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ABSTRACT
Among the reports on an analytic description of particle motion in

FFAG accelerators, 1,23 the specific case of an integral structure machine
is not treated in sufficient detail to yield quantitative conclusions starting
from a set of general field coefficients. In parallel with computer studies, an
analytical investigation of the unperturbed differential equations of a charged
particle motion in a steady magnetic field has been made. A special technique
is developed to yield the exact solution (in terms of power series) of the non-
linear equation of motion in the median plane. Based on the results of the
equilibrium orbits, betatron oscillation frequencies are obtained by the
application of second-order perturbation theory of quantum mechanics.
Analytical method has been programmed for the IBM 704 computer. A typical

operating time of six minutes yields the betatron oscillation frequencies.

“AEC Research and Development Report. Supported by the U. S. Atomic
‘Energy Commission through ANL by Subcontract 31-109-38-1707.



I. EQUILIBRIUM ORBIT
The motion of a charged particle in the median plane of an accelerator in

cylindrical coordina‘ces4 is

- & g (1)

d _R . __R -
®/Rr2+rZ J/RZ+R? PC
where B, is the magnetic field in theplane and in general given by

*
inNe
B, = -B,. G, (R e (2)
n

B_. is const.

o

G, (R) is complex.
The solution of Eq. (1) is nearly the average radius of the equilibrium orbit.

Liet the solution be R

R = R, '@ | (3)

27/N
R, is defined in such a way that J u(8)de = 0. u (8) is approximately

o
equal to the deviation from the average radius of equilibrium orbit. We assume

that the radial component of the particle's velocity in the equilibrium orbit shall

be small compared with the:longitudinal component, i.e.,

1 dR <

[ 5 5 | << 1 (4)
or

du 5

'E, <L 1 . (5)
Let

@ = tan—l u' where u' = g—g . (6)

Substituting Eqs. (2), (3), and (6) into Eq. (1) lead to

*All sums whose limits are not given are to be taken to extend from -eo to eo |



d . inN®@
Ssin@ -cos @ = A DeG Rw@)e (1)
n
where
e By R,

NE . (8)
pc

We introduce a new function

F, () = e" G, (u). (9)
Then Eq. (7) becomes

d _. _ - inN@ _

36 Sin ® -cos ® - /\Zn F, e . (10)
The magnetic field is assumed not to vary much over the radial extent of the

orbit. We assume that a Taylor expansion of the F, (u)'s in powers of u exist:

i.e.,
1 1 u2
F, @) = Fy(0)+F, (0)u+Fp (o)§—+--- . (11)
For a normalized field, F, (o) = 1, Frij) & 1 when n # 0. Let the solution for

the equilibrium orbit be represented as a Fourier series

u = Z ay einNG . (12)
Using the notr;tion in Appendix A, the results are summarized in the following:
S p e o g N (A12)
n n, m
sin @ = Z S, oN® (A22)
n

cos @ =Z Ch emN9 (A-23)
n

where



@)

Fp A (a)
nEm = j !m j=0,1,2,3, - (A-8)

(0) _ (1) B ' | (2) n
Fn = Fpl) Fy' =F =F 0, F = F, © (A-2)
¥
A, (a) =Z Z Z 2m; mgy T * 3m. (A-7)
m) +mg+ e +my = m

(F7+3)/2 A% (T) -

Sn = Z (_ 1) ——{1_— a" = 1: 31 5: ot (A'24)
¥ ; &
F2 A% (T)
= - —n_— - * s ® -
Cn §< 1) iy F=0, 2, 4, (A-25)
Therefore Eq. (10) becomes
d inN®© inNo ;
S s ™S G ™ L A2 im0 ()
n n n, m
The recurrence relation of Eq. (13) is
(nN)S,-Cp = - A n-mE, . (14)
m

The important relation Eq. (14) yields the exact solution of the equilibrium

orbit. When n = 0,

Co = A Z -mEm' (15)
m
From Eqgs. (A-30) and (A-6), Eq. (15) is equal to
(o) 1) 1
1 - AZ (inNa)+"*" = -)\EFOO + > Frf )An <a)+21—!ZFrfz) Ay <a>+---} (16)
n n

(G) (o)

Equation (16) gives the value of A . Since u'<< 1 and F < F, imply

|aZ GnNa) << 1

1> M al @] <<
n

-n

(o)

(o]

| > F_(i) Al @l << |
n



we get

}\Fcfo)=[l-A02(inNa)+"3/1+ ()ZF Ap “_(B)ZF Arzx(a””}
0

1 1 2
5 2 Py @-al GnNe - —o 5 5@ A% )4
n 21Fg, n
Let
)\: A(o)_*_ >\(1)+ A(2)+-~. s (17)
then
W. a5 e (19
= - )
(Foo)) 2 n
>\(2) = __.(_)_{) (1nNa) -———(_)—2 Z F(z) n () (20)
F 21 (F
o
For the normalized field, X o) | 1. When n is any integer except o, the

recurrence relation Eq. (14) gives
(inN){ (1nNa)-—A (inNa)+ - }-{— (1nNa)+——A (inNa) + - }

(1)
= - A\ {Fé°)+ E Fom m(a) -21-,-2 F(2) m( ayte. } (21)
m m

or
9 9 (o) (1) 2
n N2an + E N ng anq * N2 ang *ooe = A {Fn +Z Z Frfl)anz an3
m e m 11,020 03
MM, =M n, +ny +ng =n (22)

The coefficients a, can be evaluated from Eq. (22).  Let,
. o) (1)_*~ ), ... . (23)

an an an an

Then



(o) FI('IO)
: ) (24)
n n2 N2 - XN F(ﬂ
aill) (25)
- A F
(20 1 ) A (2) (o) () ©) ()
i B E )
n“N '—)\FO ny, ng, ng ni,ng
f1mathg T R ny tng =n (26)

The solution for the equilibrium orbit of a charged particle is completed

and summarized in the following:
1. The orbit: R =Ry e and u= > aj e N°.
n

2. R, is defined such that a5 = 0.

3. a, can be evaluated from Egs. (23), (24), (25) and (26).

4, )\ is a dimensionless constant and defined as
) e B0 R0
A = T pc

which can be evaluated from Egs. (17), (18), (19), and (20).

For a given value of By, the ratio R,/p, can be obtained from A .

The relation between kinetic energy and X\ is given’

A 1/2
B, R, = — (T+2TE,)
(e] (o] 0.3Z O

where T is kinetic energy in MeV

EO is rest mass (mo c2) in MeV

By and R, are in kilogauss and centimeters respectively

z is the number of charges in a particle.



II. BETATRON OSCILLATIONS

A. Radial Betatron Oscillation

Radial oscillations obey the same equation as the equilibrium orbit in
Eq. (1). The solution is written in a different form than Eq. (3)
= _ u
R = Req(1+v) = Ry e 1+v) . (27)

The equation of motion is

d @ +v'+vu') _ 1 _ Z inN®©
— = - F.(u+v)e
de '/,'(1 +v)2 4+ (' +v' +vu')? m +V)2 + (' +v' +vu')2 n O

(28)
For linear oscillation, only two terms are needed on the right-hand side of
Eq. (28), i.e.,
_ 1

F, wu+v) = F, (u)+Fn () v+--o . (29)

Equation (28) becomes
. .
v'+Cy = -V Z F () einNe (30)
n .

where

C, = d v u' y'2 v' +v2u u' v' (31)

1 ¢ e = - -
ds ,7/ 1+ u? (1 +u')3/2 1+u?

C, represents a correction term which turns out to be small and is neglected.

Then Eq. (30) becomes

v'+ N v Z Fr|1 (u) einNQ = 0 . . (32)
n

From Appendix A, Egs. (A-13) and (A-11) are

! inNO _ ! inNO
_S_ Fn(u)e = E n-m Em ©

n n, m

F(j+1) A:ll’n (a)
= n____ j =0,1,2, 3, -
J




Substituting into Eq. (32),
1 .
VAN T D E_ N0 o o | (33)

n-m- m
n, m

Equation (33) is similar to the equation

d2
—2v+(E—g(9))v=0 (35)
de
where
g (@) = Z gn e!NO
n#o

This is the Floquet-type equation. It can be solved simply by the

application of the perturbation theory of quantum mechanics. Let an operator

2
d
= - +
Hop _Zde g (9) . (36)

Then Eq. (35) becomes

Hop v = Ev . (37)

H is Hermitian under the condition that

op
€n © " &n
We may consider Hop as a Hermitian operator and E is the eigenvalue of the

eigenfunction v. When v is normalized, the average value of the operator

Hop for the function v is

(H)ave = j \% HOp v de . (38)
If one of the true solutions of Eq. (3) can be expanded in terms of the complete

orthogonal set of eigenfunctions v ,

v = Z b, v, - (39)
n
Substituting into Eq. (37), we multiply on the left by V;' and integrate over

27L . We take advantage of the orthogonal character of v,.'s using the notation

n



. x
Hnm = J Vi Hop v, 48 (40)
and find
% by (Hy -E § ) = 0 . (41)

It is shown in algebra that Eq. (40) will have solutions if the determinant of
coefficients vanishes
det |H , -E§ | = 0. (42)

To determine the eigenvalue E from Eq. (41), we take the approximation that
discards all nondiagonal matrix components H,;, for which n and k are both
different from 0. Then the equations become

by (Hyy - E) + by Hyy = 0 n#0 (43)

2> b H _-b E =0. (44)

n

From Eq. (43),

b 15}
ono_ HO n#0 . (45)
bo E - Hnn

Substituting Eqs. (45) into (44), we have
H -H
E = H + Z ~on "mo (46)
nfo E - Hpp
Substituting Eq. (45) into Eq. (39), the eigenfunction is equal to

H
e Mo wn
nto E-Hnn .

when E ~ H_  , we replace E in the second term of Eq. (46) and Eq. (47) by

Hyo and get the approximation

Hqyp © H
E = H00+ Z "‘—_Hng' (48)
nto Hoo ~ Hnn
Hno
V=VO+Z S Vo - (49)

n#o Hoo - Hnn
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According to Floquet theorem, the solution of Eq. (35) is

i(/+nN)e
v s> bne1(> aNe (50)
n
Comparing with Eq. (39), we have
_ ive )
o - € ,l) by = 1
vy, = by el( +nN)@
We get
-i) +i) 2
H,, - JelgH e 40 = )
op
_ -iD 0 i()+nN)o
Hon = je Hop e de -n -
(51)
-i() +nN)@ +0e
Hno = je Hope de = g,
-i(?+nN)® i(/+nN)e
Hy, - Je Hop © do = (2 +nN)?
Therefore the eigenvalue and eigenfunction are
gh " E.p
nto 2 - (Y +nN)
gn * 8.
2 n n
= P57 -2 Z 2 3
ny1 @N)° -4y (52)
Do i +nN)e
v = e+ Z €n . (53)

nto ”2 - (Y +nN)2

If we use ''smooth' approximation, 1 instead of Eq. (52), we get

\ g,  g-
E = 1)2—22 _r12__2_n_ . (54)
n»1 n" N

If N is an even integer, Eq. (35) becomes Hill's equation. Under the conditions

that
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1. Z#‘_ g, should be absolutely convergent,
nfo

2. E-(1)+nN)2 # 0.

We get®
gin® (Z)) = A© sin” (25 / E ) (55)
and
A =1-22> B &n . (56)
ny1 ?N% - E)E

The determinant A (0) is obtained by the approximation made in Eqs. (43)
and (44). A (0) can be used to study the stability region of the operating points.
To evaluate the numerical values of tunes, we prefer Eq. (52) since it is a better
approximation than Eq. (54).

The radial tune D is '

1
E" E
)\Zm1;+z>\ZZ“ g

nl m n’N -41)r
where
Z o Er;l = F(()l)+Z F(Z)A (a)+ Z F(B) (57)
m n
n—mEn'rl = F;1)+ Z Féz_)m Axln(a)+"' (58)
m
‘n mEH'1 - F(_ln)+% F(nz)m Al @+ . (59)

Including second-order terms, the tune is

(1)

(1) F
2 NAF (1) F A(a) +z)\22 alt . (60)
),

nzl n2N -49

If we take
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(o), (o)
F '/F
(o) _ 1 1 ~ (o) _ n 0
AEN T T A @Ee = (D), o
FJ n°N® - F  [F
then
1 2
‘)2 F(()) 1 Z_ an) . Féo)/Féo) ) Z FI(11) . F(_;)
= o) * +
r Fy, Féo) nto nzN2 - Fél)/Fc(,o) (F(()O))2 nyl nzN2 -4 l>r2

B. Vertical Betatron Oscillation

Vertical oscillations obey the equa’(:ion4

2
4 2 = = (R'"Bg -RB,) (61)
do f R2 + g'2 +,2 P ® g

The field Be and Br are given by the relation
——
vxB =0

For linear terms in z, Bg and Br are

9B B B,z .
By - azgzzlﬁ?agzzz' A S 6, ® (nx e ™ (62)
n
9B 0B, dG, (R) . g
Bt 5.t i3nc Br2 qn o 632

Substitute Egs. (9), (62), and (63) into Eq. (61) and let

7 = Req y (64)
Then
1" . 9 i
y +Coy = - yiz g—% (inN) Fp (u) elrlN _ Z(d%_(i) - F, (u»elnNQ}
n n
(65)
where
C = g" 1 1 ( 12 + |2) 66
2 T g Y- gWIHYTy (66)

C2 represents a correction term which turns out to be small and is neglected.

With the aid of Eqs. (A-5), (A-6), and (A-13), Eq. (65) becomes
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y" +)\YZ Z (iny N)ingN) angng-mEpm - Em + n-m Ep 1PNE - g
nj, Ny, N3
nl +n2+n3 n (67)
Similar to the treatment in radial betatron oscillations, we assume the solution
for Eq. (67) is of the form
i(Z, +nN)e
Z yge ° (68)
n
and the vertical tune is
2 1 1
P2 - -)\{F(()l) > (F2 F(_n)> A} (@) - F(()O)j + (NN = F(_(;) A (@)
n n
P gy, (50 )
e s mm ) (g e ) oo
nz1 n’N°-4/ .
If we take
(o) 1 1 (o) /F(O)
A=N = . Ap(a) =al = ,
F(0) n n 2 N2 _ F(1)/F(0)
then
; D (52 - 5 )p) 5
O (o)Z 2 (1),..(0)
F, nfo n N - F, /Fo
(nN) Z (o) F(o)/F(o) ) , Z Fr(10) ) Flgl) ) F(—%) ) F(-ln)
MO Nz 1) R0) T )2 2 02 .4y 2
o on - Ky o o n 2z n® N7 - // ”

The results in Sections I and II are general. These can be applied to
various accelerators.
sector accelerator.

machine.

An example of this has shown in Appendex B for a spiral

Here we emphasize on the application to an integral structure
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III. INTEGRAL SCALING IN FFAG
Let N and M be the number of spiral sectors and radial cuts respectively
in an integral structure machine. The magnetic field in the median plane of the

structure is periodic in azimuthal angle @ and is expected to be of the form

R
infKlny- -~ N6/ .
G (R)Z €n.m © [ o j elmMQ (70)
n, m
or
GRS a, Re 0 (71)
L
where ,ﬁ
R
G@® = -B (7)) - (72)

P is called the superperiod. It is the greatest common divisor of N and M.
We write

-aN+mM = P (- sn+ rm). (73)
Let

L = -sn+rm ; (74)
s and r are the number of spiral sectors and radial cuts respectively in a
superperiod. It is clear from Eq. (74) that for a given L, there are infinite
pairs of (n, m). If a pair (n, m) satisfies (74) for + L, there will be a pair
(- n, - m) for - L. The magnetic field is expected to be real. This reality

condition leads to the assumption that if n f o, m # o

: -i%
gnm - (@pm - dpm) -1 Gy tepm) - h ¢ nm (75)
+ie
g-n,-m = (gpm - dpm) tilpm tepy) = by e OM (76)
) +HX
gn, -m - tlagy tdam) +ibyy -cpy) = b e -nm (77)
T T (78)

where hnm is real number. For n=0, m## 0
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om - 2om ~ ! Pom (79)

€o,-m - %om TiPom - (80)

For m=0, n#0

€ho = t2no~1c¢ho (81)

€qno = Yo ticy,, - (82)

Forboth n=0, m=20

oo ~ B0 (83)
With the aid of the reality condition, the field can be expressed as the summation
of the following terms:

fay,, G (R) cos n[Kln-I—.R; - NOJ cos mM 6

fban (R) cos n]:k ln.—R - NG] sin m M@
T
0o (84)

fcnm G (R) sinn[Kln ;R; - NGJ cos mM®6
f dyp G (R) sin n[ K In % - N8| sinmMo
where
f =1 when n=0 and m =0
f = 2 when either n =0 or m =0 (85)

f = 4 when n#0 and m# 0
There exists a computer program (MURA F46) which calculates the coefficents
anms Pnms Cnms, and dppy, . The main discussion here is to use these
coefficients to study dynamic problems.

In Eq. (70), we would like to replace r. which is picked for the convenience

o

of the computer program, by R, the average radius of the equilibrium orbit.

R £ inKlnrRa inK 11'11]%6 i(mM - nN)8
Ro) £ Eam® e °

n, m

- By ( (86)
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where
R(;ﬁ
B; = B, (;;) (87)
The coefficient aj in Expression (72) is
i +
aj, (R) = Z gnm Kot (88)
(n, m)L
The sum Z is over all the pairs of (n, m) for a given L.
(n, m)y,
u, = In r—- and u = lni . The function Fyp (u) is
P - u(‘fi+1)z 1nK(uO+u)
(n,m)L (89)
LN N (LU ey
nm .
(n, m);
Therefore
© > p, 0K ~%am) (90)
(n, m)L
(1) Z ®+1+ink) h i(nKuO &) 01)
(n, m)y,
P Z ®&+1+ink?n, o1nkuo ~%am) (92)
(0, m)p,

Take the proposed 500 MeV machine6 for example:

N = 16
M = 72
P =8
r = 9
s = 2
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The pairs of (n, m) for L = 0 are

(=) - (8 (3)

Equations (90), (91), ‘and (92) become

-9
(_2) R (93)

FéO) = a,,+ 2 hgg cos (9 Kuo - 0(92) + .- (94)
2
F(()l) = ®+1)a, + 2[& +1)2 + (9K)2J1/ hg, cos (9 Kuo -0(92 +/39) (95)
(2) _ 2 2 2
F, ' = &+ 1) 8o0 + 2[(% +1) + (9l‘<)Jh92 cos (9 Kuo - 0(92 + 2@9) (96)
where
_ ol R+ 1)
ﬁn = tan nK‘
Equation (18) gives
)\(o) S S 1
F(0) 850 * 2 hgg €08 (9 Kuy - oK gp) + "
o
h
_ 1 92
= % 1-28‘00 cos (9 kuo-0(92)+"' . (97)

The magnetic field is scaled for a finite number of points in the radial direction
and its shape repeats itself nine times (r = 9) in a superperiod. Therefore the
dynamic quantities will be periodic with period of nine in that superperiod. A\
and tunes are periodic functions of R, or energy. For the whole energy range,
their deviations are small. We may consider that the constant parts are due to
the scaling field and the deviations are due to radial cuts in the spiral geometry.

In general, the tunes and A are expressed as follows: First, the constant parts:
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N ai | (98)
00 . ,
o elnko ~nm)
o n, m)y,
a = (99)
. 200 [Lz P2 -+ I)J

= & 2)( 2 2 2 42
2 - (0)2 ff&"' 1)2 - (HK)J(anm + bpm + Cnm +‘dnm)
ﬂr &+ )+ (N )nézromz=o (- Sn+rm)2/P2-('?<+1) \

. exceptboth n=0, m=o0

' ' 2/ .2 2 2 \ ¥
+(}£o>)2§ Z"’ t(&+ 12+ k(a2 +02, + o2m + d2m) 100)
n=o0o m=0 (_ Sn+rm)2P2-4:/);2
except bothn=0, m=o0

2 . o L(o) 2 S < flen+ rm)2 P’ (ar%m+br%m+cr%m+dr?m
P = 1-tk+1)  + (X I ‘
n=o0o m=0 (- Sn+rm) P "(k+1)

except both n =0, m = o

o0 oo
A 2 2 2 2 2
) (>£O))2.Z Z t @+ k- k) J(aIgHanm+cnm+dnm>
n=om-=o . (-sn+rm) P —(aﬁ+1)
except both n=0, m=o0

(101)

= 29 2 2
+()£o))22 Z f@ : +(nK)J(anm+bnm+cnm+dnm)
_ 2 52 2
n=om=o0 (- sn +rm)” P —41)2
except both n =0, m = o0

where f is defined in Expression (85).

3k 1 1 .
In Z F( ). F( ) , if a pair (n, m) for + L, there will be a pair (- n, - m)
T U -L

for - L, and a pair (n, - m) for L', there will be a pair (- n, m) for - L.

Therefore, apy, dp,, and by, chm are canceled out. The summation is

. 2 2 2
simply equal to E _S_ f [(& +1)2 - (nk) J(anm +bym + cr?m + drzlm)
n=o m=o
except bothn =0, m =o
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Second, the maximum values of the deviations:

2 h
A)\ (102)
aoo
2 2@ +1)h
Al)r - . rs
250 5
. Z hym Bngmg @+ 0?0007 E&ﬂ) +n K)j (&1’ k)’j]
2
+ P
(nym1)#(ng, ) (- omy vy’ (103)

2 2 ¢k + 1)h,g
AI) s 0= N ) + hnlml hnzmz
00 (n ml) (nzmz)

Zhnlml hngmy f@ +(n1;<)j$'[k +(ng K)ZJ +(L(k+1) +(n1K)2J +[k+1) +(n2KU)J
(- snq +rm1) p2

()7 (n, m, ) (104)

where the pairs (nl, ml) and (nz, mz) correspond to a given L. The last
term in Eqgs. (103) and (104) are much larger than the first or second term.

The relation of the pairs (ny, mj) and (ny, mz) is

(nz ) _ (nl ) + g (;) where 1 is any integer .

The harmonics n of the original spiral field should be taken larger than r.

Cole and Morton7

neglected all the harmonics n higher than —12: . The terms
in Egs. (103) and (104) disappear automatically. This will explain why they
get the conclusion that ,r and ﬂz are independent of energy. It is found
that the pairs (-1, 0) and (r - 1, s) yield the largest deviations. If we only

take account of the interaction of pairs (-1, 0) and (r - 1, s), we get

A/)1~2‘-’~’—‘Vz222 -1,0 Proy, {@J’” +KZJ [+ 0+ - 12 ZJZ
+[(2<+1) +,_(r -2r+2)KJ/[(2P) -(k+1)]



The maximum values of deviations are

AVr ,/1):+AI)3 T Yy
AY, - pErap? - )

The actual range of tunes are

1]

1

radial, )+ A

vertical, pz + AQZ .

There is a program, MURA F46, which calculates the magnetic field

coefficients a,,, b c

nm’ “nm?

these coefficients are shown in Table I.

and dnm .

- API‘Z
2 r
v Apzz

v
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(105)

(106)

(107)
(108)

For the proposed 500 MeV injector,

Equations (100) and (101) have been

programmed by Mr. Francis Murphy for the IBM 704 computer (MURA F147).

The program, MURA F147, uses the magnetic field coefficients in Table 1

and yields the constant part of tunes:

%

r

Y,

3.228

2.370

and from Eqgs. (105) and (106) the maximum values of the deviations are

Apr < 0.004

Aa)) < 0.006



TABLE I, MEDIAN PLANE COEFFICIENTS FOR THE PROPOSED 500 MEV INJECTOR
m 0 1 2 3 4 5] 6 7 8 9 10

0 1.19228| -0.41445 |-0.02562 |~0.00160 [-0.00599 | 0.00267 | 0.00017 [-0.00028 | 0.00003 |-0.00005 | 0.00001

1 -0.20740| 0.09537 | 0.00805 | 0.00046 | 0.00214 [-0.00013 {-0.00006 | 0.00014 [-0.00001 | 0.00002 [-0.00000
anm| 2 -0.07438| 0.03517 | 0.00164 | 0.00062 | 0.00101 |~0.00045 |[-0.00002 | 0.00002 |-0.00001 | 0.00002 {-0.00000

3 -0.00345] 0.00140 | 0.00008 |-0.00001 | 0.00001 |- 0.00010 |-0.00001 (-0.00001 |-0.00000 {-0.00001 { O0.00000

4. 0.00816| -0.00433 [-0.00004 |~0.00020 (-0,00022 | 0.00019 | 0.00000 [-0.00001 | 0.00000 |-0.00001 | 0.00000

0 0 0 0 0 0 0 0 0 0 0 0

1 0.02613(-0.00846 | 0.00116 [~0,.00063 |-0.00034 [ 0.00008 |{-0.00002 | 0.00001 | 0.00000 |-0.00000 |-0.00000
bm| 2 0.00126| 0.00180 | 0.00248 (-0.00082 |-0.00022 |-0.00003 |-0.00004 | 0.00003 | 0.00000 | 0.00000 | 0.00000

3 -0.00126| 0.00103 | 0.00036 [~0.00005 | 0.00004 [-0.00002 |-0.00000 |-0.00000 | 0.00000 | 0.00000 | 0.00000

4 -0.00028| -0.00014 |-0.00029 | 0.00024 | 0.00006 | 0.00000{ 0.00002 |-0.00002 {-0.00000 [ 0.00000 (-0.00000

0 0 -0.14867 |[-0,08327 | 0.02047 [ 0.00401 | 0.00012 | 0.00065 [-0.00052 |~0.00005 [ 0.00006 |-0.00002

1 0 0.03570 | 0,02445]-0,00746 {-0.00159 |-0,00002 |-0.00026 | 0.00022 | 0.00001 |-0.00003 | 0.00001
Cnm| 2 0 0.01616 | 0.00917 [-0.00325 |-0.00047 [-0.00007 [-0.00012 | 0.00009 | 0.00001 |-0.00001 | 0.00000

3 0 0.00068 | 0,00042( 0.00021 | 0.00002 (-0.00000] 0.00000 (-0.,00003 | 0.00000 | 0.00000 [-0.00000

4 0 -0.00229 |-0,00108| 0.00083 | 0.00008 | 0.00002 { 0.00004 |-0,00004 [-0.00000 | 0.00000 | 0.00000

0 0 0 0 0 0 0 0 0 0 0 0

1 0 -0.00648 |-0,00258 | 0.00058 |-0.00010 | 0.00010 | 0.00002 |-0.00003 |-0.00000 |-0.00000 [-0.00000
A | 2 0 -0.00462 |-0.00058 |[-0,00011 |-0.00037 | 0.00011 | 0.00001 |-0.00001 | 0.00000 {-0,00000 [-0.00000

3 0 -0.00022 | 0.00009 (-0.00015 [-0.00005 |-0.00001 (-0,00000 | O.00001 |-0,00000 |-0.00000 |~0.00000

4 0 0.00073 ; 0.00006 | 0,00001 | 0.00008 {~-0.00006 |-0.00001 | 0.00000 {-0.00000 | 0.00000 |-0,00000

_'[z...
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APPENDIX A
(1) If a complex function F (u) has a Taylor expansion in powers of u,
1 " u2 1"t u3
Fp (u) = Fn(o)+Fn(o)u+Fn(o)—z—!+Fn (o)§T+--- . (A-1)

We use the notation

1 1 "
O -5 o), B = k0, B - F ), . (A-2)
Equation (A-1) becomes
Fl) J ,
F, (u) = Z——n——u— i=0,1,2, 3 -+ . (A-3)

- ]
i
When u is a periodic function of 9, it can be expressed as a Fourier

series

q = Z 2, einNG ] (A-4)

Inserting this into Eq. (A-3) yields

F, () = E L E, NS (A-5)
m
where G _
Fl) Ad (a)
nEm - Z —n'— ]l = 01:1: 2, 3, - (A'G)
j 3
i
A () = Z Z Z a1 2mgy am:] (A-7)
ml m2 mJ
mj tmg + m; = m
o 1 ifm=20
Am - { . (A-8)
0 ifm#0

All sums whose limits are not given are to be taken to extend from

-0 toeo , as, for example, the sums over n in Eq. (A-4), m in Eq. (A-5)

- ms: in Eq. (A-7). The derivative with respect to u of

and ml, m j

o
Eq. (A-1)is



d
du
(j+1) ]
_ n u
T
i1
! imN©
= Z n Em e
m
where G41)
J J
' Fn Am (a)
R T

J

Let us consider F, (u) as the coefficient of a Fourier series, then

n

! 1] th 2
L Fy () = Fpy ) +F @u+Fy (a)gr+--

j = 0, 1, 2’ 3, oo

j = 0, 1, 2, 3‘, e e

Z F, (w) e1nN9 - Z ( Z- o Em e1mN€) ) einNG
n m

: inNo
Z n-m Em e

n, m
Similarly,
d inN©
S ™ s
n
n du n

n, m
(2). In Eq. (6), @ is defined as
e - tan™ ! u'
Under the assumption that u' << 1,

tan ~u' = u'—%—u'3+%u'5+"'

u' = du | Z (inNap) einNQ
n

Let

I

- T
+3)/2 i
T, - Z (- 1)(4’ )/ A, (inNa)
¥

! 5 . A
( Z . Em elmNQ) e1nN9
m

Q‘_‘
1

1, 3, 5, 7, »*-
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(A-9)

(A-10)

(A-11)

(A-12)

(A-13)

(A-14)

(A-15)

(A-16)

(A-17)
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alanNe) =2 3 o T fingNan) GngNagy) o GnyNan,)
Ny T )

ng oyt n; =n (A-18)
Then Eq. (A-14) becomes
O =tan "l wa > T, N0 | (A-19)
n
The assumption u' << 1 implies that § < < 1. Therefore
@3 @5
sin @® = @ - + +oeen (A-20)
3! 51
g° g*
= - + 4 e -
cos @ 1 > ] 1 (A-21)
Inserting Eq. (A-19) into Egs. (A-20) and (A-21),
sin @ = Z Sn emNO (A-22)
n .
coSs @ = Z Cy emNG (A-23)
n
where _
- s
(¢+3)/2 A (T) -
- - n = -
S, Z (- 1) e Bl F- 1,3, 5 (A-24)
d..
2 A% (D
C, = ? (- 1) — 7 j:= 0, 2, 4, =+- . (A-25)
The function Ay, (T) is very complicated, the first few terms are listed
below:
o 1 if n=o0
A, (T) = { (A-26)
0 if n#0
3 5
Al(T) = T, = A} (inNa) - A (inNa) + ¢ A_ (inNa)+ -+ (A-27)
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2
Ay (D =D > Tny To
n) Ny

n1 + nz =n

F 7002 N I

Z Z Z_ Z = 1; 7 Anl (inNa) Anz (inNa)
ny Ny J‘l d’z 2

n1+n2-n

J’l, 3'2 =1, 3, 5,

1 1.1 .1 3 3 1..2,3 .3
Z Z [(2 Anl Anz)' '§ (Anl An2 + Anl Anz) + 'g (Anl Anz) + e
nl nz

~ 2A°(nNa) (A-28)
Ay (Ty) = 2 2 2 Tny Tny Tng

nj; ng ng
n1+n2+n3=n

(T HR+2 | % T

(- 1) 2
Z = = = AL, (inNa) Ap, (inNa) A, (inNa)
r% ;1 s h G4 1 2 "3

- 1 1 1
—— Z. . .Z 3 Anl Anz An3
n; ng

3
~ 3 A, (inNa) (A-29)
2 A (T)
CO = Z(-l) T‘| 3:= 0: 2: 4: e
= Af(T)-il,—Ao (T)+—1"— Ay (T)+-
= 1- A02 (inNa) + §T A0 (inNa)+--- (A-30)
c, = A (T)-—A (T)+——A (T) +

= (1nNa) + i‘ A (inNa) + - (A-31)



-26 -

= 0
(¥+3)/2 —
(-1) I3 -
' — = , 3,5, "
> = Al (1) F= 1
_oal 1 ,3 1 4,9
= An (T)"’B—"'An (T)‘I'g"—An (T)+"‘
3

- {a4 (inNa)—%Ai(inNa)+%Ag(inNa)+"°} -‘,;Q’—!An (inNa)+ """

3
~ Al (inNa)- 2 A; (inNa)+--- . (A-32)
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APPENDIX B

The treatments in Sections I and II are general and applicable to most
accelerators as long as the magnetic field in the median plane can be expressed
as By, = % G, (R) einNg. Even the direct application of their results does not
appear familiar. For the purpose of comparison, a spiral sector accelerator is
taken as an example. We start with a brief derivation and show that the approximate
differential -equations for the equilibrium orbit and tunes are the same as in
References 1 and 8. The difference is a matter of the approximation to obtain
the tunes. It is evident after appropriate rearrangement of terms that the tunes
which are obtained from an application of quantum perturbation theory are the
same as those of the "'smooth approximation. '
(1) The Orbit

The magnetic field in the median plane of a spiral sector accelerator is

B, = - B, (%—)k’:l +1 cos (N6 - K1n §)]. | (B-1)

o o}

The equation of the motion, Eq. (1), after expanding in power series of u,
becomes

12 = )\{1+(k+1)u+fCOSNG+(k+1)fucosNG

1
1 =
1-u 5 U
y/a 2 7z
+ f K u cos (N© -5 )+ (k+1)fKu” cos (NO -2—)
2
- £ K2 u? cos No + (k_;i u? cos NG} . (B-2)

Equation (B-2) can be solved by successive approximations. When the power
of u increases, its numerical value is expected to decrease rapidly. The first
term on the right-hand side of Eq. (B-2) gives the zero-order approxima tion of

the average radius of the equilibrium orbit, R, ; the second and third terms, the

amplitudes of oscillatiori, an, around Rp. The second term also gives the zero-
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order of the radial tune, /) the fourth and fifth terms, the first-order of I>r ;

>
the seventh and ninth terms, the second order of I)r .

For the equilibrium orbit, the significant terms appear below:

1-u' = )\{1+(k+1)u+fKucos(N9-2L)+fcosN9j . (B-3)
If the solution is of the form
u = Z an omNO s (B-4)
n#o

the contribution of the term f K u cos (N@ - —725) to the zero-harmonic vanishes.

Therefore, we get

A = 1 (B'S)
and for the first harmonic
al = a—l f/z (B‘G)
N2 - (& + 1)

Equations (18) and (24) are equivalent to Egs. (B-5) and (B-6). The equilibrium
orbit is approximately
— cos N6) (B-7)
N~ - (k+1)

R = R, (1+

which is in agreement with References 1 and 8.
(2) The Tunes
The equations of oscillating particles in radial and vertical motion are

v"+v{(k+1)+(k+1)fcosN9+Kfcos (NG-%)+2(k+1)Kfucos (NQ-ZEZ—)

—KzfucosN9+(k+l)zfucosN9+(k+1)2u} = 0 (B-8)
y'+y {u'/{N2+(12-I)2 cos (NO - B) -k + £ [K® - k (s + 1)] u cos N@
—f[K cos (NO ——27['—)+kcos NQJ = 0 (B-9)

_ -1 2N
where [5 = {an .
f
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Substituting u = 2 aj cos NO into Egs. (B-8) and (B-9), we get
vty {(k+ 1) - a4 f[K2 -k + 1)2) + f [K cos (N® —?W;j+ (k + 1) cos N©

- aj £ K? cos 2 Nej = 0 (B-10)

y”+y{a1fN2 -k+a1f|;K2 -k(k+lj —f[Kcos (N©O -%—)+kcosN9j

+ay £ K cosZNG} =0 . (B-11)
In Eq. (B-11), the Kerst focusing term is mainly aj f K2 which is desired to
overcome the defocusing term - k, due to the rise of the magnetic field with
increasing radius. It is evident that when K is larger than N, the Thomas
focusing, aj f Nz, becomes smaller than the Kerst focusing. When K is much
larger than the field index, k, we may neglect a; f (k + 1)2, (k + 1) cos N6,
aj fk (k +1), k cos N6. Then Egs. (B-10) and (B-11) are the same as Egs. (8.8)

and (8.9) in Reference 1. (There is 7T/2 difference in defining the 6-coordinate. )

By the application of quantum perturbation theory, the radial and vertical

tunes are ag f K2 2
) 2 2 N o £z K2+ (k+1)2 (—5—
Zos Gt -apt[KP - e e (52 EERAE oy 5 (B-12)
\ N -4 D3 @N?Z -4l
2
a]fK
2 2 2 £.2 K2 + k2 = ?
Dz=a1fN -k+a1f[K —k(k+1ﬂ+2x(g)2——— + 2 x 5 5
N% -4 ) eN)? -4/
Z A
(B-13)
or
2 2 2 2 2 2 o E k)
by = wrn LK (k+1)+£2—§2+;k;%)+2“22) RPN 2
N® - (k + 1) 40y [eNf -4 )N - G+ 1)
(B-14)
2 9 2 2. .2 2 x (1)
Dz=_k+f2 N L2 K2 -k (k+1) £2 KT+ k* Z
2 B
§ TN+ NPk 2 NZoap) BzN)z-ALDZZJE\Iz—(kﬂj"

(B-15)
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These are the same expression as (60) and (69) in Section II. If we assume that

2 2
k + 1 4 Dy 4D,

< <
2 << 1, ~ 1 and 5

<< 1,

the tunes can be rearranged in power series of N_z;

2 2 4
9 k+1)2 3 &+1)K:2 1 K }
= (k+1)+f{—-—-——-——+————+——+o-- (B-15)
K2 2 2 4
2 251 5 k4 K 1 K
= k+f% 12+ — +2 + o Tttt i (B-16)
% {2 N2 2 n* 386

The last two terms in Egs. (B-15) and (B-16) are obtained by assuming that

) f ~s (k + 1) and iﬁ)) zz A k. In Reference 1, Eq. (13.1) is only the first term

of Eq. (B-15) and Eq. (13, 2)is the first three terms of Eq. (B-16). For large N,
we may say that the radial tune, 1) P’ is practically independent of the variation of
the flutter, f, and spiral parameter, K. However, the tunes of vertical motion,

Dz’ is strongly dependent of the f and K.
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