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ABSTRACT 

In this dissertation problems of particle dynamics in a standing­
wave Alvarez linear accelerator with quadrupole focusing magnets are 
treated. The previous single particle theories are extended to take in­
to account the coupling between the longitudinal and transverse motion 
of a particle. The Hamiltonian governing the particle motion is derived 
and then used to obtain an adiabatic invariant for particles which travel 
along the axis. From this Hamiltonian the frequencies of small ampli­
tude transverse and longitudinal oscillations are obtained as functions 
of the particle energy. The adiabatic invariant for on-axis particles is 
used to obtain the longitudinal oscillation amplitude. Next the Hamil­
tonian is transformed by the use of Moser theory to obtain a new Hamil­
tonian which is then used to treat the coupling between transverse and 
longitudinal particle motion. Specific results are illustrated in the 
case of the MURA linac for which the main coupling resonance is the 
one where the transverse oscillation frequency equals the longitudinal 
oscillation frequency. In this case, it is shown that transverse oscilla­
tions grow by less than 2 percent. Lastly, the influence of the space­
charge forces on the longitudinal particle motion is studied, and a limit 
on the total number of particles which can be accelerated is obtained. 
The space-charge limit is calculated for the MURA linac to be 50 rna. 

*AEC Hesearch and Development Report. Research supported by 
U. S. Atomic Energy Commission Contract No. AT(1l-l)-384. 
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I. INTRODuCTION 

A.� Statement of the Problem 

In this dissertation. we will treat problems of particle dynamics 

in a linear accelerator. W~will concern ourselves with how the elec­

tromagnetic fields of the linear accelerator affect the motion of parti.. 

cles and not 'w','th how the electromagnetic fields are produced~ except 

in the case where the fields are produced by the particles that are 

being accelerated. 

B. Historical Review 

The linear accelerator. often called linac, is an accelerator 

which uses a radio-frequency electric field to accelerate particles in 

a straight line. Any historical review of linear accelerators would 

start with a description of the Wideroe1 accelerator. The Wideroe 

accelerator, the forerunner of all resonance accelerators, as shown 

in Fig. 1, consisted of two hollow cylindrical electrodes to which 

opposite periodic voltages were applied. The frequency of these volt­

ages waR such that the time required for a particle moving along the 

axis to transverse one electrode was just the time required for the 

electrodes to change polarity. and the particle was accelerated by 

receiving successive voltage kicks. Lawrence and SloanZ then 

extended the idea to ten or more accelerating ~lectrodes and acceler­

ated mercury ions to the 1 - 2 Mev range. 

1 
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The Wideroe Linear Accelerator 

t\I 



3 

Before World War II, when this early development work was 

being done, the cyclotron was coming into being. Because of the 

success of the cyclotron, this early type of linear accelerator was not 

exploited as a research tool. 

After World 'War II, with the new strides made in the develop­

ment of large rf power tubes, the interest in the linac was revived. 

At this time the Alvarez linear accelerator 3 was proposed. The 

Alvarez type of accelerator uses hollow cylindrical electrodes, called 

drift tubes, of increasing length as in earlier linacs; however, the 

method of obtaining the electric field is different. The electric field 

is obtained in this type of linac by placing drift tubes in a cavity reso­

nant at the desired frequency. The ends of each drift tube are oppo­

sitely charged at any instant and all drift tubes are excited in phase. 

This mode of excitation does not require large driving currents in the 

drift-tube supporting stems and hence leads to lower power losses than 

were present in the earlier linacs. In the Alvarez structure the parti­

cle takes one full rf period to travel between gap centers of successive 

drift tubes instead of one- half of an rf period as in the Wideroe type. 

There is at the present time another type of linac design which 

is better adapted to the acceleration of electrons than the Alvarez 

design. This type is called a traveling-wave linac, because the elec­

tric field is a wave traveling in a cylindrical pipe serving as a wave 

guide. The phase velocity of the traveling wave is slowed to the 



velocity of the electron by loading the wave guide with disks of conduct­

ing material at regular intervals. The electrons remain in phase with 

the traveling electric wave":',"d ar ' accelerated by "r iding on" the 

traveling wave. The fact that electrons approach the velocity of light 

at relative]" low energies makes the traveling wave linac more useful 

for the acceleration of electrons, w!1ile the fact that in most proton 

linacs the protons can be considered as nonrelativistic makes the 

Alvarez linac more useful for accelerating protons. There are other 

differences in the linacs: the traveling wave linac is excited at S-band 

frequencie,3 (1000 Mc/s to 3000 Mc/s> as compared to frequencies 

close to 200 Mc/s for the Alvarez linac; and it is not necessary to have 

special radial focusing devices in the traveling wave design. The 

velocity of the electrons is close to the velocity of light and it will be 

shown later that the radial defocusing force due to the rf field ap­

praches zero as the velocity of the electrons approaches the velocity 

of light. The energy gain of the electrons appears almost entirely as 

an increase in the mass of the electron and for a given radial momen­

tum the radial velocity decreases with energy so that the radial dis­

placement increases very slowly. 

The relative advantages of the two types of design have been 

analyzed by Slater 4 and by Ginzton, Hansen and Kennedy. 5 These 

papers show that for velocities low compared with the velocity of light 

the Alvarez design is more economical, while for velocities close to 
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the velocity of light the traveling wave design is more economical. 

This fact has led a group at Yale to study the problems of transition of 

particles frot.. an Alyarez-type linac to a traveling wave linac at an 

energy which is at the U!Jper end of the range of the Alvarez structures 

and at the lowe~ end of the r~':1ge of the traveling wave structure. 

Table 1 lists the linacs wl.ich he .re beeL built or are under construction. 

At. present the only limit in energy is an economic one. 

C. Previous Investigations 

Most particles have either a slight error in energy or arrive 

at the gap when the voltage across the gap is at the wrong value, and 

we must therefore concern ourselves with their stability in energy and 

phase. We define a synchronous particle as one which has the proper 

energy and phase relations:lip .0 the radio-frequency electric field so 

that it travels longitudinally between successive gap centers in exactly 

one period of the electric field. There are three possibilities for a 

nonsynchronous particle. The first possibility is that the energy and 

phase oscillate ;....bout the s.ynchronous v.alues and the error in energy 

and phase is bounded. The second possibility is that error in energy 

and phnse increases. The third possibility is the boundary between the 

first two; in this case the error in energy or phase neither oscillates 

nor increases but instead approaches some fixed value. For the first 

case we say that the motion is stable; for the second case we say that 

the motion is unstable, while for the third case we say that the motion 
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TABLE 1� 

PRESENT DAY LINA.CS� 

Locat10n 

RadiaLio:! LaLot-ate:ry 
rn~ver.sity of California 

Radiativn Laboratory 
Uni.versity cf California 

Hadiation Laboratory 
Livermore 

University of Mir.nesota 

U. S. S. R. (Moscow) 

U. S. S. R. (Big Volga) 

u. S. S. R. (Kharkov) 

Radiation Laboratory 
University of California 

Yale University 

ASRE (Harwell) 

CERN (Geneva) 

Brookhaven 

Argonne 

Type of Particle 

Pc-oton 

Proton 

Deuteron 

Proton� 

Proton� 

Proton� 

Proton� 

C. N.. O. Ne 

C. N. O. Ne 
,r 

Proton 

Proton 

Proton 

Proton 

Energy (Mev) 

32 

10 

7.5 

68 

40 

9 

21 

la/nucleon 

la/nucleon 

50 

'50 

50 

50 
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TABLE 1 (continued) 

PRESENT DAY LINACS 

Location Type of Particle Energy (Mev) 

Stanford University Electron 6 

Stanford University Electron 40 

Stanford University Electron 700 

France (Orsay) Electron 1#000 

u. S. S. R. (Ukraine) Electron 30 

MIT Electron 18 
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is a~ the threshold of instaL Hity. This longitudinal type of motion of 

the particle also is called phase motion, and this type of stability is 

called longitudinal stability or phase stability. The possibility of 

6phase stability was discovered for circular accelerators by Veksler

and Mc Millan ..7 

The same three possibilities exist for the transverse mo~ion of 

particles a.way from the axis of the linac. We say that motion of par­

ticles that oscillate in radius about the axis is stable motion. We call 

the motion of particles that have unbounded radial amplitudes unstable 

motion. ar d fo!' particles which neither oscillate about the axis nor 

h;ve unbounded radial amplitudes we call the motion on the threshold 

of instability. This type o~' mution is referred to as transverse motion 

ahd this type of stability is (:.11, J tr;.;.nsverse stability. 

Panofsky W~ i:: or.' 01 the> first to study the problem of beam 

dynamics in the linear accelerator. 8 Panofsky showed that for phase 

stability tl:e synchronous particle n'ust be crossing the accelerating 

gap while the electric field is increasing in time. He also showed, 

neglecting second-order velocity focusing, that in order to have radial 

stability the particle must be crossing the gap while the electric field 

is decreasing with time. This incompatibility can be removed either 

by the introduction of grids on the entrance::> of the drift tubes. which 

introd,lce radial focusing electric fields by making electric field lines 

terminate on the grids instead of on the walls of the drift tubes. or by 



the use of for-losing magnets. Until the advent of strong focusing mag­

netic quadrupoles suggested by Blewett, 9 linacs were designed and 

, :ilt either with grids on the entrances of drift tubes, or with solenoids 

_ounted inside the drift tubes. To be durable, the grids must be so 

'~hick that the~ substantially reduce the iL.: ,',sHy of the beam. In addi­

tion, the maximum error in energy or phase that a particle can have 

and still execute both stable phase and stable radial oscillations is un­

desirably small in the grid focused linacs. The undesirable feature of 

solenoidal focusing is the large power necessary to produce the 

required focusing fields. This type of focusing is therefore unattrac­

tive bec:1use of the expense of supplying power and the difficulty of 

removing the heat generated. The most modern proton linacs are 

designed to obtain their radial focusing by the use of quadrupole mag­

nets. 

Smith and Gluckstern10 have treated the problem of beam 

dynamics in an Alvarez linear accelerator with quadrupole focusing 

magnets in the linear approximation using matrix techniques. They 

showeu that one can treat the radial motion as a response to focusing 

terms due to the quadrupoles and a defocusing term due to the rf field 

of the gap. Since the defocusing term is strongly dependent on the 

relative phase between the particle and the accelerating rf field, the 

radial motion of a particle is strongly coupled to its phase motion. 

Smith and Gluckstern trea~ed the radial motion of a particle by 
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assuming that the phase between the particle and the accelerating rf 

field was constant. 

It is useful to introduce a c0ord'i aate system which defines the 

z axis as t.·,e axis of the linac am! the x and y axes as the axes of the 

quadrupoles. We define a quadrupole which is focusing in the x direc­

tion and defocusing in the y direction as a plus quadrupole~ and a 

quadrupole wllich is defocusing in the x direction and focusing in the 

y direction as a minus quadrupole. If the types of quadrupoles are used 

together in some alternate fashion~ as for example (+ - + -) or 

(+ + - - + + - - >. then it is possibl.e to obtain focusing in both the x 

and y direction. With one quadrupole magnet per drift tube~ the linac 

parameters have a period in z which is dependent on the arrangement 

of the types of quadrupoles; for example~ for the + - + - the period in 

z would be the length of two drift tubes. We will define the tunes p" . 
V y and Vtp as the number of oscillations per period of the linac 

parameters of the x, y, and if motion respectively. Smith and 

Gluckstern showed that if f is held constant at various values, then 

the x and y motions which result will be stable (stability requires Vx 

and V y non-integral) for certain types of quadrupole structures. When 

the x or y motion is unstable, the x or y amplitudes grow exponen­

tially with z, and particles are lost on the walls of the drift tubes. 

Smith and Gluckstern did not treat the problem on instability 

resulting from nonlinear periodic forces~ and they neglected entirely 
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in the phase motion thc fact that the accelerating rf fields are func­

tions of the radial posItion. They considered only the wave component 

of the rf field which is synchl'o:lOUS with the particle. 

When 11.rge numbers of particles are accelerated. the inter­

action betw.::en the particles ca:1 become important. The transverse 

motion of par~icles in a linac with space-charge forces has been treated 

11 
by Kapchinskij and Vladimirskij. and they have shown that the trans­

verse space-charge limit is lar~~er than the output of present ion 

lsourcC!s. Nielsen and Sessler 2. have treated the problem of longitudi­

nal spaec-d.a~·ge forces in circular accelerators. 

D. Scope ')f the Dissertation 

In this dissertation we v:ill treat only quadrupole-focused proton 

linacs of the Alvarez type. "Ve will extend the single-particle theory 

of Smith and Gluckstern to take into account the coupling between 1he 

longitudinal and the radi..'1.l motion of a particle. and investigate the 

valid:i'.y of neglecting the v,'ave compon~nts of the radio-frequency field 

which cH'e not synchi~ono:ls with the particle. We will derive an adia­

batic ir.vc:riant for particles with pure phase motion. 1. e .• for particles 

V/h.~ch travel along the axis. We will also use the techniques of Nielsen, 

Symon and Sessler to treat the probJem of pure phase motion with 

longitudir::1l space-charge forces and obtain a limit for the beam 

intensity. 
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In Section II the Hamiltonian governing particle motion is 

derived, and the approximation of using only the synchronous wave is 

shown to be valid. In Section III the pure phase motion for on-axis 

particles is treated in detail ""ith the derivation of an adiabatic 

invariant. In Section III the Hamiltonian is transformed into a form 

for use in Section IV. In Section IV the coupled motion is studied by 

the use of Moser theory. Moser theory is a technique of transform­

ing the Hamiltonian so that terms of a particular order are transformed 

into higher order ter1T.s. The only terms that cannot be transformed 

by this technique are those nonlinear terms that lead to instability, 

terms for whichm v1- + n 1J<p = P , with m, nand p integers. In 

particular the term where 2 Vx. = 2 Vf is not transformed away. 

The instability at 2 -Vx = 2 Vp is treated in Section V, and as a 

numerical example results are obtained using the parameters of a 

200 Mev linac designed at MURA. In Section VI the longitudinal space-

charge problem is treated. 



II. FORlVIULATION OF THE HAMILTONIAN 

A. Description of the Field 

We will concern ourselves first with finding the form of the 

radio-frequency electromagl:etic field~ and later discuss the field of 

the quadrupole focusing magnets. If one knows the field as a function 

of time at every point along the axis of the linac~ then it is possible to 

determine from Maxwell's equations the field as a function of time at 

every point in the linac. We will use a rectangular coordinate system~ 

in which z is the longitudinal dimension along the axis of the linac and 

the t:~ansverse x and y axes are He axes of the quadrupole fields. 

Because of cylindrical symmetry~ the relevant electromagnetic 

field is independent of azimuth. The linac is designed to resonate at a 

frequency W /'-TT. We may denote the longitudinal electromagnetic 

field on axis bye, (0) and write !J (0) =t(j) ~ w t . The field 

at any radius r (r:: JXl t y.1.') may then be expressed as a power 

series of even and odd terms 

(2.A.!) 

We use the Maxwellian condition in free space 

to derive the following recursion relationship: 

13 
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(2. A. 2) 

It turns out that this condition requires that the coefficients of all odd 

power of r be zero, 1. e. , ~ =O. for all n. The radial electric field 
....

Eyo is obtained from the Maxwell equation 'J. e = 0 • which gives 

the following expression for t r : 

. . i,� 

t - I dfrl�[L
C, - - n~. J(YI"") ~ (l.A.3) 

The magnetic field is derivable from the Maxwell equation 
..... 

\J)( t::- . Thus the azimuthal magnetic field 8. is 

r Uti, J 
tn. r Sin. wt. (l.A.4) 

I~ can be shown that a cavity may resonate in two types of 

13mode :5. one called aTE mode and the other a TM mode. The 

standing wave-type linac that we are treating here is designed to reso­

nate in a TM mode in which the magnetic field is entirely azimuthal. 

Hence we take Br = BJ ::. 0 from which it followB that t 9 =0 

The transverse electric fields t}f and ~1 are obtained from t r • and 

they are written below together with t, . 
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oQ 

I d t ll (})t)l::: - X I J(nrO r 1n 
Cc4 LV t .JJ 

" =0 

cC 
Jf~ (3) 

J.(1Il ,.1) r ~wt .£,,-=- -y L- 01 3 
.U1 

(2. A. 5)
11=0 

:LI'\ 
r CA-4W t . 

The magnetic field in a quadrupole magnet is produced by the 

use of currents flowing around four ferromagnetic poles. The faces 

of the poles are represented by the two hyperbolic surfaces X y ~ 0.. 

and )( y ::: - Q,. The polarity of the pole faces is arranged so that 

magnetic field is antisymmetric with respect to reflection through both 

the X ':. 0 and y = 0 planes, and is symmetric with respect to reflec­

h ,n through both the X -; '/ and X': - Y planes. Then the magneto­

sLatic potential U is given by U':. G X Y where <:> is a constant. 

The transverse magnetic quadrupole fields B)( and 8, are given by 

eJU 
~B;c= dX = GYI 

(2.A.6) 

-elLA 
G X • By ::: = cly 
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The fields given by equations (Z.A. 6) satisfy Maxwell's equa­
.... 

tions V)( 8 = 0 and 'V ~ 8 = 0 . The force on a particle 

of charge q moving parallel to the z axis with velocity v is given by 

~ = - Z'V" By:: - r~GX) 

(Z. A. 7)Fy = ~ 'IF Bt =.Z'~G Y.' 

Thus for G >0 the force is focusing in the x direction and defocus­

ing in the y direction. while for C;.( 0 the force is focusing in the 

y dir'ection and defocusing in the x direction. A quadrupole with 

G>0 is a plus quadrupole. and a quadrupole with G < 0 is a minus 

quadrupole. 

The Hamiltonian does not contain the fields but instead the 

potentials from which the fields are derivable. The total electro­

magnetic field. which is the sum of the radio-frequency field and the 

, quadrupole field. can be derived from a vector potential -A by the 

formulas 

......- e>A
and ..L 

e. ­~t 

in which the gauge has been chosen to eliminate the sca~r potential 

term. The three components of the vector -A are given below. 'where 

j/J)= G inside a quadrupole J (, ):: 0 outside a quadrupole. 
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()C 

2t'1d. (1'1 (1)-- r SIt'\. wt . Ax ~XL Z (Y1+ , ) 
":0 J-y 

27\.Ic 
OIP 

d (..,lJ:>
:; yoAv I.J YL 1-(Yhl' Stn wi. (2.. A. 8)d-rYl:O 

/)to xi. _ y '2. 

= - ~ L ((I) r~?l SIn. wt ­A; 2. .''l'1 :0 

with 

~ ~ z 
yo - X .... Y 

and 

, [J2.(n -z..]r-n", :; - if (n ... ) oz. J. "} l- + ~)"i' f Yl • 

To the approximation L may be considered constant, the radio-

frequency fields in a linac are periodic in Z with period L. We there­

fore expand f Y1(j) as a Fourier series in z, obtaining 

00 

fY)(J) ~ ~Cm}n C05(m2~;r + <>'m) • and 

2.;1
I( ~­

L 
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and we have neglected terms of order A L / L (/i L is the change in 

L in distance L). We let CoJ .... be the average value of (n (,) 

by choosing 0<.0 ':: 0 , and define the position where J::' 0 by 

specifying 0(., = 0 . 

We substitute for (lin / d 34 and +n. in the recursion 

relationship for .{nt' and obtain 

(WI,l'\" = 

-We can therefore write the potential A as follows~ 

z= 

in which To (x) :. ~ ( i. x ) r; (?C) =' - L J:, l )( ) and 

J and J, are Bessel functions of the first kind. 14 o� 

From the fact that� 
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and from the definitions .; =. ~ ~"to IJ) J) (average 

value of the longitudinal electric field on axis), 

T". =.L ~. s.. fo I)) c.o-4. (m 1<.3 + cI. rn ) d , (transit time 

of the mth wave) and r= k'1; - w t (phase of the electro­

magnetic wave). we obtain 

oi(J 

Ax: - ~.;: to f[S"'(l)~lf+ UWl 'l) ~~] I, (g r) 3 

(2. A. 10) 
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c 

For later use we also define 

_ 10 

QIJ1 -= ~Y>I' J.. f"""[1"'''11:,. "..). e- [( ...-,) kJ t .qJ J 

_ t)()� (2.A.12) 

R (i)� =2-m~~f~[(W14'dt<Jtc(tM]- ~[(ltt-J)J(J t~~]l. 
"" ;:. 0 

B.� The Exact Hamiltonian 

The relativistic Hamiltonian15 J1 for a charged particle in 
o 

an electromagnetic field is given below: 

(2. B. 1) 

) 

where PlC • Py and PJ are the momenta canonically conjugate to the 

coordinates X • Y and J . and"0 satisifies the modified Hamil­

ton's principle. 

(2. B. 2) 

The charge and rest mass of the proton are designated by e and mo. 

and c is the velocity of light. Letting 110 = E '. X ';;::. J~, 

• we can write Hamilton's 

principle as follows: 
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o. 
(2. B. 3) 

It follows that we can use for the Hamiltonian - p, (x,Pt , 1'p
YJ 

t./-,») J) 

in which (- f) plays the role of the momentum conjugate to t, and z is 

We then have as the expression for this new
the independent variable. 

Hamiltonian 

(2. B. 4) 

Next we can remove the linear part of the dependence of t upon 

the independent variable z by a canonical transformation from the 

variables (-E) t) to new variables ('I) If). If we use the generat­

15
ing function 

(2.B.5) 

we obtain 

'dG =-E ::: -iAJ-2 .
:>t (2. B. 6) 
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We see that 'f is the relative phase between the particle and the radio-

frequency accelerating field. The Hamiltonian becomes 

({')( -% A" (lr. ~. cr. ~ ») 
~ 

(2. B. 7) 

- (p,- ~ Ay (""'.1»)'r-"- rAJ(x'1. 'f.1) t k 2 

A synchronous particle is one for which c.p = «{ where 

lf~ is a constant. In order to meet this condition, it is necessary to 

have )( =p~:: ~ : Py :: 0 . The synchronous particle will 

always have the same relative phase with respect to the accelerating 

field and hence will have an energy gain in distance L proportional to 

L, where L is the distance between the centers of two adjacent drift 

tubes. This definition determines both L and the energy of the 

synchronous particle as a function of z. We will use the subscript s 

to refer to quantities pertaining to the synchronous particles. 

For the synchronous particle it follows that 

~ "-t·~~ -m~c~{: ~ q Q'l) So:,. r. t R1.l) (.0< Pol 
(2. B. 8) 

t J< 1,6 :J 
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from which we obtain the following equations of motion: 

- 0 
) (2. B. 9). 

and 
"-J1> -:'~- = ~ f. fQ(3) CA>4 'fs - RtJ) s..;... 1. J. 

From the equation for r. I 

we obtain the synchronous condition 

Kc.
'1

(2. B. 10)-wa. 

We then use the fact that 

~ _ velocity of particle (2.B.ll)
,- velocity of light 

and obtain the condition that 

wJ<:. -
~£(. 

or L - ~5 A (2. B. 12) 

in which A _ J IT '/w = wavelength of the rf field. 

In order to study the deviation of general particle motion from 

synchronous particle motion. we define another transformation of the 

Hamiltonian from ('!J l.f) coordinates to new coordinates (Plf J If) 

by the transformation 
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(2. B.13) 

From this transformation we obtain 

dG ;)G 
::::1;: = '},. .,. P'f 

,) f -- - CfJ (2. B.14)u<f uCf 

and 
d& J .,..::1=1-3 1:1:- -~) 

= J:I~ + cp 1, ) 

giving 

tLV'. • (tI.- c.1=1 3 = ~ (rtf +]. 'Is ftf +'l )- 1 

(Z.B.15) 

A.. Aj and AJ are given by equations (2.A.10).I 

C. The Approximate Hamiltonian 

The exact Hamiltonian is too complicated to treat analytically, 

and it is therefore necessary to approximate the Hamiltonian by a 

simpler expression. 

In order to approximate the above Hamiltonian l we need to 

examine the re lative size of the terms that it contains. Since all 
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present linear designs are similar 1 we will use the parameters of the 

MURA linac 1 as are summarized in Table 2 1 to estimate the error of 

many of the approximations which will be made later. From the 

definition of 'I = £ / w • it follows that ff /(1.- #I:;') ~ ~ 51 E- PI.l) 

wher~ a E is the maximum spread in energy of the particles in the 

linac. For the MURA linac parameters 1 A £ / (£ - 111. co2 ) is of 

the order of 1 percent so that we will be justified in expanding the 

Hamiltonian in a power series in "t,: 1/& flf /( ~t '1....._m.3 c.& ) 

Next we compare the sizes of the two quantities (P~ - ~ J'.). ) '" 

and (p ~ - ~ A, ).t with the size of the qUanity{~ '1:- - m.~G~ J 
We use again the definition 9 -:: c/w to obtain 

(z. C. 1) 

It follows from the equations of motion l obtained from the original 

Hamiltonian l equation (2. B. 1). that 

(?y -~ A'I) :. PIli (r')1 ' (2. c. Z) 

~ 1- ~..... ..,. 
. The motions of particles injected( ~$ ).. = + and ( ~ »':: t 

into linacs are such that the x and y components of the momentum are 

mu~h smaller than the z component of the momentum l and therefore 

we can expand the Hamiltonian in powers of the quantities 
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TABLE Z 

DESIGN PARAMETERS FOR THE MURA LINAC 

Injection Energy (Mev)� 

Average Value of f (3) (Mev/m)� 

Transit Time T,� 

Final Energy (Mev)� 

Stable Phase Angle� 

RF Frequency of Field (Cycles/sec)� 

Gradient of Quadrupole Field (Gauss / em)� 

0.75 

2.4 

0.819 

zoo 

260 

2 x 108 

160 x .'t~ 
~. 
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and 

We now expand the Hamiltonian l making use of the fact that 
.1 

I ( Py - % Ay ).t and W/C' ?$ Pif are 

5 ""a ~ ~ z 1much less than Z c; '1~ - I'Y/, c. ~ . We define 

I (2.. C. 3) 

and we neglect all terms which are of cubic or higher order in 

(fll-% A~)/w.) , (py-% Ay )/ Ws and c.:...11~ f y /w; . This 

still does not lead to linear equations of motion, because we do not 

neglect higher order terms in ('f - if.. ) . We thus obtain for the 

expanded Hamiltonian 

(2..C.4) 

I 

Next we substitute for 1< ~nd 1s.· the expressions 



to obtain for the Hamiltonian 

t:" t;, }Q(~) ~ ~ - R(,J 5e:- ~ J<f A3 (2. C. 6)
c..) - e~ 

. .z... 
(?" - %AJ)~ y (Py - ~ Ay )- 11. 

~3-
Ws. W, 

Because we can add or subtract an arbitrary function of z from the 

Hamiltonian and not affect the equations of motion, we will drop the 

terms W and 1<?s .. In addition, since r/I.. <-<. 1 , we will lets 

I,lKr)= ¥ and when we substitute 

for the vector potential -A. This gives an error in the Hamiltonian of 
I( 

the order (1'''/1-) .. We write out the expression for AIf' Ay and 

A3 in the Hamiltonian and use the fact that 'IV~ = (no ~.. 't'. C. 

to obtain for the Hamiltonian 
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c+ 

(2. C. 7)� 

where E,) = yY10 G1. and the quantitie s 0 (~) ~ Q C:~) ~ (J) 

R(~) > S (~) and lA/J) are defined by equations (Z.A.!1) and 

(2. A. 12). 

Because the period of the fie Id in the variable z is not a 

constant; it is desirable to change from the independent variable z 
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to .8 where J e= KIN d ~ and N is the number of quadrupolesI 

per period. Again we return to Hamilton's principle 

. 

(2. C. 8) 

r9, 
= ~ J (L p~ ~~ - I¥" Ie)) d e = 0 . 

8. 

Thus ""If) is the new Hamiltonian, where 

(2. C. 9) 

Next we remove the cross term between X and ~ and 1I 

and p) by transformation to )., P~, I y, ' Py, if, I and P"I I I 

with the generating function 

(2. C. 10) 

From the generating function, we obtain 
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i.P - ~-lf) 
JI - Jpr, - T I 

J.t n ( E "f. '" r( 
'r" d B ~ ,'" - P",X of Py,J) 

1- J tt$ eto & ~ 

+ --- - ISI c9 } ~ 'f of j,.( ( 9) ~ SO] ( ~;: )
l'.s J.9 

.1~c. 

The third term in the new Hamiltonian can be neglected because 

the change in Os over one period of the x or y motion is less than 
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1 percent of 0.$ • The last term will be neglected because 

.1. cI ~5 -.L ALL... 01 <.<. I where A l- is the 
~s 7r - ~1T L 

change in L in the distance L. We also neglect the new term of 

order X2. Pcp that arises from the transformation, because we have 

neglected terms of this order before. The new Hamiltonian which 

results is 

D.� Carrier Wave Approximation 

In this section we shall justify neglecting the 6 or ~ 

-
dependence of the functions Q , Q ' R . R . U and S 

This neglect means using the average values of these quantities in the 

Hamiltonian. 
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First we will treat the tp motion. 

33 

The equations of motion 

. rJ£f 
de ~ 

Nv;) 
~. (. r: Ptf -:: 

I 

(r- fa) , 
(2. D. 1) 

.!!!f ~ - Ne -fo ~s-=[ Q . (c.p -c.f.) ~ Cf. i R. (e.p .. Cf. ) (A4. ce. 1 
w adfJ ' • 

I I+ higher order terms in X Px, and (if .. ~) . 

Combining the above equations, we obtain 

higher order terms. 

Neglecting for the moment the z dependence of @~ and '(S I we can 

write the <f motion equation as 

[ L 
til

an' ~ (n )\/9 -td,,)J (C/.. cfa) (2. D. 3)
11=. 

higher order terms. 

There are two reasons to keep terms in the Fourier series 

other than the constant ferm. The first is that the linear tune may 

depend strongly on the higher harmonics. The second is that one of 
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the harmonics might drive a resonance (either linear or nonlinear). 

Because the .lm IS are of the order of unity or smaller # then 

We use the smooth apprOximation16 to calculate the tune 

V'f
a

-_ /I ~ (2. D. 4)
"'"0 -, 

Now if 

.« 1 
oJ 

we can let 

a. o (2. D. 5) 

We use the design parameters for the MURA linac from 

Table 1 and calculate that 

( e fo C / .1 E. ~.) 0$3 w) """ 10-2.. at injection energy 

-2
and smaller than 10 at higher energies. Thus the linear tune is 

given very accurately by the assumption all:: 0 for n *o. Because 

-, a. !f.. 1U , and because the first linear resonance occursvlf -:: • ~·1I.7 

at -VV' ~ 1 , then none of the harmonics can drive a linear resonance. 

It will be shown later, when we derive an expression for Vx and 7)1' 

the linear x and y tunes, that only the constant term will drive non­

linear resonances 
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Next we treat the X motion to show that we can neglect the 

periodic f:) dependence of the functions Q • Q , R , R ' S, 

and U . It will not, however. be possible to replace 3(s) by its 

average value (the average value of d19):: 0 ). The It, equations of 

motion are 

(2. D. 6) 

c N.1 ~ (- JS ) (- JU) . ~+xI 
e. fo 

- l p. - ~$ R I iii ~ r; t Q - ~~ a. + -:;g ~ f
L G. ~$ 1', W (;I • 

+ higher order terms in "X I I </-~) . 

Thus the :x equation is of the form 

(2. D. 7) 

== higher' order terms, 
lI() 

with L ~1t ~ 061~). 
" =4 
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From the smooth approximation we obtain 

.,; x~ : of b. -I- ~ ( eN',' ~; r~ ~~ 
E. 'r,j '" L- n~ 

)1::/ (2. D·. 8)
n~PlN 

1. 01 a. 
It is seen that contribution to the value of.,)x, of ,. is N times the 

contribution of~b" thus if 

J* J ~. j/,,) 
we can neglect all 's for 

We again use the MURA design parameters to obtain 

I" I "".3 

Therefore, for calculating the tune, we can ignore Pm for m:t- 0 

It is also a fact that, if the b rv'\for m. ~ 0 term drives a resonance, 

that the J",tJ term will drive the same resonance and since 

J ~"N I > ') l.b,..! _we still can neglect bra for IJ'I"" 0 In 

calculating the tune 
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) (2. D. 9) 

we obtain for the MURA linac at injection 

-Vx ~ .1 I. 

Thus nonlinear resonances of the type m -JJ x + fl -,)1:: p 

where yYl, Y1., and P are integers, are important only for 

p = 0 

We have shown above that we can neglect the fJ dependence of 

the functions Q , Q , R R , S, and U , and we can use 

the average values of these functions in the Hamiltonian. We denote 

the average value by the subscript 0. and we note that in terms of 

the transit time of the fundamental wave ) 7; , 

Rt.,':oQQ, ': T, 

': I, Rf/II : 0Q" (2. D. 10) 

Sc.. ': -, I U,.:. 0 

Thus we now can write the Hamiltonian as follows. 



38 

.. ~ 

t r'lt, P~,t 
(Z. D. 11) 

;L. 

e to c NZr ~ ( )(, 
1. 

t y. 
Z
) 

.2 e. ~a 1.3 
fA) <f ;;L J 

where we have dropped the subscript from " . 

From this approximation we obtain the linearized equations of 

motion: 
.. 3 

(E.~.s bS ('{'_<f.)/)' + 
N(".) 

(Z. D.1Z)
and 

e fo N
1 c 1~~ + 

[ 
;z. Eo ~a 'l~" W 

We use the smooth approximation to obtain the following expressions 

for the linear tunes: 
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N~ e to r c ~ 'f,� 
Eo ~s Y"I W� (2. D. 13) 

(2~ D.14) 

where 5.... is defined by the equation 

I() 

L ~fL CA>-4 (n e T i,..) . (2. D.1S) 

n=D 

Because the expressions for the tunes contain the quantities 

~~ and (~# the tunes are functions of energy. Graph 1 shows the 

varlation of 1J f and Vx with energy for the MURA linac. 
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III.� TRANSFORMATION OF <p MOTION INTO 

ACTION-ANGLE VARIABLES 

A. Relationships Between Old and New Variables 

From the expression for 1¥-5 (equation (2.0.11», it is seen 

that·the Hamiltonian is not a constant of the motion for two reasons. 

The first reason is that @, and <fs are not constant but instead vary 

slowly with 8.' The second type of variation arises from the term 

;} (e). For treatment of pure <f motion and also for later work it 

will be advantageous to obtain a constant of the motion for 

v :; p~ -= v = P'1 == 0 • the case of pure phase motion. 
", I - I' - ,­

For this� case, only the 8 dependence of ~.s and OJ is important. 

Because the trigonometric function in the Hamiltonian is 

difficult to treat analytically. it is necessary to approximate it with 

another function. A Taylor series expansion is, however. not satisfac­

tory, because t.p varies over a range of approximately 3 lfs ' which 

in most linacs is of order n / J.. If we expand sin <p in Chebyshev 

polynomials and then expand the result in terms of a power series, we 

can obtain results with adequate accuracy_ Expanding about ep= 0 

and keeping only terms cubic or lower. we obtain 

(3. A. 1) 

41� 
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TABLE 3� 

APPROXlMATION TO SIN -cp� 

cp� [ (.r, (' If.)t3 J,r'fal) ~j 
S.Mr. ep

- SJ (~tP,) (~)3(rfJ,qI.) 

0� 0 0 

0.1� 0.099670 0.099833 

• 198391� .198669� · 2� 

.3 .295213 .295520� 

.4 .389186 .389418� . 

.5� .479361 .479426� 

.564712 .564642� · 6� 

.644517 .644218� • 7 

.8� < 717600 .717356� 

· 9 .783086 .783327� 
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where t.p is limited by - fs ~ cp ~ -:. 2.. tf~ and J" 
is the nth order BessIe function of the first kind. 

Table 3 lists both the value of sin <f and the·'value obtained 

from the above approximation for various values of cP ~ where ~ 

o 
is equal to 0.4537856 rad or 26. From this table it follows that the 

maximum error in the approximation over the interval - ~. S 'f ~ .1 ~ 

is 0.0003. 

We substitute for sin c.p and obtain the following expression 

for the Hamiltonian: 

1"1, 
:a. . 

= Af-t -a..cp t'f"l t 
~1 y, 

(3.A.2) 

_ C (b· 'f - ifS) ( lC": y.~ ) _ D (x,a~ y:) . 

in which 
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A= Are):: 
J 

8 -: B{e) = ~ e £0 -rEll , ((6' 'r,1 

w 3 

c= e{e):; 
(3.A.3) 

- ~12. ( V, (1 'f.) t 3 J4 (~re) J 
a. - Sa (:J Cf:) <f's - (At.. ~ ) 

cf..sbJ. = .s ( J I (zrt.) t 3 JJ{z reJ J 
J3(~~) ~c.p~ 

and 
D= D(9)= 

We now transform this Hamiitonian from ('f
l 

PC() variables 

to .A.A1' • :r . variables in order to obtain a constant of the motion for 

particles on the axis. We use the generating function 
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where 1 (:1") is a function of J yet to be determined. We restrict j 

to the limits -1 ~ ..R ~ 1. so that there are three real roots, 

D( • ~ and t: , of the equation %Sf (}.J t ~" 'f - cp1 :. 0 

ordered so that '( ~ @ ~ 0<. • From this transformation we 

obtain the expression for f'f 

(3.A.5) 

The turning points for the motion occur for values of if such 

that P<f:: 0 . There are thus three turning points, ol. (3 

and '0. For the range @~ <p:£ 0(" • r<f is a real quantity, 

while for the range l':i 'f ~ (3 , f 'f is an imaginary quantity. 

Thus the particle oscillates between if,,; ~ and c.p = 0<. with 

a period in e equal to 2 rr / v ~ . The roots c<. , (3 and 

!, together with the period i are functions of J . 

We now define.1 as a function of J" . From the generating 

function we obtain the expression for ..,v.r 

(3.A.6) 
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We now require that A.)AJ' over one period of the if oscillation be 

equal to unity, thus fixing the function rJ}/ JJ' . 

(3.A.7) 

or 

i t( 

Jr-~-~-Y-'3-a.;-3Y-t--a-a-Cf---CfJ-''''''\ (3. A. 8)dlf . 
~ 

We integrate d:J/d~ and, because the equations of motion are in­

dependent of the integration constant, we set the integration constant 

equal to zero. This now gives us J as a function of ~ . 

(3. A. 9)elf . 

Note that it follows from equation (3. A. 5) that J is the action or 

pha~e area integral: 
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(3.A.l0) 

and her~ce is an adiabatic constant of the motion. 17 

In Appendix I we evaluate this integral and show that 

J"= is
If 

(3.A.ll) 

in which 

( oL.- 'if' ) \ ~ I{ ~ fJP) -= -:;:-z (2~ - 2-k +.2 ) EO..') 

(3.A.12)(-* If_ :) --k~ +.1.) J< (-!') L 
0'.- ~ ) 

( rA.- T . 

t<.f-A.1.) is the complete elliptic integral of the first kind18 and Er-lt J) 

is the complete elliptic integral of the second kind. The roots rJ. 

(3. and Q are linear functions of a. and hence f:. (..J) is 

independent of ct. Thus ~ is independent of any of the linac 

parameters and. once it is determined as a function of J . it will 

apply to any linac. If 'f's is small compared to 2 rr . we can expand 

a. as a function of ~ to obtain a. ~ J3 ~ . and substituting 
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this into the expression for J we note that :r . which for ..J =I 

is equal to the maximum stable longitudinal phase space ~~ • 

l P o/a,
varies as / ~ . 

We want.J as a function of J. or the equivalent-i as a 

function of f 2. • in order to obtain the Hamiltonian as a function of 

J and W. The expression for f 2. f..,.t) is rather complicated to 

be iilverted a;:; a function.,..f ( f oJ. ) , because the roots .I.. 

and 0' are not simple functions of ..J ' and therefore we will obtain 

an approximate expression for ..J ( f,a.). Since the equations of motion 

will contain derivatives of A with respect to f~, it really is the 

function do,} / J f~ which we will approximate and t.hen integrate to 

obtain .1 ( .f~). In Appendix I we have evaluated rJ..} / J f. which is 

given below: 

-cJJ
(3.A.13)cJ f2. 

Graphs 2 and 3 show y and eli / cl f" as functions of fa.. . 

It can easily be shown that within an error of 0.5 percent, 

rJ,) _ 1.7J..(- .- (3. A. 14).. elf,.. J 

with 
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1.0 

1 '.0 J versus f2. 
J 

-o.S 

-'.0 
o 8 

Graph 2 
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Upon integrating this function, we obtain 

(3.A.15) 

in which 

l 
eO -t . e- 19 

k t dt - E. (-X) 
~ . 

We could use the asumptotic form for 

and ,then expand ~ (1- fa It,",) as a series in f2.. 
Instead we approximate JJ / c1 {~ by'the function 

ell (3. A.16)- = 2. 93 - . c> 0 r P'1 f ..df. . .... 

which gives 

)= - J t' . 2. tt 3 t.2. - (3. A. 17).00/.11{2 

This approximation for .,f has a maximum error of about 

3 percent; however, for f~ / fP1 :: . 'I, the error in d.J / tI fJ. 

is about 10 percent, while for f" / .f m '> . 9 the error in 

becomes much larger. Thus for particles near the 
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stability boundary (.{~::: .f,",), we have to use the approximation 

for,f which contains the incomplete gamma function. while for par­

ticles away from the stability boundary ( f ~ ~ . 'J .f1ft) we can use 

the power series expansion for ..J. From the plot of JJ / tJ.(~ vs. 

f"". it is seen that for particles away from the stability boundary 

the linear 'f tune, which is proportional to J..J / cI f~, varies very 

slowly with f", but for particles near the stability boundary :,)'1' 

is very strongly dependent on f 2. • 

We combine equations (3.A. 11) and (3.A.17) to obtain for par­

ticles with small enough 'f amplitudes 

In addition, by inverting equation (3.A. 5), we obtain 

(3.A.19) 

Thus for particles with small enough r- amplitudes we write for the 

first term in the Hamiltonian the following function of J : 
~ 

A S" ~ _ tk3.cp-t 'f' J = 
Z ta 

.. a-' r lof :r ( IS' )~ 'J1. ( (3.A.20)i Vi A tIt." Cf 3 (Ii) ~.v~ a'~ - .00 I/I('J. --;; 0."'8 J. 
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The next step in the transformation is to write if as a function 

of .A.AT and J . We rewrite the; expression for.AAr as 

(3. A. 21) 

With the aid of the substitution 

4. ~ • ~e- Y ~ s-.,..,(A­i= ) (3.A.22)
I - --It 1. ~,,~ 

the integral can be performed and the "u.r equation becomes 

Mf" - ~ ,,'[l (:t1) ] (3. A. 23)- (cl-~) 'i,A.;rt, *' '1-1 I -A ~ 

in which ~liS an inverse Jacobian elliptic function. 18 Solving for 

r gives 

, (3.A.24) 

with 

The expansion for ~.)..<. and ckt p.. are of the following 

18
form:
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(3. A. 25) 

Hence� we can write '1/fA. • which is an even function ofpr I as 

(3. A. 26) 

Since the coefficie nts a.A. r...J,'J.) and Jo~ (...Jt.") decrease very 

rapidly with A.. except for *~ = I • we again restrict ourselves 

to amplitudes away from the stability boundary. The expansion for 

'-f/ a.. is given below: 

~ 

. ':lfoS'� fc1o~ C.o42n.w­l.f/ C4.. -=.� (.67 1 - . 0 IS 7 f;a. ) ­
~	 (3. A. 27) 
"'":a. 1. 

t .oJ./7"3 t.a, ~J.jn.MJ" + T~ ( f1.. ~ f:a. f~ 
".i 
".)

J. • 

B.� Adiabatic Invariance of the Action 

The final step in the transformation is to examine the term 

dbJoe. We will show that if 13 varies slowly enough with () we 

can neglect the term aG~ 8 in the transformation and therefore the 

new Hamiltonian will be equal to the old Hamiltonian with Cf and Ftp 

written in terms of the new variables ~ and J" . Because :r is 

the action integral. the neglect of - ~ e corresponds to the neglect 
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of the change in rr with e . The approximation which neglects the 

charge in J" with e is called the adiabatic approximation. This 

l7
approximation can be proved in general to be exact, for a finite 

change in B, provided that the change in B occurs over an infinite 

interv2cl in B and in such a way that J. a / oJ (} is zero. 

Because J is a function only of f.1. and because the only 

explicit f} dependence in f.1. arises from the a dependence of B , 

it follows that the only explicit e dependence of (; arises from the 

() dependence of 8. Hence we write 

(3. B. 1) 

We assume that for a constant a. -v If ~ 0 so that we can 

define a period of tlE motion equal to Jon / -z) 'f . This proof will not 

be valid for the case where -Vcf goes to zero. 

From the expression for if, equation (3.A. 24), it follows 

that 'f is a periodic function of..A.AT , and from the expression for 

G the same must be true for when we substitute for ~ its 

expression in terms of .,A.,IJ" and We therefore write the term 

d o/e') 8 as a Fourier series. 

(3. B. 2) 
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If we write .,AAf as a function of () , becomes 

(3. B. 3) , 

In order to estimate the error in neglecting the term 

in the new Hamiltonian, we must investigate the effect of this term on 

the equations of motion. The equation for dJj d 8 and d ulcJ (J are 

a 'd (aG)
- 'dpJ iI,( P,,{J)MJ}J f(J ..w))-8 'iM J8 ~ 

(3. B. 4) 

1:f = ;3 "', (p,,{J,Mf), 'f'{J, d») -t B}~ (~:). 
It is interesting to note that for on-axis particles 

~ 'tiS:: 0, and for this case the total change in ~ comes from 

the term ~~ B . We now denote the change in J due to the 

jG/J 8 term as (:r~ - ~) and the change in 8 as (4- 19,) . 

Thus 

b 
( J, , db )
l!3b(~ dB. 

(3. B. 5)fJ, 

Since the variation of B with B is slow and not connected with the 

period of the motion, we can bring 8 
I 

outside of the integral sign. 

We now use the fact that a~ {3 can be written as a Fourier series in 

.MI' to obtain 
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J2.- - J, 
, -- ­

B 
(3. B. 6) 

where prime designates derivative with respect to P . We now write 

.AJJ" as a function of B to give 

.JJ.- :J, _ ---- - (3. B. 7)
8' 

This expression is no longer exactly periodic in a because the An's 

and V depend on 8 (e). We now expand these quantities in powers 

of &, where the expansion will be used only for values of e 
smaller than ;Z rr / vf . Letting the subscript 0 designate the 

value of the expanded quantities at &=' (j, • we obtain for the integrand: 

We now do the above expansion at the beginning of the period 

{ ~ e,.} and integrate over one period of the first term; then weI 
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expand again at the end of the first period and integrate over the second 

period of this first term. We continue doing this until we have inte­

grated over the total interval ( 0,) B~) . The last integral will, in 

general, not be taken over a complete period; however, the integral of 

the first term will be finite. The integral of the second term will be of 

the order of B
I 

(8J. - 8, ). 

We have shown that it is possible to have a finite change in B , 
I 

i. e., B (82 - e,) :F 0 , and if 8 varies slowly enough, still have 

a zero variation in J. 

'We now show that we can neglect the error caused by neglecting 

the� change in /oAr' due to ;,he C> ~~ B term. In this case the term 

is aot equal to zero; we must show that 

d� I~ (c)G) (3. B. 9)""is ~ ).~ B "dJ ~ , 

in the case where 8 I is small. We use the fact that AAr ': ':lG> and
aJ 

obtain 

I 

+ B� (3. B. 10) 

If we write ~ as a function of 8 , we obtain 

I 

I� (J
-w= + .K -� (3.B.l!) 

~rr oB 
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We integrate the above equation over one period of -w-: Jfi/,) 'f 

and obtain 

(3. B. 12) 

Because of the variation of ';cp with 8 is finite and of the order of 

magnitude of vrp / a • it follows that for the case where 
,

(8 ~13) ( ~ ) -<<- :t we can neglect the second term in the "Mr 

equation. 

We have now shown that. if the change in B over one oscilla­

tion is small. that we can neglect the term aG/()9 in the new 

Hamiltonian. 

Substituting for cP and P, their previous expressions in 

terms of .J . and .MJ. we obtain for the Hamiltonian 

a,1 [?:I, -:: ~ -
..[i 

It - I t C()O~ 

(3. B.1~) 

in which 
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J 

(3. B.14) 

and 

- a.. C (. S 71 b'4 - . I q J. a...~ ) .C,JOe) 



IV. MOSER TRANSFORMATIONS 

Since the )( I and y, motion equations are similar and 

uncoupled. differing only by a constant phase of TT in the quadrupole 

term. we will treat only the "X, and f motion in all further work. 

The conclusions for the y, motion will be the same as those drawn 

for the X, motion. 

Moser theory20 is a technique that is used to study the insta­

bilities of particle motion because of the coupling between the longi­

tudinal and transverse particle motion. The motion of a particle can 

be unstable whenever rYl -Vx or n v'f =. p for m. nand p 

integers. We say that an instability of this type is driven by the 

m 'llx .,.. f),)f ~ P resonance. Moser theory employs a series of 

transformations, called Moser transformations designed to transform 

all low order terms, except the resonance terms which drive an in­

stability. in the Hamiltonian into terms of higher order. We decide 

which resonance to study by determining for what values of m. nand 

p) rYl,) x + YJ .Jf ;:: P In order to use Moser theory we 

will remove the periodic 8 dependence from the quadrupole term by 

the transformation from (X, J pJ(J variables to the (r" - if) 

-
variables, where f and r are complex conjugate variables. This 

transformation is due to K. R. Symon and is described in detail in 

Append ix II. It is shown in Appendix II that 

61 
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(4. A. 1) 

where f and t are the usual Floquet functions and 1 and ? are 

defined by 

;J'f
-J~ f- /, - :>1= de 

- ?yI (4. A. 2) 
- of" t- -V;l. t ­'l 'Jt9 

The transformed Hamiltonian is still not in a convenient form 

for applying Moser theory. In order to bring it into such a form we 

transform from Cur oJ J") variables to (~ ~ -i S) variables, where 

again the bar above the variables stands for complex conjugate, by use 

of the following generating function: 

_"rrLA..V
l.G :: - e. (4.A.3)
~ 

This gives 

(4. A. 4) 

and 
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+nc,u (f' f'S t- :l'f~ f fs t- ~' f' S t- ,,'1's 
of J. If if r f ~ + ~:z f;lS ) + C.1~ ( y/1

a

S S + 1. 'f~ rfs! 

(4. A. 5)of i J f ~ s:L) + C~ 1J (y/ (" g + j. J'I j 1f s"& 

The Hamiltonian has the general form 

(4. A. 6) 

with 

(4.A.7) 

imS 
('I J 

.1l= e 
l> 

and 

(4. A. 8)� 
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The Hamiltonian is now of the proper form for applying Moser 

theory. The first transformation will remove all cubic terms from the 

Hamiltonian except those driving resonances under study. This trans­

formation will have no effect on the quadratic terms or the cubic terms 

which are retained. However. the higher power terms will be altered 

by this transformation. Next all the fourth and fifth power terms 

which do not contribute to the resonances under consideration will be 

transformed away. Again terms higher than fifth power are introduced, 

while those of fifth or lower are not affected. 

This process can be repeated any number of times .. although 

the transformations become very complicated. Eventually the process. 

is stopped, and the terms of all orders above the last transformed are 

dropped. The justification of dropping all higher order terms is that 

in present-day linacs these higher o..:'der terms are so small. such as 

to have only a negligible effect on the oscillation frequency of a particle 

and these higher order terms cannot contribute to the resonances under 

study. i. e., these higher order terms cannot affect the amplitude of a 

particle's oscillation. 

In order to transform the cubic terms away. we use the generat­

ing function 
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-�
~ S~ + ff.SJ II 

where the subscript 1 is used to designate the new variables. Since 

the resonant terms, for which 

would have a term in the generating function going to infinity, we 

exclude this term from the sum. This transformation will leave the 
(,J 

Dresonant terrn ...n A IJ 4 ' ' .,." as a cubic term in the new 
(1, ""-,J, '1"0 J A, J'. 

Hamiltonian. 

From the generating function we obtain the equations relating 

the new variables to the old variables. For example, 

'v i ttl f} 

L..P.11- "e~/""'•.J. A,J,~ .. (4. A. 10) 

We solve the above for! by an iterative procedure. To first order 
I 

in variables 5 J ~ , -r and ~ <' r,: ~ , 1,:: l' > etc. 

To second order in r r. Sand S 

~ , I 
0{ - ./.' A. J 

r = rr S :$� 
(4.A.l1) 

I 
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etc. This iterative procedure is repeated until the order of the approxi­

mation in the variables i .) . ~ and S is one less than the order 

of the terms in the Hamiltonian to be considered. The highest order 

terms we will consider here are fourth order terms; we will therefore 

need the expressions for the new variables through third order. 

Since most linacs are designed to miss the third order reso­

nances (resonances driven by third order terms in the Hamiltonian). it 

is possible to transform all the third order terms to higher order terms. 

Thus, the new Hamiltonian, neglecting fifth order terms and higher, is 

Jl(JlI
:: .,.. (4. A.12)Hg V'f ~, $, .vJ( r"3 + I ) 

with 

(~) fl)
Jl(lIJ..!l-, -- c) 

+ terms from transforming fl • (4.A.13) 

From Graph 1 we see that the only fourth order resonance present is 

the .z -z) ~ - 2. Vt/: 0 resonance. We therefore next transform all 

fourth order terms away except for those driving this 21J",- 2 Vy =0 
IJ() 

resonance. That is, we keep ..1l, . .-k•.I, /f', ;'j 0 term when 

IJ.. ' ,
{f';-J ) -:: - (.Je -J) and transform all other terms to higher order. 

For this we use the generating function 
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(4. A. 14)� 

in which 

(I{) ,: 'fYl 8 
n ., A 

-! l.. I ,.t.J, -Ie,"!, n'I C;S ',- (4.A.15) 
'IJ "I . .J• ..A J ..I,"" - J 

unless ( .J.- .J) + ~ '-...I '):: 0 and m = 0 • in which case 

5 Il. ,I - 0 . The subscript 2 refers to the new
If. 4t.J 1. -A, "I, tyI .. 

variables. 

The new Hamiltonian is now void of all fourth order terms 

except those driving the ;t V~ - ;;L -Jlf =- 0 resonance. It has the 

form 

'JY=, 

(4.A.16) 

(/I) 

+ JL 1/ " .1. (>
• J '/ , '" 
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It is shown in Appendix II that we can approximate the Floquet 

functions t and If by J2/;) x\ • With this approximation in­

corporated the coefficients of the fourth order terms in Hamiltonian 

are 

11/, 

}l'.D/'Ja;'/1 ­

1 
('I) 

J).. I,:l,.:t, 0.' J 0 ~~I fV<~:<f .. 71;;,,),"]\,) - -rI:C:v,-,,\,l}J 

(4.A.17) 

+ l/ - 3 
1J/(:J.lh.-~ J 

Now that we have completed all of the Moser transformations. 

we return to action angle variables by means of the generating function 
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which gives 

(4.A.18) 

(4.A.19) 

and 

VCf?Y/6 
-

Jlf 
-z))c- .,.. -~n ;.fJ 

+ 
(J(J 

.n"", 0 J \' _~_'.J J-::-J_ )Vw + 
(:l11)~ I 

J x i 

t'l} 

-fl. I ~ol0.J~a.Jo 
(;J.rT)"J, 

_1 

UCf 

(4.A.20) 
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In order to obtain a constant of the motion, we transform from 

these variables to new variables ( k, , ~ and J<~ ~ ~ )by means of 

the generating function 

(4.A. Zl) 

which gives the equations 

) 

(4.A. ZZ) 

0(= 
} 

and 

1=Y'I = C?J..../nit> 

.The new Hamiltonian can now be written as 

91" ­

(If} 

Jl,/>p;~2.,,, -.fL" I "4,~0.l0I' _t (K:- r() + (1<,~.,. k:)
Tf'~ l1 a 

(4. A. Z3) 

fJJ ('I) 

..f'L I,I,Vi,~ 1 Jl';.MoV (:.. ~ + (I\,~- k3~) t )( , J< ) un:ZJJ~·{12- ,.n~ 
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The new Hamiltonian is independent of the variable 0<.. and thus 

and k, is a constant of the motion. Since it is 

possible to add or subtract an arbitrary function of 6 from the 

Hamiltonian without affecting the equations of motion, we will subtract 

the term 

(11) 

J<., T ~ (J'L "o,4~Y 

from '1:1"." This gives 

with 

e= 
) 

Z= 

and 



V. RAPID TRAVERSAL OF THE RESONANCE� 

The Hamiltonian can be written� 

(5. A. 1) 

where K, is a constant, t 'f, t and r are slowly varying 

functions of the independent variable 8 , and J<~ and ~ are 

canonically conjugate variables. The equations of motion are 

(5. A. Z) 

and 

@
J 

-:: (€ -t 'P 1(,) - .J. k (g of , VcKL '2. IT ~ ) . 
2 

We use the relationships 

and J'f = J.. (J< ,- 1(,,) oJ (S.A.3) 

to obtain the quations of motion 

J)< 
I 

= ~ J x Jep ;- ~;( 11 ~ .) 

For small values of 0)(, it follows from equations (5. A. 3) that 

The equations of motion for small values of J X become 

72 
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I 

(5. A. 4) 

~= (E-t P/<') + '-I K, (~of r c..ot ~ ff~) 

For the case where JEi ).> 4 J<J r and ~' ~ • it 

follows from equation (5. A. 4) that we can approximate ~ by 

and obtain for S x the approximation 
~ ':. ~o -to '(' e� 

;J. K, r� 
(5. A. 5)J)(:: J "6 e 

Thus for ~J:\: 0 the quantity J and hence the ?< motion isx 

Lounded. But the parameters c. • p g and r are slowly 

varying functions of 8 . For the MURA linac there is a value of e 
such that ~ 

, = 0 When ~ I::. 0 • the equation for J,. is 

(,. n 1<., r, ~ ~Jf~;] ( 8- B,)\ e (5.A.6)
\,.J lC" 

where the subscript i designa.tes the value of the various quantities 

when ~ 1::= 0 . Thus for 0 .I... ~ ~ .,(, y~ • the quantity 

grows exponentially. But tLe parameters ~ p. Z and rare 

functions of {J. Thus ~ 11::t=- 0 when ~ ':: 0 and we will 

pass through the resonance. We assume that 'we can approximate (3 

by 
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}I 

(5. A. 7) 

Then for small J)( we can write 

8.f 
}I 2 

e .21<, r1~;z.n (~. 1- ~ ~; I (j - OJ ) d 8 
'81J 

.I (5. A. 8) 

where the subscript f designates the final va lue of a quantity and the 

subscript 0 designates the initial value of a quantity. The integral in 

21
the exponential is a Fresnel integra1 and is bounded even for an 

infinite interval of integration. Thus the upper limit of the final value 

of J)( is 

;lk, r [f; ((A¢ 2fT ~ • .,. ~ ;to ~~) 
(5. A. 9) 

- ~IIn the case of small J x } we differentiate the equation for ,- and 

obtain 

(5. A. 10) 

As an example} we now use the MURA linac design values to 

obtain an estimate for the growth in the "X amplitude caused by this 

resonance. For small values of ~x we find 
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(5.A.ll) 

From the graph of ..J versus f 2.' we obtain the maximum value of 

t~' t. = 7. 896. Since 1< , is a constant of the motion for any 

particle, it is always equal to its value at injection energy. Thus the 

maximum value of 1<., at any energy must equat the maximum value 

of K, at injection energy. From MURA design parameters the maxi­

mum value of 1<:. 2 x lOll, and (3 
I 

::. 0 for a particle with
i 

kinetic energy of 2.3 Mev. At this energy or = 1. 5 x 107 and 

,,-3 J 
~. = 1. 6 x 10 • Using these values in the formula for xi I we 

obtain 
.0;1.(. 

< J)o e JJ X f (5. A. 12) 

or 

J xf .4.. 1.0;2.' J X() • (5.A.13) 

We now relate J t to the original variable X by uSing the approxi­

mation that J \' is small, 

Xf X,i-
-::. J~J f .... I r~ 1+_ ( J)Cf) 

~

~ - ....
X -Xt 6 

- (5. A. 14)
o ~)o }r~ 1 (,J)CJ ~ 

0 2. 
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The growth in J) for a particle with the largest possible 

value of J~ in the MURA linac is less than 2.6 percent. For small 

J)C the quantity 'X • which is the actual displacement. is proportion­

al to (J}I)~, Thus the maximum growth in X is less than 1. 3 per­

cent. 

Unfortunately. at this time the MURA linac has not been built 

so that it is not possible to experimentally check these theoretical 

results. In the CERN linac values for the tunes are chosen such that 

-v)( = O. 75 -J,!, at the input end of the linac and v~fincreases up 

to Vx = 1. 5 V<f at the output end. Thus particles accelerated in 

the CERN linac cross through the 2 v't = 2 V'f resonance. The 

experimental results for the CERN linac do not demonstrate any 

growth in the transverse motion. The fact that a particle can cross 

the 2 V)( = 2 VCf resonance without experiencing X growth is a 

very fortunate result. It would be necessary to have v)( > VCf at 

the injec'..ion energy (since vcp decreases with energy) if the trans­

verse motion experienced a large growth. and this requirement would 

, 
demand higher quadrupole fields in the first few drift. tubes. However. 

the quadrupole field requirements for the first few drift tubes are 

already very difficult to meet and it is doubtful that higher fields would 

be possib:e. 

The results we have obtained can be applied to any linac that is. 

designed to pass through the 2 -rJ X - 2 Vf = 0 resonance by the 
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following procedure. First, the following formulas are used to calcu­

late Vx and -,)1' as a function of energy, and the energy for which 

Vx ~ V'f is obtained. 

:z :I "1. 

N2.e f., T Co ~ tfJs e N <:. ~s-Jx = ­
'1 

.;1. Eo ~6 '1"6 
s

W 
+ 

.:2 f c) W '(oS 
~2na. )� 

(5.A.15) 

1 ~"," e ·t Ie. s..:.. 
V<f -=� 

Eo) \'Os ~~-a w� 

This energy is then used to obtain a value for ~ It and (" from 

(5.A.16) 

.L ~}r= v S C:ll/ , 
ll. 

for which 
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3 

b 
~ t ( J I ( ::I. <P,,) T 3 S3 o. tI.s) ))-::: (5.A.17) 

J
3 
(a.~) 'f~ 

3 3 
.:l e fo T Eo ( ~s Q£ J 3 /"J. ~)B --

./w 3 
~.. 

and 

1 
e {. Tc. N J~ (oz.~J 

C= ­
~ E. \is '(.$' te> Cf~· 

Since KI is a constant of the motion. it must be evaluated at 

the injection energy of the linac- The expression for k I is 

(5.A.18) 

where f~ has a maximum value of 7.896. These values for @t 
r: and K, can be substituted into the expression for Xf/'i. o 
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k r· JfT/ ~ 
I' ~. 

(5.A.19) 

to obtain a value for the growth in. the transverse oscillation amplitude 

due to passage through the 2 Vx = 2 ..,;if resonance. 



VI. LONGITUDINAL SPACE CHARGE EFFECTS 

If a large number of particles is accelerated simultaneously, 

then the electromagnetic forces between particles will affect the par­

ticle motion. These forces will be diviced ir.:o two categories. The 

first which influence the transverse motion will be referred to as 

transverse space-charge forces. The second which influence the phase 

motion will be called longitudinal space-charge forces. The transverse' 

space-charge problem11 has been discussed in detail for linacs. while 

the longitudinal space-charge problem has been discussed for circular­

12 22 23 
type accelerators. > • We will adapt the techniques used in the 

treatment of the longitudinal space-charge problem in circular accel­

erators to the treatment of the longitudinal space-charge problem in a 

linac. 

The repulsive longitudinal space-charge forces tend to weaken 

the total phase-focusing force and for a sufficient particle density 

result in a complete loss of stability. We will define the maximum 

number of particles that can be accelerated per unit time and still be 

longitudinally stable as the longitudinal space-charge limit. We will 

first obtain a general expression for the longitudinal space-charge 

limit, and as an example the longitudinal space-charge limit will be 

calculated for the MURA proposal linac. The results for this example 

will show that the space-charge limit is greater than the expected 

beam intensity. 
80 
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It has been shown in Section II- B that we can write the 

Hamiltonian which governs the pure phase motion as follows: 

(6. A. 1) 

. In Section II- D the 

carrier-wave approximation was discussed in detail and it was shown 

that only one component of the standing wave had an important effect 

on the particle motion. If we neglect all but one component of the 

standing wave, we obtain 

U (Lf) ) A, =~ f~ T ~ f- (6. A. 2) 

in which U (Cf) is the space-charge potential. 

We make the same definition of the synchronous particle as in 

Section II-B, namely '1 -= 1£ and I..f -= ce . We then make the 

same transformation as in Section II-C to new variables ?'f and f. 
This results in the following expression for the Hamiltonian 

2­

'H (f~ 'f "') -; .!!:e- of e {,!. (lfun ~ -~ Cf ) (6. A. 3)
3 7. ,.I ;tB w 6 

+ .2Jt ~w u (ef) ) 

with 
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- 2B= E - m. c...J o 

(6. A. 4) 

~/ c and 

In the following discussion we will be applying proofs and 

techniques which are discussed in detail by Nielsen and Sessler12 to 

the problem of space charge in linacs. We now define the quantity 

as the density distribution function in longitudinal 

phase space. For a "stationary" solution l i. e. I a solution f such 

that d If / d J -=. Q , the function f(p" .. Cf) must satisfy the 

Boltzmann equation 

";)'f U)-oI ./ (6. A. 5)- PCf + T - ) 
~PCf 

..... 
i. e., 'V 'f. 1Jp =0 where '1T-p is the phase velocity vectorI 

directed along a phase trajectory. Thus any distribution function 

which has only a variation in a direction perpendicular to the phase 

trajectories is a stationary distribution. We will assume that the linac 

fills a region bounded by a phase trajectory with a constant density of 

particles. We thus write ef (F". f./) -:;. 'f" for f y < ~ Itt) 

and f (P<r. c.p ) :; 0 for Per > Ph (Cf) with ~ tep) as a 
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curve representing a phase trajectory. We now can write /\ (,,) 

which is equal to the charge density per unit angle of t.f . 

A (If)" e ) '" f ("", <f) 01 Pf = :t e a- I~ t<f) J~ 
-01:1 (6. A. 6) 

and we have used the fact that ~ ( if) is symmetrical about 1;,= 0 • 

Since P (if) is a phase curve which corresponds to the motion of ab 

particle, we can write 

Ho: 
b 

as the equation which defines Pb ( cf) as a function of Y' for a 

value of '>:13 ::, Hb • 

We now have reduced the problem of longitudinal space-charge 

effects to a problem of determining the function PJ. (Cf) for various 

values of the constant Hb. From the function Po I Cf) we can find 

the values of CIl and ~ such that PAt (~) ~ Pb ( ~} c 0 and 

~"/C() ~ 0 for ~ ~ Cf ~ Q( , where we have defined 

~ ~ 0( , Then the total number of particles accelerated per period 

of the radio-frequency electric field is equal to N.. and 

(6. A. 8) 
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Thus by knowing the function Pb ( C/) • we can find the number of 

particles accelerated per unit time for various values of J.1 b • 

The solution of Po ( q ) is dependent upon the function 

lA f</) which in turn is dependent upon the function A (CPJ by means 

of the following equation: 

(6.A.9) 

in which 1<. (<f .. 'PI) is a potential kernel which takes into account 

the shielding effect of the drift tubes. 

The potential kernel J< (lp - Cf' ) is derived in Appendix m 

for the case of a beam with a periodic structure enclosed in a long 

cylindrical pipe. The pipe is assumed to have walls of infinite con­

ductivity. The potential kernel can be written as follows: 

(6. A. 10) 

with 
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a. is the radius of the cylindrical pipe, 
(6.A.12) 

b is the radius of the beam, 

01, (X) ~ (t [6 (t) dt.l~'X. 
b 

d~ ('{) :. - ~~ (t I<~ (iJ dt .. 

and II) and 1<0 are zeroth order modified Bessel functions. 14 

The quantities ti, (X) and ol~( 't} are plotted on Graphs 4 and 

5 as functions of -X • Since L is a function of energy. the values of 

the 9fl 

I 

S and hence the form of the potential kernel are energy 

dependent. The physical distance, A ~ ,between particles 

separated by an angle A If increases with the energy of the particles. 

so that the space-charge force between particles separated by an angle 

A Cf is largest at injection energy. For this reason the space-charge 
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limit occurs at injection energy and we will restrict ourselves to the 

problem of space-charge forces at injection energy. In the following 

calculations we will assume for the size of the beam a radius of approxi­

rr.,1tely O. 5 em and for the size of drift tubes a radius of about 1.5 em. 

We use these values along with Graphs 4 and 5 to obtain the values of 

'n.. Graph 6 shows dn. as a function of n where it is to be under­

stood that n has only integer values and that J- n. '= ~ n. • From 

Graph 6 it is seen that ~ 1\ -P' 0 for (l ~ ob I and therefore we 

will approximate the potential kernel by letting In =0 for n > y'l ",""'Jf. 

This approximation will te valid if the variation ). I 4' ) is small 

over the angle IJ. 't= 'Vn ""tAol( • The potential kernel K ('1- C/') 

is plotted as a function of ((j - CP') on Graph 7 where we have used 

the first 50 harmonics to calculate J< (Cf - 'f') 

We have approximated the potential kernel by a finite sum of 

trigonometric functions. We now proceed to further approximate the 

potential kernel by approximating this finite sum of trigonometric 

functions by a power series in (Cf - cp ') over the range 

o ~ I c.p - 4"J ~ ~-~). For values of the quantity (rJ.-~) 

which are smaller than 0, 1 TT we will use the following expression for 

(6.A.13) 
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o 
If) 

0 ... 

c 1 'oD 
fI.l ..d::l 
fI.l C ~ M 
Q) ~ > 

~ -0 
0'"":» 

0.. 
-.D :r- ~ ~ ()
cJ ""a c:) ~ c::) ~ - c:i 

~ 
u( c:r-, 
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The validity of the power series approximation depends upon 

the range I 'f - 'f' I ~ (d- - ~) . Since we are interested in a 

space-charge limit, it is important that this approximation be valid 

for large values of the phase density. We will show later that as the 

phase density V- becomes large the quantity (0/. - (0) becomes 

small so that the above expression for K (C! -'I') will be valid for 

large phase densities. Care must be exercised to make sure that the 

quantity (cJ.. - ~) does not become so small as to be of the order of 

TT /n. "",,,,y or else the previous approximation will be invalid. 

We now return to the equation rb (<.f) in which we have 

substituted for [). (l.f) its equivalent as an expression in terms of 

tJ (6. A. 14)
<is' n:I. e'1 <:r ----- ~ I F;, {(p') I(q. • - Q., ('/- 'd ) J(/

" wJ,.. 
~ 

The term sin 'f will next be expanded as a power series about the 

value of l.p '::: Cf:) • Since we will be concerned with large values of 

\J : the range of the expansion will be small, and we can approxi­

mate sin 'f by a cubic polynomial in the variable (Lf- <f~) . We 

now proceed to find a self-consistent solution for P.b ( c.p) by 

assuming that we can write 
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in which ti1e quantities ~. rI. ~ and '0 are to be determined. 

We now make a chang~ of variables from the variable t.f to a 

variable if:: (f./ - 'f:, ) . The eqj.lation for P0 ( (j ) becomes 

(6.A.15) 

;r 

~_ (:1"- ifif'tO-. if') If..tij')/dif: 
~ 

with 

, _ 1 

(6. A. 16)
fbi'!)::: ~ [Cd-'ll (ef-~)(<P-~)] 

and ) 

+ 01.t (a. t Q. If") !l'h ICf ') I d'f~ 
~ 
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The function rb (Zf) is dependent upon tle value of the 

. ~onstant H b. For certain values of H b two of the three roots ~ 

and i are complex and the phase curve 'Pb tq) is not closed. 

Since we a:ce interested in calculating a space-charge limit, we will 

-pick the value for Hb such that or r , which is 

the condition for the maximum area inside of a closed phase curve. 

We now substitute for P ('i ) the expressionb 

(6.A.17) 

into the integral equation for p~ (cj ) and equate coefficients of 

similar powers of <f to obtain the following conditions: 

..� 
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~ 
z. 

(;. +l ~ ) t ~t;: ~ ~ :: 
(6.A.18) 

C' - - - ~ I /. .,~ 
o @(",. ~) + Ii ~ (~ - ~ )'21 

" 

and 

In the limit that V ~ 00 we have the conditions that 

(6.A.19) 

and� 1. 

r r T I~ "0 L )- -) ~ e 16 (� . r.t
( d.- A .. =-� - A~\' .a..W 3:l n'1. e"'t;jo., .,r--'Y s. 

From these expressions we see ttat "d. and (3 go as \J - O/.{ and 

hence we are justified in using the quadratic approximation for 

k(q-lf')� when rr is large. 
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The following formula gives the total number of particles, N, 

accelerated per period of the rf field 

N :: J v-J.
;z 

Jf.f'/'l/ ,It(' = -!i q- d( ,z ­
(6. A. 20) 

(J 

We substitute for ~ , 0<. and ~ the previous expression and obtain 

N= (6. A. 21) 

The maximum current that one can obtain out of a linac is equal 

to the charge of the proton times the frequency of the rf field times 

the quantity N. This gives for the maximum beam current, I, the 

expression 

(6. A. 22) 

in which f e is the rest mass energy of the electron (0. 511 Mev) and 

R is the classical radius of the electron (2.82 x 10-13 em).o 

The value for a, is obtained from Graph 6 and is a. -::: :l. 0 ; 

the values for {~, T, L and sin Y; are obtained from Table 1. 

We substitute these numbers into the formula for I to obtain 1-=== 50 rna 

as the longitudinal space-charge limit in the MURA lir.ac. Although 

beam current expected from the MURA linac is 30, less than the 
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calculated longitudinal space-charge limit, the accuracy of the calcu­

lated limit cannot be trusted to the extent that we can really say that 

the designe.c;icurrent will be less than this limit. The inaccuracy of 

the calculation comes from two conflicti ng assumptions. The first 

assumption is that the variation in the charge density "rep) is small 

over a distance A <f -- ';/(l. ""-.r where nMA)C is the highest 

harmonic considered in the potential kernel, while the second assump­

tion is that difference (04.- ~) between the two zero points of 

).. I 'f) is small enough to permit approximation of the potential 

kernel by a quadratic in the variable (if - if') 

While there appears to be a range in the variable (;l- rf) 

such that both assumptions are justified, for the case where the phase 

dp.nsity hecorr:.es infi ite, th2 quantity (~- ~) goes to zero so that the 

number of harmonics needed to approximate the potential kernel 

becomes infinite. The result for the space-charge limit is also rather 

pessimistic sin~e it assumes that longitudinal defocusing force experi­

enced by an off-axis particle is equal to the longitudinal defocusing 

force acting on an axis particle, but the shielding effect of the drift­

tube walls is such as to weaken the defocusing force for off-axis par­

ticles. This calculation shows that the approximate space-charge limit 

is of the order of the design beam current in the MURA case. 
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It appears that the longitudinal space-charge effect will be very 

important in limiting b'e.am intensities from linacs. More exact calcu­

lations of longih.:dinal space-charge forces should be done in the future 

design of linacs. 



APPENDIX I 

First we perform the integral 

.. 

in which 0( I ~. and 0' are roots of the cubic equation 

. The roots are functions of J 

However I the roots are linear in a. so that we can write 

-Ita(1) :: (:.-.S) and (0:~'( ) as a function of .J only I 

and a. . 

and also we write 

~ 

I -= r j (ol-f.) (X- '? J( ¥. ­

c; 
We make the substitution 

0- 'C~1.~~<f 

I_~'" s:,.:...2rp 

and obtain 

) 

'(). d x. 

.. 
We integrate by parts and obtain 

98� 
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We let 

) 

and 

in wh:ch k and £ are called complete elliptic integrals of the 

first and second kind. We use the relations 

-k£ - /(' 
;1( .J1< 

and the expressions for € and 1<' and we obtain 

.. 

This give~ 
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Since (.(.- Y'/~) and ~I. are independent of CL. we can write 

Next we want to determine 

= (~) 
- J 

Since 

CJ '>3 .Fa a:.P .,..a.,2 X - -X' I (he 
~ 

then 

d-fJ. 
d.1 

-:: 

Again we substitute 

~_ ~ -Aa 
~2lf 

J - -Ita~.;l 'f 

which gives 



101 

Or the inverse 

d~
:.-

d£. 



APPENPIX II 

The Hamiltonian considered here is of the form 

t:Ij...J : P'X~	 X~ 
rtQ. 2:" + 3'e) 2. 

The equations of motion are 

I 

-X = I~ 
I D� 

and p)( = -:J Ie) X J 

or rewriting as one second-order differential equation~ we obtain 

')( 
/I 

t 9 18 ) ')(=0. 

This equation has two independent solutions p. and P.t ~ where we 

x
write .AA,::: e i 1J {} t /1}) and.,)A2.:: e -I. v¥ IJ j ( 8) . If 

~ (It) is nearly a periodic function, 1. e., d(8):: r g1L e in S 

where ~1& is a slowly varying function of () ~ then 'f and jJ are 

nearly periodic functions of (;) . We can then write 

and 

-
where fn. and ~110 are slowly varying functions of ~ • We substi­

tute this expression for f' into the differential equation~ and neglect­

ing the slow variance of In and ~ ~ we obtain 

We set n.::: 0 , and we obtain the equation of the tune 

•� In order to solve for ~ ~ we define 

102 
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~ as our normalizing constant and proceed to iterate the equation 

for If:... Since Jh. <. '" ( • we assume for our first approxima­

tion that f f&, I to ::. () for . n. ~ 0 and derive a second approxi­

mation 

J 

We use this approximation to obtain a third approximation 

~ n-~ ,,,,. 1 ntO 
(11- W1 -t -V __)2 

We can repeat this procedure any number of times and for ~"' <1 

it will converge if 1J1- is not close to integer. We stop with the 

second approximation for 'fn. • anq we obtain for -tJX the following 

"smooth'1 approximation: 

Since we can write 

~ 

Notice that we cannot write 7J if ~ jo since even for 

Ig~/.(.( 1. • it is possible that 19 fl 1 .> '> ~ (> for n to c> . How­

ever. it is possible to write f", / tiD -<..t. i rz. t: 0 for 
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many other cases# and in particular, in the expressions for 
('II

JL. I, -AtJ, .... ' ,.-t',.... we will be justified to use only the 'J{, term.� 

We return now to the Hamiltonian� 

t.+ J (8) 2, 

We again use p, and.,/Aa. as the two independent solutions and write 

J 

I .;,v~6 _ 
",u~ ::. - t. e 'I (8) ~ 

where 

) 

From the differential equation, we obtain 

The Wronskian, (.JA,A: - M/)tz.) , is a constant which we will 

pick for normalization purposes equal to - 4 i. That is 

In transforming from (x, p)) variables to (1' .J" if) . we use 

the generating function 

G= 
which gives 
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- .. f� ~ - ; 1': 7"1 - :t p)( ] or 'P~ =� 

t (2 jf i ff.J=� 

and� ~G 

J9 

where we have used the properties of If f and 1 which 

were disc'!lssed previously. 

From the normalization condition we see that if 

and 

then 

or 

•� 



APPEKDIX III 

In this appendix we will solve for the potential of an on-axis 

particle as a function of the charge distribution. We will assume that 

the charge distribution is periodic in the variable .-& 3 - cv t with a 

period of 2 rr and can be represented by a step function in the vari­

able r. Thus we assume that the charge density ~ can be written as 

follows: 

J 

where On (v) ': Q..... ::: constant for and 

for r> b . QrI. (r):. " 

We will also assume that this charge distribution is enclosed 

in an infinitely long circular pipe with infinitely conducting walls. This 

gives the boundary condition that the potential equals zero at the walls 

A the pipe. We now make the transformation to a moving coordinate 

system such that which gives for the charge 

density 
tb 

~ ( f". ~) :: I: Q",,(r J e i ~.h.~ 
n=D 

We let be the potential function which we assumeLI (Y11) 
can be written as 

106 
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This potential function must solve the following Poisson's equation as 

well as the previous boundary condition 

Upon substituting a Fourier series for U (r. ~) and \ (r,;) 

Poisson's equation becomes 

i (r d (j (r)) _n'l --&' II (r):: - 1/11 Q", r.,.)elf" dr ..,. (lin. ' IV 

The solutions to the homogeneous part of this differential equation are 

zeroth order modified Bessel functions. We represent the two 501u­

tions of the homogeneous equation by "j,()') and 1~ (r) where 

1, (r): -L (~..A r) 
)o 

The Wronskian of dl and 1.. will be denoted by W (1 1 ,J... J r) 

and is given be low 
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The general solution to the above differential equation is equal 

to a specific se lution plus C, y. plus C~ y2. wh ere C, and C", 

are constants which are chosen to match the boundary conditions. The 

specific SoLltion to thc differential equation is given below as 

. ~­V (r) e ,n J 
1'\ 

V'Il. (r) ".: 

which becomes for to" > b 

,.. ~ 

Vr. 1r )-: J.ffj QN l( S. iL,C>tA-(;) cit) k (lI.A.r)
6 

~-(rt go (...~ t) ,tit ) 

a;ld for r.( h 
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We now use the boundary conditions that U (4 I ~ ) ::: 0 

where a.. is the radius of the cylindrical pipe, and that U (oJ ~) 

be finite to determine the constants C, and C;l. in the equation 

It follows from the second boundary condition that Ca, must equal 0, 

and from the first boundary condition it follows that 

By defini:1g If:..A ~ and '). I Cf) as the linear charge 

density per U:lit angle <f ' we can write 

where 
11' :a._ 

-;; b Q~ 

We substitute this expression for A", into the equation for� 

L1 'l1 (r) to obtain for the case ro; 0� 

..� 
or 
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where 

)1 ,~h 

} t K./t ) cit) 
() 

and 

4 

;,/T 
. ..L ( -irtlf 

The coefficient A 1'\ . is equal to J.rr A(Cf) e cJ If 
1I 

which gives the following expression for tie potential function of an on-

axis particle 

where 
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and :,1 the limit that no ~ Q 



\~·~:~::::'·c:::. Arc:1. Elcc'troteCil. 21, 387 (1929) .� 

.s. O. Lawrence and D. ,1. Sloan, Phys. Rev. ~, 20:::2 ':~1.C'::::'.:
 

::;. -I. W. Alvarez, Phys. Rev. ~, 789a (1946).� 

4.� J. C. Slater, Rev. Mod. Phys. 20, 473 (1948). 

5.� E. L. Ginzton, W. W. H3.nsen, and W. R. Kennedy, Rev. Sci.� 

Instr. 19, 89 (1948).� 

6.� V. 1. Veksler, J. Phys. U. S. s. tH.. ~, 153 (1945). 

7.� E. M. McMillan, Phys. Rev. g, 143 (1945). 

8.� Wolfgang K. H. Panofsky, UCRL Report No. 1216 (February,� 

1951, unpublished).� 

9.� J. P ..Blewett, Phys. Rev. 88, 1197 (1952). 

10.� Lloyd Smith and R. L. Gluckstern, Rev. Sci. lnstr. 26, 220 (1955). 

11.� 1. M. Kapchinskij and V. V. Vladimirskij, Proceedings of the 

International Conference on High Energy Accelerators (CERN, 

Geneva, 1959), p. 274. 

12.� C. E. Nielsen and A. M. Sessler, Rev. Sci. Instr. ~, 80 (1959). 

13.� F. E. Terman, Radio Engineering (McGraw-Hill, 4th Edition, 

1955), p. 145. 

14.� G. N. Watson, Theory of Bessel Functions (Cambridge 

University Press, 

15.� Herbert Goldstein, 

Chapter 6 - 9. 

2nd Edition, 1958). 

Classical Mechanics (Addison- Wesley, 195Q, 

112 



113 

16.� K. R. Symon ~ al.. Phys. Rev. 103. 1837 (1956). 

17.� Max Born. The Mecr~anics 0: the Atom (Fredrick Unger. New 

York, 1960), p. 56. 

lB. L. M. Milne-Thomson. Jacobian Elliptic Function Tables 

(Dover Publications. 1950). 

1D. Harry B3.tcma.n. HigLer T:-anscendent;ll Functions (McGraw-Hill. 

1953).� Vol. II. Chapter 9.� 
•� 

20.� J. Moser, Kach. Akad. \Viss. Gottir.gen Ha. No.6. 87 (1955). 

21.� Ja:mke-Emde-Losch. Tables of Higher Functions (McGraw-Hill, 

1960). Chapter 3. 

t2.� C. B. ~ielsen. A. M. Sessler I and K. R. Symon. Proceedings 

of the Ir::ernational Conference on High Energy Accelerators 

(CERN. Geneva. 1959), p. 239 

23.� A. A. Kolomenskij and A. N. Lebedev. Proceedings of the 

International Conference on High Energy Accelerators (CERN. 

Geneva. 1959). p. 115. 

• 


