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ABSTRACT 

A method of developing algorisms for a general second-order differential 

equation of the elliptic type is given. Application is made to the development 

of algorisms for an FFAG magnetostatic guide field. Algorism modifications 

are found for points near a two-dimensional edge of ideal iron that removes 

the analytical difficulty occasioned by the presence of infinite fields on the 

edge. 
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INTRODUCTION 

This report contains a general description of the method of con­

structing algorisms suitable for the iterative calculation of a general three-

dimensional Poisson equation. An application is made in finding the algorisms 

for a three-dimensional magnetostatic field in a coordinate system suitable 

for an FFAG guide field. The results for the FFAG field are available in 

various MURA reports but the general development is believed to be new. 

II. ALGORISM FORMATION 

The general problem of finding a suitable algorism to be used in the 

solution of a second-order partial differential equation by an iterative or 

relaxation process may be stated as follows. Suppose it is desired to find 

a solution of the linear partial differential equation 

~(U) = G-, (1) 

where 

33 d\J u (2)J(T!):? $ Al.i~x. +L:
3 Bik + CU. 

L:/ 11=1 "J l:JI' t 

The functions Bi , C, and G are given functions of position and Aij isAij , 

assumed to be symmetrical (Aij = Aji). In general a mesh is set up such that 

(3)AX- ==h·I"
I. I." ~ 

where Ii are pure integer numbers. Analgorism will have been found if it is 

possible to find a set of weights (W) and a linear operator tJ"such that 

(4) 

In particular we shall restrict the weights to the neighboring points sur'~ 

rounding the standard point (0, 0, 0). Thus. in Eq. (4) 11, 12 and 13 may 
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have the values + I, O. In Eq. (3), however, since Xl, may occur in the given 

coefficients, Ii may have any integer value. 

A Taylor series expansion of VI: I I about the standard point 
9 ~ :J 

(0, 0, 0) is carried out to the desired degree of approximation 

It is understood that V, d U , etc. are to be calculated at the standard 
d X, 

point (0, 0, 0). 

Next, an operator ff is formed as follows 

3 d 3 3 A ~'"tJ = ~ + 2 ~ t ;:. + 2. 2: i ~ dx. ~ ~, ~ - - - . (6)
I. so II Jt, i!. l ~o .!l:t g ~ J. 

where A~~ is symmetrical ( ~i~:::: ~J L)' From Eqs. (2) and (6), it is found 

that 
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Multiplication of Eq. (5) by WI,I#.I;, summing over 11. 1 1 , and using2, 
3

Eq. (4) yields the following equations for the moments of fA.) 
I:.I".I 3 

(8) 

(10) 

(11) 

(12) 

where (JJ is the permutation operator. On the left-hand side. use of the 

permutation operator results in multiplication by the binomial coefficient 

corresponding to the complexion. For example. in Eq. (12) (p gives 6 

for the h 1h 1h 2h complexion. On the right-hand side (p results in2 

summing all terms that lead to the same derivative of "U . 

There is one equation in Eq. (8). three equations in Eq. (9). six 

equations in Eq. (10). ten equations in Eq. (11) and fifteen equations in 

Eq. (12) yielding in all 35 independent moment relations up through the 
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fourth -order derivatives. For 11, 12 and 13 ranging through + 1> 0 there 

are 27 weights W x•I~I3 There is one A • three ~ i.' and six ),i ~ 

required to produce a resultant operator (/J- up through the fourth deriva~ 

tives. Thus there are 37 unknowns - too many for a unique solution. 

Since the weights are relative, a solution may be obtained if 36 unknowns 

are to be determined by 35 equations. Thus one weight or ).. -coefficient must 

be chosen arbitrarily. The question as to the best choice for this auxiliary 

relation is not investigated, but presumably one corner point weight might 

be set equal to zero or one of the At" coefficients representing a derivative 

that has a small Aij coefficient might be set equal to z.ero. The best practical> 

procedure can only be determined when the actual operator J is known since 

many symmetries may then be in evidence. 

III. ALGORISMS FOR FFAG MAGNETOSTATICS 

A. EXAMPLE 

As an example of the general procedure outlined in Section II, consider 

the potential problem that results from the use of the following differential 

1 
equation. 

(l3) 

where a, b. c, e, f, and g are constants. 

B. SECOND-ORDER ALGOFUSMS 

Initially, consider only terms up through the second-order derivatives 

in Eq. (5). To be consistent with this approximatioE, the operator C! must 
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be taken as 

Comparing Eq. (13) with Eq. (2) one finds 

(14) 

\A =-e"f
,'­ J.. ,) 

A.t.3 
=0 

(15) 

Letting 

13, -::. 0 

A 3 '3::' 

13 '= 
i3 

C 

0 C ':200 

I 
I 
~I I ). =J* I = Ka (16) 

one has for Eqs. (8), (9). and (10) 

(17) 

n~ r Wx;rJ<:: 0 (18) 

.i ~ J WJ:;r K = ~ ~ ~ (19) 

~ h~~ r WISK -::::: ~ 

1. .l"Z ,rJ.WISK -:::. ~ (a.. + b to)..)
J.. 

~ P2..£ K'" kJzs~:= \. C 

h.2 ~ IJ W~rK == ~ e~ 

.1.p~ JK WIJK = 0 

h p ~ I K W:XSK -::::: ~ ~ 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 
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At this stage there are 27 independent (JJrSI< and one A or 28 unknowns 

with only 10 moment equations given by Eqs. (17) ~ (26). To obtain a solution 

one notices that the following relations are consistent with the symmetries in 

Eq. (13). 

W'oo = ~'oo (27) 

(28) 

(29) 

tc.J
-/(JI (30) 

(31) 

w".:: U{,-, - W,_II - iU'_I_1 =. 0 (32) 

~III = _ ::: "!-,-tt -= ~/-/_I -= 0 (33)UL II / 

These restrictions on w.r.rl(reduce Eqs. (18), (20), and (25) to identities. 

Thus, there are seven independent moment relations and eight independent 

and ~ ). 

This permits a solution for the weights in terms of A . Thus 

J. o o 

o ~ -1 0 o 0 (» ! Of) ~~ ~ 

o 0 lJJ()IO ~ 

o o 0 " W()_IO A(a.+b?) (34) 

o 0 ro001 :he 

o o o ~hl 0 WilD ±Aecs 
o o o o o o ;lhp W, OJ l~f 
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Equation (34) may be solved to obtain 

~f }.e~ ACW, 0/ -= £l-hr - W"O = ~hJ 
W 

001 
,=­

/0'" 

A A ~4Jljww
'OO 

= -ha- 0'0 
- .t2. (a. -+ b4l) + 

~.l 

These results are seen to be identical with that presented in MURA-591 after 

identifying a. b. c. etc. 

C. IMPROVED ACCURACY FOR ALGORISMS 

If it is true, as it is in the case of the FFAG magnetostatic problem, 

that the principal contribution to Eq. (13) consists of the diagonal second-

order derivatives, then an improved algorism for Eq. (13) may be obtained 

by first obtaining an algorism for the operator 

where the quadratic term in y in the coefficients is also dropped. The 

improvement will consist in finding an algorism for Eq. (36) good to the 

fourth order in the Taylor series of Eq. (5). Comparison of this improved 

algorism with that obtained in Eq. (35) will then permit the effect of the 

smaller terms that were dropped to be again added to second order. 

For Eq. (36) 
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A = 0
13 

A,.a 00::=. 

(37) 

c -::::; _0 

To be consistent with the operator J , let the operator 

(38) 

Again making the substitutions of Eq. (16), one has for Eqs. (8) - (12) 

(39) 

(40) 

t..l~2: cr1W:rSK -= }. GL (41) 

±r.t,Z: Ktl 
WI3K -= ~ C (42) 

4t... hJt 2 1 lJ).xcfl< :::: ~ Ii (43) 

J.. ...e"'~ JIf' 4Jz~,-, = ~.U, ClJ (44)'-'to "' 

£'1+- f't~ K~Wr;n< = A (45)a3 c 

1~ h~j12 I J'" UlJ:J"1( -= ~ II a.. -to }."'.:l 
(46) 

~ .l..'-f2. 1 J1. t<-WJ: 1"1< :::: A"", C + ),J3 tL 
(47) 

(48) 
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The equations that reduce to identities under the following relations have been 

omitted. 

_w w _ tv W - tV 
~GO ()iO f)-/o Oul - 00-1 (49) 

-= W - (,,() tv (50)W IIO -'-I f) I-If) - ._/ j () 

W ,D, ::. tV - tu :: W (51 ) 
-, 0-1 I (J-I -10' 

- tv (52)W(m - W - WO_IIC -1-1 0'-1 

Will - fA)
11-1 - W,_II - tu

1-/-1 
=:. 0 (53) 

tv .. W-/1-/ = "d.'-I J -= lI.J
-/-1-/ - 0 

• (54)-II'� 

These relations are consistent with the symmetries permitted by the operator 

in Eq. (36). There are thus seven independent weights tlJ and four ). -values. 

Thus the ten equations, Eqs. (39) - (48) admit of a solution for the weights 

in terms of, say, A . Thus 

f ~ "­ 1. ,. * tI­ 0 0 0 W
000 

0 1 

0 h~ 0 0 ~ h'" 0 J.h" 0 0 0 Wj()o ~ 

0 0 l!,"­ " J...ll. J.l'­ " 0 0 0 {,(JoIO A~ 

0 0 0 r:t 0 J.. f J..pJ. <> 0 0 LcJ00' AC 
" 

1. hit-al o 0 t hIf­ 0 ~ hq. -{ (} 0 ., wilO 
() 

0 0 .l.l'f
1.2­ " .!.llf-G' 1-f , 0 () -tL 0 wOh " 

0 0 0 1.. ~ If­
,'­ 0 J r lt r-pLf­ 0 " -C 

WI () l " 
0 0 <> " h1.ff 0 0 .-a.. -I (J ~1I 0 

0 0 0 0 0 .1}.,'J. () " -c -tl A."'.t 
0 

0 0 0 0 " 0 h~flJ.. -c 0 -I 133 CJ 55) 
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The solution of Eq. (55) yields 

~I\ '= J~ h'"X (56) 

A.ll:t= }~ J,'- ~ (57) 

~3J ~ Ii pJ. A (58) 

WilD :: w :::; tv W 
-1-10 1-10 - -I'D� (59) 

w = W - W _ UI _� \1. (£. + tt \ 
°Il 0-'-' - 01-1 - """C-II - '''' f'- .l'-j A� (60) 

(61 ) 

W� :II lU _ (.! f.. _ ~ __1_\ ~ 
00' 00-1 - 3 1'''' '.1'" , h"'J (62) 

(63) 

(64) 

(65) 

The operator of Eq. (36) treated to the approximation of Section II B 

gives 
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lD - W ::::.
110 - -'-10 W,_/~ = W - 0 (66)

-110 

W -=: tV =: () (67)
OII t:J_I_' WO,-; - We_II ­

(68) 
W'D' =tv-10-1 = W, "-1 :::: W :::: 0-10/ 

(69)w ~ W = 
40' OC!-I 

(70)-= W0-10 

(71)tv -::. 
-/dO 

(72) 

Subtraction of the weights in Eqs. (66) ~ (72) from the weights in Eq. (35) gives 

the second-order correction weights. 

At,) -=AW -.:::-AteJ -::::-AW 
liD -1-10 1-10 -110 (73) 

o (74) 

(75) 

A tv =.A tvA" ,=:' 0 (76 )
Clal ...... ­

~b'J1. + ~1ljAtJ --OjO (77).i. :l ,,~ 

~b,l \~ tt 
(78)-1,"- J...t 

(79) 

(80) 
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D. COMPOSITE SYSTEM OF ALGOIUSMS 

Adding the corrections of Eqs. (73) - (80) to the weights in Eqs. (59) - (65) 

gives, after letting~ 

\~ ~11 (81 ) 
'+ 

r= J (82)
h 

S = 1. (83) 
r 

(84) 

(85) 

(86) 

w - tv - ..L c sJ.. - ~ - 1. r:t (87)eel 00-1 - ).. f 3' 

(88) 

J.. __ II, (,n + ....l.) _ 3,:e 't 
W J _ = ~IIO ""'-, '- oJ (89)

IO 

W"'I' ::: = W",",1-1 =. a-JI :.:: f'r• (el. +c S.'l.) (90)fA.) fA)... 0-1-1 

(91 ) 

(92) 

(93) 

I. • __ f.' J. I - W - 0 (94) 
.....-111 - ~1I-1 ::: ~/-II - -1-1-1­

(95) 
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Since convergence difficulties are experienced when any of the weights 

except WOOl> take on negative values. it is important to determine the 

allowed values of rand s for positive weights. To estimate the range the 

small effects due to the presence of y and y2 terms may be neglected. Thus 

for positive weights 

a.1. ...!.. _ c. s"" 0- ) (96 ) ).. S' f 

let ..!. r 1 .i.e S2.. > ()
]:. (97)S- f 

~ c s,." - !!:. - L r~ >D
J.. go ).. (98) 

In particular. if 

r = I C =: I (99) 

then 

I < S:t < 3 
~ (100) 

is the condition on s. 

If s is chosen to be unity indicating that one expects the z-variations 

of the potential to be as strong as the x- and y-variations, the above set of 

weights is an appropriate set. 

On the other hand. as sometimes occurs. if one expects a weak 

z-variation, the mesh spacing p may be chosen larger. If, for example. 

S '::::: ~ , then the condition of Eq. (100) is not met. In this case one takes 

advantage of the weak z-variation to reduce the problem locally to a two-

dimensional problem. This may be done by summing the weights over the 

z-index. Thus 
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tAJ -~ +w +4,)I ()� - / D-I 10 () I () ; (101) 

(102) 

(103) 

W - iN + t.eJ� I ( ") 3' ~ 3.is0-1 - 0-1-1 "-If) + WO _II ::: t litt - r +~ 10 ~ - t J 
(104) 

3re+ 
It;,� (l05) 

(106) 

_� .L (Gl + r"') _3 re "1 (107) 
" Ie; ..,) 

Gc!-n '= tv /1-1 + tA!.1J () + "LI/; - .L (a., + 1"""'\ - ~ £.{� (108) 
J~ ) Ie v 

,-�W",o :: - tAJ ,- W - tu .::::' 1:: (rL + "..:l) +~ b q ~ (109) 
" 00- (JOC "0,..,.� ,., ~ 

For positive weights the condition now becomes 

..L 4J.( r 1. <d t:i.JJ� (110)0­

which is easily met for r -.A a ~ 1. 

The algorisms are thus used as follows. It is assumed that the x- and 

y~variations of the potential U are equally strong. This suggests that the 

unit meshes in these directions be chosen about equal J 1. e.. h~...t or 

r V" \ • If one expects that the z-variation of the potential lJ is about as 

strong. then one must use Eqs. (84) - (95) for the algorisms with p 'VOl 1, 

or S "" l . On the other hand. if a region of weak variation of the potential 
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U with z is expected, the iteration time can be decreased without appreciable 

loss of accuracy by increasing the unit mesh distance in the z-direction, say 

for example r''''''' 3.l or S """ -} . In this instance, the use of the algorisms 

in Eqs. (84) - (95) leads to some negative weights. This seems to lead to non­

convergent iterative processes. 2 However, the use of algorisms in Eqs. (101) _ 

(109) is consistent with a weak z~variation of the potential 

E. INHOMOGENEOUS ALGORISMS 

The final weight system which may be utilized in an iterative solution of 

Eq. (1) is given by Eq. (5). After substituting for J(lI) from Eqo (1), one 

has 

(111) 

In the example of Section III A, the weights W z n< have been determined to 

the desired approximation. In addition, the A -coefficients of the operator 

tJ have been determined. Thus 

j.[ '- ,1.t '- d2.. I I :t ;) 1. ] CJ =~..E I + .'- h ~X'- + ,'-~ ~~,., + Ii. P )2~ • (112) 

d
Notice that the term in d'j is missing. This is due to the assumption that 

it was more important to improve the accuracy of the second-order terms. 

Since G is a given function at the (0, 0, 0) or standard point, the inhomogeneous 

algorism becomes 

(113) 

For magnetostatics, the inhomogeneous contribution is generally a small 

effect since practical current distributions tend to have a uniform density. 
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F. SURFACE ALGORISMS 

3 
Magnetostatic fields differ from electrostatic fields in that a supplementary 

but known term must be added to the gradient of the potential 1J . The supple~ 

mentary term exists.in the regions of current. Therefore. as one passes from 

air to current regions. surface layer discontinuities in the potential U are 

required to take into account the discontinuity in the supplementary term. 

These discontinuities, which are of both the single layer and double layer type, 

are responsible for the major contribution to the source of the potential U 

The lllhomogeneous term represented by G leads to a much smaller source 

contribution. 

As an example. suppose the interface between the air region and the cur­

rent carrying region occurs on a y = constant surface. Continuity of the normal 

~ ....a... 
component of H and the tangential components of H (excluding the case of cur­

rent sheets) yields. via the discontinuity of the supplementary term. the dis~ 

continuity in the potential (double layer) and the discontinuity in the normal 

derivative of the potential (single layer). Both the single layer and double layer 

densities thus are known as functions of the surface coordinates x and z. 

If A is the potential discontinuity on the surface 

A= W-U J 
(113) 

where W is the potential function within the current carrying region and U 

is the potential function in the air region. In particular, for the example 

chosen I:i (XJz) and A'j (XJZ) are known functions. It then follows that all 

derivatives are known because either they can be found by differentiation of 

A (X) z) and A~ (X"z) or by differentiation and subsequent use of the 

differential equation holding in each region. 
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If all derivatives are known, then a Taylor series expansion can be 

carried out to yield W -lJ for the points (I1, 12, 1
3

) 

(115) 

The central point (0, 0, 0) is understood to reside on the interface. 

After multiplying Eq. (115) by the weights to give 

Z WZ.J:).IJ[W-U]
II I",I.J , 

a term is obtained which must be added to the left-hand side of Eqo (4) in 

order to subtract out VI l' I in the region of the current and replace it 
I ,. 3 

by WZt l').I in this region. Thus if " U..t 1: r" designates the potential 
J ; ).Jo3 

UI I 1 for the air points and ~ I I for the points within the current, 
I ,. 3 I ,. ;, 

Eq. (4) becomes 

(116) 

5
The supplementary terms are called the current values and are given by 

Eq. (115) on any surface for which l1 and its normal derivative existso 

There is at least one other surface on which current values must be 

introduced. This surface is any surface in the air that may be used to cap 

a current carrying coil thereby preventing more than one passage completely 
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through the coil. On this surface a constant potential discontinuity or 

double layer is introduced whose magnitude equals the potential rise H 

passing once around the coil through the interior region. 

The specification of the problem is now complete in the sense that a 

unique solution may be obtained if boundary conditions on the potential are 

given. If a coil does not touch the iron, its potential may be taken as zero 

ideally. If a coil touches the iron, the variation of potential on the iron may 

be found from the corresponding tangential derviatives of ~ 

G. ALGORISMS AT EDGES OF IDEAL IRON 

It is not sufficiently accurate to expand a potential in a Taylor series in 

the neighborhood of a point for which the field becomes infinite such as at the 

edge or corner of the ideal iron. In order to understand the nature of this 

difficulty, only a two-dimensional Laplace equation for which a mesh having 

h =~ or r = l will be used. Also only expansions of the potential up 

through second-order terms will be considered. 

For ideal iron corners the expansion of the magnetostatic potential in 

powers of the radial distance ~ from the corner is 

(117) 

Let (/3) designate the central point and (i, j) the neighboring points Then0 

(118) 

The problem is to find an five-point algorism for which 
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(119) 

The weights are then determined by demanding that Eq. (119) be independent of 

An- Since a five-point algorism is desired, four conditions are needed plus, 

nl~) ll. 
say, the arbitrary choice that c..v"" "T Thus, the conditions are 

(120) 

;z W C/4) 13CA) _ ()
I.oi Loil­ (121)

L.l 

(IJ) (fJ)Z tvl. J :B.·.U, -= 0 (122) 
1.4 

<' W <./0 "'0 '.13) _ (123)
£ (.oj LJ/,J 3 - () ..� 

For a typical corner shown in Fig. 1,� 

(e) 

• 
(eu)

• 
(c) (b) (d) 

It 

Figure 1. Mesh Near Ideal Iron Corner 

13 (~)
the LJ,n 

given by Eq. (118) for central points 13 - t1.J b) c.J d.l e 

are shown in Table I. 
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TABLE 1. TABLE OF 
(fJ )

B.. 
1 J, n 

COEFFICIENTS 

a b c d e 

B 1O,1 0.0000 -0.6300 -0.8660 -0.5207 0.0000 

BOO, 1 -0.8660 -0.8660 ~1. 2599 -0.6300 -0.6300 

B_ 10 1 -1.3747 -1. 2599 -1.6708 -0.8660 -1. 1503 
~ 

BOll, -0.6300 0.0000 -0.8660 0.0000 -0.5207 

BO- 1 1, -1. 2599 -1.3747 -1.6708 -1.1503 -0.8660 

B 1O,2 0.0000 -0.6873 -0.4330 -0.8513 0.0000 

BOO 2
J 

0.4330 -0.4330 0.0000 -0.6873 0.6873 

B_ 10 2 
J 

1. 0911 0.0000 0.6076 -0.4330 1.4620 

B01 2, 0.6873 0.0000 0.4330 0.0000 0.8513 

BO- 1 2, 0.0000 -1. 0911 -0.6076 -1.4620 0.4330 

B lO 3, 0.0000 -2.0000 0.0000 "~4. 0020 0.0000 

BOO 3 
J 

0.0000 0.0000 +2.0000 -2.0000 -2.0000 

B --10,3 0.0000 2.0000 4.0020 0.0000 -4.0020 

B01 ,3 -2.0000 0.0000 0.0000 0.0000 -4.0020 

BO- 1,3 2.0000 0.0000 4.0020 -4.0020 0.0000 

Point a: 

_ L73).O 

_ 0 
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Solution (Point a): 

(AJ/() = ., 91'1­ W
0/ 

= J.}.,c/ o
7 

(123)w-10 = .7'1'" 

Point b: 

o 

Solution (Point b): 

(124) 

Point c: Determinant of coefficients is zero, hence homogeneous form 

for algorism is not suitable. See later 0 

Point d: 

W + W 1- W + WIO -I (J e>J 0 -/ 
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Solution (Point d): 

1.1)'0 = , 9~i'O 

(125) 

Point e: 

Solution (Point e) 

(126)
fA) = i. O'f.J 0

-10 

Point c:� 

Since Eq. (119) cannot be used, try to find weights such that� 

~ IA)L~C\ l{~~) 7 0( A • (127)o 
ij 

The conditions then are that 

(~) (Co)

$: tvj,J 13'.0 -- 0( (128) 
".) 

(C.) (c) 
(29)~ lAJi.l - 013"J I 

~i 

(4-) <.c;} 
:: (}2: ~i.& BiJ.\ (130) 

ii 

(c.) to:.) 
...... 0AJ,j 'Bioi J (131)Z.. 

t..~ 
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From the symmetry of this point. one expects that 4J /.. and , 0; - "'V U ) 

w -= W
"-I -I c) The equations then become 

~ tJ, 0 + ~ fA.J-" o� 

I • 13 ~() tv~o ... J. '3 /I- J (; ~ 0� 

-- f?, 006 (0� 

Solution (Point c): 

tv , 'lIN¥'lfJ :: " Ii'! Yo -­,O (;/ 

tv :=: q 999r> (132)
D-# 

0{ - - .. D3'1~ 

The results in Eqs. (123), (124), (125), (126), and (132) provide an im­

provement in the weight system that would have been obtained usin.g a Taylor 

series expansion ( t.J1li -: 'VOl" tAL ::: w -= J J f.(Jt:;o.:.:c _+ L This leaves
'D eel 

the weights in the neighborhood of a three-dimensional corner to be investigated. 

This problem seems too complicated to handle for the moment. NotIce however 

that in practice there are many more points associated with a two-dimensional 

edge than with a three-dimensional corner. Presumably the use of two-

dimensional weights near a corner will give some correction. The weights 

as determined in this report have been used by R. S. Christian in the iterative 

calculation of FFAG fields using the program UNICYL. 6 
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