefficients ~m' bnm, cnm• and dnm . For the proposed 500 MeV injector. 

these coefficients are shown in Table I. Equations (100) and (101) have been 

programmed by Mr. Francis Murphy for the IBM 704 computer (MURA F147). 

The program. MURA F147. uses the magnetic field coefficients in Table I 

and yields the constant part of tunes: 

~r = 3.228 

Vz = 2.370 

and from Eqs. (105) and (106) the maximum values of the deviations are 

Llj} ~ 0.004 
r 

Ll V ~ 0.006 
z 



TABLE I. MEDIAN PLANE COEFFICIENTS FOR WE PROPOSED 500 MEV INJECTOR
 

~  a 1 2 3 4 5 6 7 8 9 10 

a 1 .19228 -0.41445 -0.02562 -0. 00160 -0.00599 0.00267 0.00017 -0.00028 0.00003 -0.00005 0.00001 
1 -0.20740 0.09537 0.00B05 0.00046 0.00214 -0.00013 -0.00006 0.00014 -0.00001 O. 00002 -0.00000 

Flnm 2 -0.07438 0.03517 0.00164 0.00062 0.00101 -0.00045 -0.00002 0.00002 -0. 00001 0.00002 -0.00000 
3 -0.00345 0.00140 0.00008 -0.00001 O. 00001 . O. 00010 -0.00001 -0.00001 -0.00000 -0.00001 0.00000 
4. 0.00816 -0.00433 -0.00004 -0.00020 -0.00022 0.00019 0.00000 -0.00001 0.00000 -0.00001 0.00000 

a a a a a a a a a a a a 
1 0.02613 -0.00846 0.00116 -0.00063 ~O.  00034 0.00008 -0.00002 O. 00001 0.00000 -0.00000 -0.00000 

~nm  2 O. 00126 0.00180 O. 00248 -0.00082 -0.00022 -0.00003 -0.00004 0.00003 0.00000 0.00000 0.00000 
3 -0. 00126 O. 00103 0.00036 -0.00005 0.00004 -0. 00002 -0.00000 -0.00000 0.00000 0.00000 0.00000 
4 -0. 00028 -0.00014 -0. 00029 0.00024 0.00006 0.00000 0.00002 -0.00002 -0.00000 0.00000 -0.00000 

a 0 -0.14867 -0.08327 0.02047 0.00401 0.00012 O. 00065 -0.00052 -0.00005 0.00006 -0.00002 
1 a O. 03570 0.02445 -0. 00746 -0.00159 -0.00002 -0. 00026 0.00022 0.00001 -0.00003 0.00001 

r 
~nm  2 a 0.01616 0.00917 -0. 00325 -0.00047 -0.00007 -0.00012 0.00009 0.00001 -0.00001 0.00000 

3 a 0.00068 0.00042 0.00021 0.00002 -0.00000 0.00000 -0.00003 0.00000 0.00000 -0.00000 
4 a -0. 00229 -0.00108 0.00083 0.00008 O. 00002 0.00004 -0.00004 -0.00000 0.00000 0.00000 

a a a a 0 a a a a 0 a a 
1 a -0.00648 -0. 00258 0.00058 -0.00010 0.00010 0.00002 -0.00003 -0.00000 -0.00000 -0.00000 

dnm 2 a -0.00462 -0.00058 -0.00011 -0.00037 O. 00011 O. 00001 -{). 00001 0.00000 -0.00000 -0.00000 

I 
I 
I 

3 
4 

I 

a 
a 

1-0.00022

I O. 00073 

0.00009 

I O. 00006 

-0.00015 
O. 00001 

-0.00005 
0.00008 

- O. 00001 
-0.00006 

-0.00000 
-0.00001 

O. 00001 
0.00000 

-0.00000 
-0.00000 

-0.00000 
0.00000 

-0.00000 
-0.00000 

I 
t'V 
~  

I 
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APPENDIX A 

(1)	 If a complex function F n (u) has a Taylor expansion in powers of u, 

, "u2 "' u3 
F n (u) = F n (0) + F n (0) u	 + F n (0) -, + F n (0) -3' + . . . (A -1 )

2. . 

We us e the notation 

(0)	 (1),
F = F (0), F = F (0), F n" (0), •.•	 (A-2)n n n n 

Equation (A-1) becomes 

F (u) =2- J I 
j = 0, 1, 2, 3, ...	 (A-3)n	 . .j 

When u is a periodic function of S, it can be expressed as a Fourier 

series 

inNS 
u = ~ ~e (A-4) 

n 

Inserting this into Eq. (A-3) yields 

~ E imNSF n (u) = L- n m e (A-5) 
m 

where 
F(j) A j (a) 

n m j = 0,,1, 2, 3, ...	 (A-6) 
. I=L J .j 

A~(a) = 2- ~ ~ am1 am2 ••• amj (A-7) 

m1 m2 mj 
m1 + m2 + ... mj = m 

1 if m = 0 
(A-B) 

o if m :f 0 

All sums whose limits are not given are to be taken to extend from 

- 00 to 00 , as, for example, the sums over n in Eq. (A-4), m in Eq. (A-5) 

mj in Eq. (A-7). The derivative with respect to u of 

Eq. (A-1) is 
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d	 f " '" (a) -u
2 

+ ...du F n (u)	 = Fn(o)+Fn(o)u+Fn 2 ! 

(j+1) j 

L F

j ! 

un= j = O. 1. 2. 3. ... (A-g) 
j 

I imNS = L n Em e (A-10) 
m 

where 
("+1) . 

I	 F J A J (a)n m ... 
n Em = L j ! 

j = O. 1. 2. 3. (A-ll) 
j 

Let us consider F n (u) as the coefficient of a Fourier series. then 

inNS imNS inNSL F n (u) e = L (L n Em e ) e 
n	 n m 

inNS= Em e	 (A-12)n-m 
n,m 

Similarly. 

~ F (u) e = ~"£ du	 n 
inNS 

L 
n n m
 

I inNS
 
(A-13)=2.-	 n -m Em e 

n.m 

(2)	 In Eq. (6). ® is defined as 

® = tan -1 u ' (A-14) 

Under the assumption that u ' < < 1, 

tan -1 u I = U I - t u' 3 + .g. u' 5 + ... (A-15) 

From Eq.	 (A-4) 

I	 inNSdu ~	 (1· n Nan) e (A-16 )u = dS = L
 
n
 

Let 

(I+3)/2	 A~ (inN a)
(- 1)	 j = 1. 3. 5, 7•... (A-17) 

/"
where 
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A~ (i n N a) = L L
 
n1 n2
 
n + n + ...

1 2 

Then Eq. (A-14) becomes 

16'\ -1 inNQ
toY = tan u' =L Tn e . (A-19) 

n 

The as sumption u r <. < 1	 implies that ® <: < 1. Therefore 

6 3 6 5 
sin 6' = 4}) - -- + -- + ...	 (A-20)

3 ! 5 ! 

62 @4 
cos 9' = 1---+--+···.	 (A-21 ) 

=L 

2 ! 4 ! 

Inserting Eq. (A-19) into Eqs. (A-20) and (A-21), 

inNQ
sin 9 Sn e (A-22) 

n inNQ 
cos 9 = e	 (A-23)2- Cn 

n 
where 

(i+3)/2 A~ (T) 
nSn = L (- 1)	 cr= 1, 3, 5, ... (A-24) 

d- 1/2 At- (T) 
C = L (_ 1) ---,-"n__ J== 0, 2, 4, ... . (A-25) 

n t 

The function A~ (T) is very complicated, the first few terms are listed 

below: 

if n = 0 

A~ (T) = (A-26 ) 
if n t- 0 

1 1 3 1 5A 1 (T) = Tn = An (i n N a) - '3 An (i n N a) + "5 An (i n N a) + ... (A-27)n 
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(_ 1)(t1+t2+6 )/2

=2.LLL 
£1' (2n 1 n 2 .11 1"2 

n1 + n2 = n 

(1 r2 = 1. 3. 5• 
• 

L L: L T n1 T n2 Tn3 
n1 n2 n3
 
n 1 + n2 + n3 = n
 

«(1 + "2+1"3+9)/2
(- 1) 

n1 n3 

3 
CIt. 3 An (i n N a) (A-29) 

~ 7/2 A! (T) 
O. 2. 4•...Co = L (- 1) -t::-, t=

if ~. 

o 1 2 1 4 
= A (T) ... 2T A (T) + 4! A (T ) + •••o o o
 

2 1 4
= 1 - A (i n N a) + - A (i n N a) + ... (A-3D)o 3! 0 

C = A 0 (T) - L A
2 

(T) + L A 4 (T) + ... 
n n 2! n 4! 0
 

2 1 4
 
= - A (i n N a) + - A (i n N a) + ... (A-31)

n - 3! n 
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((+3)/2 
Sn = 2. (- 1) _ A~ (T) (= 1, 3, 5, ... 

4"! 
1 1 3 1 5 

= An (T) - 3T An (T) + 51 An (T) + ... 

= {A~ (i n N a) - t A~ (i n N a) + ~ A~ (i n N a) + ...J -:! A~ (i n N a) + •.. 

C! A~ (inN a)- ~ A~ (inN a) + . .. . (A-32) 



-27

APPENDIX B 

The treatments in Sections I and II are general and applicable to most 

accelerators as long as the magnetic field in the median plane can be expressed 

_ ~ () inN9as Bz	 - L:- G R e . Even the direct application of their results does notnn 

appear familiar. For the purpose of comparison. a spiral sector accelerator is 

taken as an example. We start with a brief derivation and show that the approximate 

differential equations for the equilibrium orbit and tunes are the same as in 

References 1 and 8. The difference is a matter of the approximation to obtain 

the tunes. It is evident after appropriate rearrangement of terms that the tunes 

which are obtained from an application of quantum perturbation theory are the 

same as those of the "smooth approximation. ,,1 

(l)	 The Orbit 

The magnetic field in tlE median plane of a spiral sector accelerator is 

R k (	 R )1Bz = - Bo (R ) 1 + f cos (N9 - K In ~)'	 (B-1 ) 
o

The equation of the motion. Eq. (l), after expanding in power series of u, 

becomes 

1 - u" - ~ u,2 ::: A [ 1 + (k + 1) u + f cos N9 + (k + 1) f u cos N9 

+fKucos (N9 - ~ )+ (k+ 1)fKu
2 

cos (N9 - ~) 

2 2 (k + 1)2 2 ) 1 
- f K	 u cos Ne + 2 u cos Ne . (B-2)

J 
Equation (B-2) can be solved by successive approximations. When the power 

of u increases. its numerical value is expected to decrease rapidly. The first 

term on the right-hand side of Eq. (B-2) gives the zero-order approxima tion of 

the average radius of the equilibrium orbit, Ro ; the second and third terms, the 

amplitudes of oscillation, an. around Ro . The second term also gives the zero
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order of the radial tune, j) r; the fourth and fifth terms, the first-order of ~ r ; 

the seventh and ninth terms, the second order of j) r . 

For the equilibrium orbit, the significant terms appear below: 

1 - u" = >---[1 + (k + 1) u + f K u cos (Ne - ~) + f cos Ne J. (B-3) 

If the solution is of the form 

~ a inNeu = L.. n e •	 (B-4) 
nt-o 

the contribution of the term f K u cos (Ne - l' )to the zero-harmonic vanishes. 

Therefore, we get 

A = 1 (B-5) 

and for the first harmonic 

a1 = a = f/2 (B-6) 
-1	 N 2 _ (k + 1) 

Equations (18) and (24) are equivalent to Eqs. (B-5) and (B-6). The equilibrium 

orbit is approximately 

f
R = R (1 + 2 cos Ne)	 (B-7)o 

N -	 (k + 1) 

which	 is in agreement with References 1 and 8. 

(2)	 The Tunes 

The equations of oscillating particles in radial a.nd vertical motion are 

v" + v 1(k + 1) + (k + 1) f cos Ne + K f cos (Ne - ~) + 2 (k + 1) K f u cos (Ne - f ) 
- K2 f u cos Ne + (k + 1)2 f u cos Ne + (k + 1)2 u J = 0 (B-8) 

2y" + Yl u' 'N2 + (~)2 cos (Ne - f3 ) - k + f CK - k (k + 1il u cos Ne 

- f (K cos (Ne - ~ ) + k cos NeJ = 0 (B-9) 

tB	 t -1 2 N hwere l = an -f- . 
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Substituting u = 2 al cos Ne into Eqs. (B-8) and (B-9), we get 

2
v" + v {(k + 1) - a1 f CK - (k + 1)2) + f (K cos (Ne - +J+ (k + 1) cos Ne 

- al f K2 cos 2 Ne J = 0 (B-10) 

2	 2
y" + Y [ a1 f N - k + a1 f l K - k (k + 1] - f [K cos (Ne - -}) + k cos N~ 

2 
+ a1 f K cos 2 NeJ = 0 . (B-ll) 

In Eq. (B-ll), the Kerst focusing term is mainly a1 f K 2 which is desired to 

overcome the defocusing term - k, due to the rise of the magnetic field with 

increasing radius. It is evident that when K is larger than N, the Thomas 

focusing, a1 f N 2, becomes smaller than the Kerst focusing. When K is much 

larger than the field index, k, we may neglect a1 f (k + 1)2, (k + 1) cos Ne. 

a1 f k (k + 1). k cos Ne. Then Eqs. (B-10) and (B-ll) are the same as Eqs. (8.8) 

and (8. 9) in Reference 1. (There is 7(/2 difference in defining the e-coordinate.) 

By the application of quantum perturbation theory, the radial and vertical 

2
a1 f K 2 

( 2 ) 
+ 2 x	 2 (B-12) 

(2 N)2 - 4 Vr 
2

(a1 f	 K )2
2 2 2/J 2 2 rl 2 ) f 2 K + k 

z = a 1 f N - k + a 1 f lK - k (k + 1) + 2 x ('Z) 2 + 2 x 
N 2 - 4 V (2 N)2 - 4 ); 

z 
(B-13) 

or 

2	 
.' 

= (k + 1) _ t =K,---2_-_(=k,---+--=..:1):-2 + _f2 K + (k + 1)2 + _2_x~(~",,--K_)_4_~ _ 
2 2

2 N - (k + 1) 2 N - 4 p; C(2 N) 2 - 4 P;] frJ 2 - (k + 1jJ 2 

(B-14) 
f K 4 

= _ k + f2 N 2 + ~ K 2 - k (k + 1) + _f2 K2 + k 2 + __ -::;:;;-2_X_(_---z- >_-;:;--:-
2"" N2 _ (k + 1) 2 N 2 - (k + 1) 2 N 2 - 4;):' fr2 N)2 - 4 Vzj~2 - (k + 1)2 

(B-15) 
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These are the same expression as (60) and (69) in	 Section II. If we assume that 

4 t> 2k + 1	 zN2 « 1 ~	 < <. 1 and 
N < < 1 ~ 

the tunes can be rearranged in power series of N- 2; 

~2	 (B-15)r 

(B-16 ) 

The last two terms in Eqs. (B-15) and (B-16) are	 obtained by assuming that 

V; "-./ (k + 1) and ,V: r../ k. In Reference 1~ Eq. (13. J) is only the first term 

of Eq. (B-15) and Eq. (13.2) is the first three terms of Eq. (B-16). For large N, 

we may say that the radial tune, J ~ is practically independent of the variation of 
r 

the flutter, f, and spiral parameter, K. However ~ the tunes of vertical motion~ 

) z~ is strongly dependent of the f and K. 
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