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ABSTRACT

In this dissertation problems of particle dynamics in a standing-
wave Alvarez linear accelerator with quadrupole focusing magnets are
treated. The previous single particle theories are extended to take in-
to account the coupling between the longitudinal and transverse motion
of a particle, The Hamiltonian governing the particle motion is derived
and then used to obtain an adiabatic invariant for particles which travel
along the axis, From this Hamiltonian the frequencies of small ampli-
tude transverse and longitudinal oscillations are obtained as functions
of the particle energy. The adiabatic invariant for on-axis particles is
used to obtain the longitudinal oscillation amplitude. Next the Hamil-
tonian is transformed by the use of Moser theory to obtain a new Hamil-
tonian which is then used to treat the coupling between transverse and
longitudinal particle motion, Specific results are illustrated in the
case of the MURA linac for which the main coupling resonance is the
one where the transverse oscillation frequency equals the longitudinal
oscillation frequency. In this case, it is shown that transverse oscilla-~
tions grow by less than 2 percent, Lastly, the influence of the space-
charge forces on the longitudinal particle motion is studied, and a limit
on the total number of particles which can be accelerated is obtained.
The space-charge limit is calculated for the MURA linac to be 50 ma.,
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I. INTRODUCTION

A. Statement of the Problem

In this dissertatior}:_ we will treat problems of particle dynamics
in a linear accelerator. W&t will concern ourselves with how the elec-
tromagﬁetic fields of the linear accelerator affect the motion of parti-
cles and not wi*h how the electromagnetic fields are produced, except
in the case where the fields are produced by the particles that are
being accelerated.

B. Historical Review

The linear accelerator, often called linac, is an accelerator
which uses a radio-frequency electric field to accelerate particles in
a straight line. Any hisiorical review of linear accelerators would

1 accelerator. The Wideroe

start with a description of the Wideroe
accelerator, the ”frorerunner of all resonance'accelerators, as shown
in Fig. 1, consisted of two hollow cylindrical electrodes to which
opposite periodic voltages were applied. The frequency of these volt-
ages was such that the time required for a particle moving along the
axis to transverse one electrode was just the time required for the
electrodes to change polarity, and the particle was accelerated by
receiving successive voltage kicks. Lawrence and Sloanz then

extended the idea to ten or more accelerating glectrodes and acceler~

ated mercury ions to the 1 - 2 Mev range.
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The Wideroe Linear Accelerator
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Before World War II, when this early development work was
being done, the cyclotron was coming into being. Because of the
success of the cyclotron, this early type of linear accelerator was not
exploited as a research tool. "

After World War II, with the new strides made in the develop-
ment of large rf power tubes, the interest in the linac was revived.

At this time the Alvarez linear acc:elerator3

was proposed. The
Alvarez type of accelerator uses hollow cylindrical electrodes, called
drift tubes, of increasing length as in earlier linacs; however, the
method of obtaining the electric field is different. The electric field
is obtained in this type of linac by placing drift tubes in a cavity reso=
nant at the desired frequency. The ends of each drift tube are oppo-
sitely charged at any instant and all drift tubes are excited in phase.
This mode of excitation does not requiré large driving currents in the
drift-tube supporting stems and hence leads to lower power losses than
were present in the earlier linacs. In the Alvarez structure the parti-
cie takes one full rf period to travel between gap centers of successive
drift tubes instead of one-half of an rf period as in the Wideroe type.
There is at the present time another type of linac design which
is better adapted to the acceleration of electrons than the Alvarez
design. "This type is called a traveling-wave linac, because the elec~
tric field is a wave traveling in a cylindrical pipe serviﬁg as a wave

guide. The phase velocity of the traveling wave is slowed to the



velocity of the eleétron by loading the wave guide with disks of conduct-
ing material at regular intervals. The electrons remain in phase with
the traveling electric wave. ¢ ar accelerated by "riding on" the
traveling wave. The fact that electrons approach the velocity of light
at relativel - low energies makes the traveling wave linac more useful
for the acceleration of electrons, while the fact that in most proton
linacs the protons can be considered as nonrelativistic makes the
Alvarez linac more useful for accelerating protons. There are other
differences in the linacs: the traveling wave linac is excited at S-band
frequencies (1000 Mc/s to 3000 Mc/s) as compared to frequencies
close to 200 Mc/s for the Alvarez linac; and it is not necessary to have
special radial focusing devices in the traveling wave design. The
velocity of the electrons is close to the velocity of light and it will be
shown later that the radial defocusing force due to the rf field ap-
praches zero as the velocity of the electrons approaches the velocity
of light. The energy gain of the electrons appears almost entirely as
an increase in the mass of the electron and for a given radial momen-
tum the radial velocity decreases with energy so that the radial dis-
placement increases very slowfy.

The relative advantages of the two types of design have been

4 and by Ginzton, Hansen and Kennedy. 5 These

analyzed by Slater
papers show that for velocities low compared with the velocity of light

the Alvarez design is more economical, while for velocities close to



the velocity of light the traveling wave design is more economical.
This fact has led a group at Yale to study the problems of transition of
particles froi.. an Alvarez-t;«pe‘linac to a traveling wave linac at an
energy which is at the upper end of the r:ange of the Alvarez structures
and at the lowe~ end of the range of the traveling wave structure,

Table 1 lists the linacs wl.ich h: se beei. built or are under construction.
At present the only limil in energy is an economic one.

C. Previous Investigations

Most particles have either a slight error in energy or arrive
at the gap when the voltage across the gap is at the wrong value, and
we must therefore concern ourselves with their stability in energy and
phase. We define a synchronous particle as one which has the proper
energy and phase relationship (o the radio-frequency electric field so
that it travels longitudinally between successive gap centers in exactly
one period of the electric field. There are three possibilities for a
nonsynchronous particle. The first possibility is that the energy and
phase oscillate ubout the synchronous values and the error in energy
and phase is bounded. The second possibility is that error in energy
and phnse increases. The third possibility is the boundary between-the
first two; in this case the error in energy or phase neither oscillates
nor increases but instead approaches some fixed value. For the first
case we say that the motion is stable; for the second case we say that

the motion is unstable, while for the third case we say that the motion



TABLE 1

PRESENT DAY LINACS

Location

Type of Particle

Energy (Mev)

Radiation Laboratcry
University of California

Radiation Laboratory
University of California

. Radiation Laboratory
Livermore

University of Minnesota

U.S.S.R. (Moscow)
U.S.S.R. (Big Volga)
U.S.S.R. (Kharkov)

Radiation Laboratory
University of California

Yale University
AERE (Harwell)
CERN (Geneva)
Brookhaven

Argonne

Proton

Proton

Deuteron

- Proton
Proton
Proton

Proton

C, N, O, Ne

C, N, O, Ne
-

Proton

Proton

Proton

Proton

32

10

68

40

g

21

107/nucleon

10/nucleon

50

“50

50

50



TABLE 1 (continued)

PRESENT DAY LINACS

Locatlion

Type of Particle

Energy (Mev)

Stanford University
Stanford University
Stanford University
" France (Orsay)

U.S.S.R. (Ukraine)

MIT

Electron
Electron
Electron
Electron
Electron

clectron

40

700

1,000

30

18




is at the threshold of instal:ility, This longitudinal type of motion of
the particle also is called phase motion, and this type of stability is
called longitudinal stability or phase stability. The possibility of
phase stability was discovered for circular accelerators by Veksler6
and McMillaLn.‘7

The same three possibilities exist for the transverse motion of
particles away from the axis of the linac. We say that motion of par-
ticles that oscillate in radius about the axis is stable motion. We call
the motion of particles thatvhave unbounded radial amplitudes uﬁstable |
motion, ard for particles which neither oscillate about the axis nor
hive unbounded radial amplitudes we call the motion on the threshold
of instability. This type oi motion is referred to as transverse motion
aid this type of stability is ¢:1l- 1 trinsverse stability.

Panofsky‘was or.~ ot the first to study the problem of beam -
dynamics in thc linear accelerator. 8 Panofsky showed that for phase
stability thie synchronous particie nmust be crossing the accelerating
gap while the electric field is increasing in time. Ie also showed,
neglecting second-order velocity focusing, that in order to have radial
stability the particle must be crossing the gap while the electric field
is decreasing with time. This incompatibility can be removed either
by the introduction of grids on the entrances of the drift tubes, which
introd.ce radial focusing electric fields by making electric field lines

terminate on the grids instead of on the walls of the drift tubes, or by



S
the use of focusing magnets. Until the advent of strong focusing mag-
netic quadrupoles suggested by Blewett, S linacs were designed and
ilt either with grids on the entrances of drift tubes, or with solenoids

-ounted inside the drift tubes. To be durable, the grids must be so
thick that they substantially reduce the ir.:.sity of the beam. In addi-
tion, the maximum error in energy or phase that a particle can have
and still execute both stable phase and stable radial oscillations is un-
desirably small in the grid focused linacs. The undesirable feature of
solenoidal focusing is the large power necessary to produce the
required focusing fields. This type of focusing is therefore unattrac-
tive because of the expense of supplying power and the difficulty of
removing the heat generated. The most modern proton linacs are
designed to obtain their radial focusing by the use of quadrupole mag-
nets.

Smith and Glucksternlo have treated the problem of beam
dynamics in an Alvarez linear accelerator with quadrupole focusing
magnets in the linear approximation using matrix techniques. They
showcd that one can treat the radial motion as a response to focusing
termis due to the quadrupoles and a defocusing term due to the rf field
of the gap. Since the defocusing term is strongly dependent on the
relative phase between the particle and the accelerating rf field, the
radial motion of a particle is strongly coupled to its phase motion.

Smith and Gluckstern treatcd the radial motion of a particle by
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assuming that the phase between the particle and the accelerating rf
field was constant.

It is useful to introduce a cuordinate system which defines the
Z axis as t..e axis of the linac and the x and y axes as the axes of the
quadrupoles. We define a quadrupole which is focusing in the x direc-
tion and defocusing in the y direction as a plus quadrupole, and a
' quadrﬁpole which is defocusing in the x direction and focusing in the
y direction as a minus guadrupole, If the types of quadrupoles are used
together in some alternate fashion, as for example (+ - + -) or
(+ + - - + + - -), then it is possible to obtain fo/cusing in both the x
and y direction. With one quadrupole magnet per drift tube, the linac
parameters have a period in z which is dependent on the arrangement
of the types of quadrupoles; for example, for the + - + - the period in
z would be the length of two drift tubes. We will define the tunes 2, ,
1)7 and ")(P as the number of oscillatioﬁs per period of the linac
parameters of the x, y, and Y motion respectively. Smith and
Gluckstern showed that if { is held constant at various values, then
the x and y motions which result will be stable (stability requires Ux
and "-)y non-integral) for certain types of quadrupole structures. When
the x or y motion is unstable, the x or y amplitudes grow exponen-
tially with z, and particles are lost on the walls of the drift tubes.
Smith and Gluckstern did not treat the problem on instability

resulting from nonlinear periodic forces, and they neglected entirely
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in the phase motion the fact that the accelerating rf fields are func-
tions of the radial position. They considered only the wave component
of the rf field which is Synchro:wus with the particle.

When }.ax"ge numbers of particles are accelerated, the inter-
action betwoeen the particles can become important. The transverse
motion of pariicles in a linac with space-charge forces has been treated
by Kapchinskij and Vladimirskij, 1 and they have shown that the trans-
verse space-charge limit is larfer than the output of present ion
sources. Nielsen and Sesslo::r12 have treated the problem of longitudi-
nal space-charge forces in circular accelerators.

D. Scope »f the Dissertation

In this dissertation we will treat only quadrupole-focused proton
linacs of the Alvarez type. We will extend the single-particle theory
of Smith and Gluckstern to take into account the coupling between the
longitudinal and the radial motion of a particle, and investigate the
validity of neglecting the wave components of the radio-frequency field
wiiich are not synchironous with the particle. We will derive an adia-
batic irvariant for particles with pure phase motion, i.e., for particles
wvhich travel along the axis. We will aiso use the techniques of Nielsen,
Symon and Scssler to treat the prob?ém of pure phase motion with
longitudinnl space-charge forces and cobtain a limit for the beam

intensity.
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In Section II the Hamiltonian governing particle motion is

derived, and the approximation of using only the synchronous wave is
shown to be valid. In Section III the pure phase motion for on-axis
particles is treated in detail with the derivation of an adiabatic
invariant. In Section III the Hamiltonian is transformed into a form
for use in Section IV. In Section IV the coupled motion is studied by
the use of Moser theory. Moser theory is a technique of transform-
ing the Hamiltonian so that terms of a particular order are transformed
into higher order terms. The only terms that cannot be transformed
by this technique are those nonlinear terms that lead to instability,
terms for whichm vx + n-z)P = P , with m, n and p integers. In
particular the term where 2 Vx = 2 7/50 is not transformed away.
The instability at 2 Vy = 2 7J¢ is treated in Section V, and as a
numerical example results are obtained using the parameters of a
200 Mev linac designed at MURA. In Section VI the longitudinal space-

charge problem is treated.



II. FORMULATION OF THE HAMILTONIAN

A. Description of the Field

We will concern ourselves first with finding the form of the
radio-frequency electromagnetic field, and later discuss the field of
the quadrupoie focusing magnets. If one knows the field as a function
of time at every point along the axis of the linac, then it is possible to
determine from Maxwell's equations the field as a function of time at
every point in the linac. We will use a rectangular coordinate system,
in which z is the longitudinal dimension along the axis of the linac and
the transverse x and y axes are the axes of the quadrupole fields.

Because of cylindrical symmetry, the relevant electromagnetic
field is independent of azimuth., The linac is designed to resonate at a
frequency ¥ /a1 . We may denote the longitudinal electromagnetic
field on axis by £y 0) and write £ (0)= {(3) cow w ¢ . The field
at any radius J (r=\{x*ry*) may then be expressed as a power
series of even and odd terms

e=[3

nzo

an 2 anri
f.nr +Z/': (3) r ] o WL,  (2.A.1)

f
()
»
247

.
3 —
We use the Maxwellian condition in free space \ E - o gt" =0

to derive the following recursion relationship:

13
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: 4 w?
- n
'F.m" Tyt d3* Pe ’(n ] .

(2.A.2)

It turns out that this condition requires that the coefficients of all odd

power of r be zero, i.e., F'; = 0, for all n. The radial electric field

-

is obtained from the Maxwell equation /- £ O , which gives

P
Cr

the following expression for g r

Y
- ___ df )
€, = - [Z e Gy - ) ot w1, (2.4.3)

The magnetic field is derivable from the Maxwell equation

-l

o B . . ,
AV g’ = - 7'_ %TE . Thus the azimuthal magnetic field Ba is
2 ! an#
w — ) ,
Bs= - < [;) ans) fu r ] Sin wt. (2.A.4)

I* can be shown that a cavity may resonate in two types of

13

mode:, one called a TE mode and the other a TM mode. The

standing wave-~-type linac that we are treating here is designed to reso-
nate in a TM mode in which the magnetic field is entirely azimuthal.
Hence we take B,. = 83 = O from which it follows that fe =0
The transverse electric fields { x and é’y are obtained from £, , and

they are written below together with £’ 3 -
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©
- - d‘(n(i) an
g;‘— - x Z l(nf‘) J; r Codw-t .
nso

- 2 ‘ dfat3)  an
gy‘ “y s ALin ri) 0(3 r Cx)‘éw-l‘, . (2.A.5)
g z Z forn) r e wt .
} n=aQ

The magnetic field in a quadrupole magnet is produced by the
use of currents flowing around four ferromagnetic poles. The faces
of the poles are represented by the two hyperbolic surfaces XY= o
and XY = -a . The polarity of the pole faces is arranged so that
magnetic field is antisymmetric with respect to reflection through both
the X =90 and Y = o pianes, and is symmetric with respect to reflec~
ti.n through both the X= Yy and X= -y planes. Then the magneto-
s.atic potential || is givenby Y= G x Y where (5> is a constant.

The transverse magnetic quadrupole fields B x and 87 are given by

_odu
BX- d X - 6)’:

(2.A.,6)
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| The fields given by equations (2. A. 6) satisfy Maxwell's equa-
tions V % B= O and V:-B= O . Theforceona particle
of charge q moving parallel to the z axis with velocity v is given by
F = - i B)::-: -Z/V'GX,
F} = g Bx=’g-4r6y,' (2.A.7)
Thus for G > O the force is focusing in the x direction and defocus-
ing in the y direction, while for (G £ O the force is focusing in fhe
y direction and defocusing in the x direction. A quadrupole with
G >0 is a plus quadrupole, and a quadrupole with G <O isa minus
quadrupole. |
The Hamiltonian does not contain the fields but instead the
poténtials from which the fields are derivable. The _total electro-
magnetic field, which is the sum of the radio-frequency field and theA

' quadrupole field, can be derived from a vector potential A by the

formulas
B=vx 1A  wa Fo oL 2R
| an 3 Y

in which the gauge has been chosen to eliminate the scalar potential

—
term. The three components of the vector A are given below, where -

= 6 | inside a quadrupole (3) = O outside a quadrupole.
j(;) 3
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o dy
C = ] dfn(}) m
Ay = o 7; 2 (n+1) 0[5, r sin wt (2.A.8)

)

with

and

fnor = "‘,(,,‘“,)z[ J;}(f + ’%): rn] .

To the approximation L. may be considered constant, the radio-

frequency fields in a linac are periodic in z with period L. We there-

fore expand f,, (}) as a Fourier series in z, obtaining

f., (5) ZC”’" cos(m ¥t oém) , and

dfﬁ‘;“( 2= .-anKszm cos(m?i + a‘”‘) , in which K = 2T
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and we have neglected terms of order &L / L ( A L is the change in
L in distance L). We let Co, n be the average value of {, (3)
by choosing X, =0 , and define the position where 3=0 by
specifying &, = 0
2
We substitute for d #n / d 3 and f, in the recursion

relationship for «f ny1 and obtain

p an
C =

mn M nln! [{mlka' w/'-’)iJ Cono .

-t
We can therefore write the potential A as follows:

©
K Cum.o
A 535 K T sintmty

[

--C K Conoo

Ay- G %ZTZ" (ir) Sl'n.(MK}tdm) mwt)
= L2 (2.A.9)
A= S Cos Lgr) ot (mbgrdm) sinwot - g3y XX
s 2 1,4

g7 (mK- %)

inwhich L, (0 = J,(ix) . L, ex)= =i V,(ix) and

Jo and J are Bessel functions of the first kind. 14

From the fact that

C,.,‘o': % S {.03) coa[mKy + ] d3
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and from the definitions 'ﬁ = ';f' S.. ';o 13 0’} (average
value of the longitudinal electric field on axis),

T.,.Z Z‘If: S.. 40(3) OOQ(’"K} +°‘rn)013 (transit time
of the mt® wave) and ¥z I<3 - wt (phase of the electro-

magnetic wave), we obtain
< X -
A,=- 57‘; Z[S 13} o Py umla)&mtf] I, (5v),

Q
Ay- SL4 2 [Supentsln)Sn®] T ogr) | a1

m=o

msé

Ay 54 2 [0mm sps Rusyenpl Ligr) - qig) 12X

We have defined

Q@I D Quiz) = 77 feodimmy K3 1dm] + Cotfimaxg r-«»J}

may mze

R(3) ‘ZR (3)= ZT§ Sim [(m13 K2 e]= Sim[(m-1) k3 nQ}
5(3\ = Za Sm(3)=iz3_mﬁmw))<3+dn]fCoﬂ[(”"’)Kj*‘(n)}J (2,.A.11)

Uiz)z Zu,..lg.) Zl §&m[moof;+-l».] f&m[m—l)k;-idm]}

mo
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For later use we also define

Q (3) EZ__*’”QT»« {m[{mn)l{}f'\’m]*m [(m-/)Kj +‘(m]}
m o J

(2.A.12)

R (3) ,Eim*ﬁfw%[(m“mj toml= gn[(mx 3 *"”‘]j.

B. The Exact Hamiltonian

The relativistic Ha.mil’coniam15 7#0 for a charged particle in

an electromagnetic field is given below:

H, (P, hafy, t) =

(2.B.1)

¢ \/( F"%A’)zf (%% A,);+ (P~ %143)1 tmc” ,

where Px s P y and P 3 are the momenta canonically conjugate to the

coordinates X , )’ and 3 , and 7\10 satisifies the modified Hamil-

ton's principle,
A
( : = t= .B.
ggt‘(f;x+f’,y+/;3 H)dt =0 (2.B.2)

The charge and rest mass of the proton are designated by e and m,,
. {

and c is the velocity of light. Letting 77{, =£ , XxX= J%{g

Y '= dﬂ/d} and tl:.. dt/dt , we can write Hamilton's

principle as follows:
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LI (2.B. 3)

It follows that we can use for the Hamiltonian - F}( 4P 1.P, t(-5), 3)
in which [- E) plays the role of the momentum conjugate to t, and z is
the independent variable. We then have as the expression for this new

Hamiltonian

e e {5 ) (0]
1;3 (2.B. 4)
"(Fy‘e{A7{"'7'-"-t))§-% A3 (x,»’,j,'t) .

Next we can remove the linear part of the dependence of t upon
the independent variable z by a canonical transformation from the
variables (—E) t) to new variables- (7) ?) . If we use the generat-

.15
ing function

G(t g 3)= [KZ’wt} 7, (2.B. 5)

we obtain
a6 26
— =@ ~wt) = - - W
27 14 (K; ) > Ot E z. (2.B.6)
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We see that (f is the relative phase between the particle and the radio-
frequency accelerating field. The Hamiltonian becomes
26
H,= M+ 2= -
7, f =
| >3 HrKy
i.e.,
(.01 3 2 s
B _ - - ¢
Moz - Lome - (% Adnyf1)

VA

a)?* e (2.B.7)
- (P,-%_’ Ay (x.4.9.3)) } - {Ajlx,v.‘f:j) t K7

A synchronous particle is one for which g = (P,, where
(,05 is a constant. In order to meet this condition, it is necessary to

have X = R = Y= Py = O . The synchronous particle will
always have the same relative phase with respect to the accelerating
field and hence will have an energy gain in distance L proportional to
L, where L is the distance between the centers of two adjacent drift
tubes. This definition determines both L and the energy of the
synchronous particle as a function of z. We will use the subscript s
to refer to quantities pertaining to the synchronous particies.

For the synchronous particle it follows that

(2.B.8)

7”/2-’--?-0%2— ~.m:‘c"}%- St gam Son ) HQ/})(.«?I}
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from which we obtain the following equations of motion:

S0 ;wz wz 7} .
:__,_—:.‘ - = :o
o S T T (2.3.9)

and
7;:-%;—-: -Z-J'ﬁ%G(?,)wd(@-R(j)&;n‘ﬁ}.

~

4
From the equation for %, we obtain the synchronous condition -

1
_K__C_; = w?“ —T . (2.B.10)
w 3-“—‘7‘—177,63

We then use the fact that

F3
/ m,C
= F = YN velocity of particle
w (1- @) = =y O° D 2,.B.
? , w (= Cs ' @ velocity of light (2.B.11)

and obtain the condition that

_ W
K= —‘@ 3 or L= @A (2.B.12)
$
in which A = '“TC/w = wavelength of the rf field.

In order to study the deviation of general particle motion from
" synchronous particle motion, we define another transformation of the
Hamiltonian from { 7J ¢> coordinates to new coordinates ( PS’ , 50)

by the transformation



24

Gl P, 3)= (Pp+2) ¢ | (2.B.13)

From this transformation we obtain

26 | _ 96 _
7= 5¢ = %t By , P o9 ? . (2.B.14)

and C 26 )
%3 = %/:. T ’5‘3" = A . ? P 75 )
giving

H, = f% (?(;+.z //sﬁf +¢:)— m, ¢

b3 .
[P Ay .3)]- [Py %A, (n1. ¢ 3)]1} : (2.B.15)

G A ne) tKR H K vy

A, s AJ and A} are given by equations (2.A.10).

C. The Approximate Hamiltonian

The exact Hamiltonian is too complicated to treat analytically,
and it is therefore necessary to approximate the Hamiltonian by a
simpler expression.

In order to approximate the above Hamiltonian, we need to

examine the relative size of the terms that it contains. Since all
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present linear designs are similar, we will use the parameters of the
MURA linac, as are summarized in Table 2, to estimate the error of
many of the approximations which will be made later. From the
definition of /= £ /w , it follows that fp /1~ ""_:,9‘) <4 E/(E-m,c‘)
where A E is the maximum spread in energy of the particles in the
linac. For the MURA linac parameters, | AE/(E-m, c?) is of
the order of 1 percent so that we will be justified in expanding the
Hamiltonian in a power series in 95:' 1, FS" /( %‘ 7:._ mi) .

Next we compare the sizes of the two quantities ( Py - % Ax )"
and (P; - % AJ )* with the size of the quanity{-‘—g; 7 - m,‘c‘}

We use again the definition § = E/> to obtain

- 5 m C
w : aaja o (s
%‘Z-‘ 7“”%‘} = = - (2.C.1)

V-t
It follows from the equations of motion, obtained from the original

Hamiltonian, equation (2.B.1), that

. Ny

( A -%Ax)z Zoﬂs—l‘i——— and (P,'% A,):m"(@’)ic (2.C.2)
. - @‘ R u ! (3;

(@;) x - ‘}é‘ and ( @‘) y = -Z- . The motions of particles injected

into linacs are such that the x and y components of the momentum are
much smaller than the z component of the momentum, and therefore

we can expand the Hamiltonian in powers of the quantities
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TABLE 2

DESIGN PARAMETERS FOR THE MURA LINAC

26

Injection Energy (Mev)

Average Value of f (3) (Mev/m)
Transit Time 7;

Final Energy (Mev)

Stable Phase Angle

RF Frequency of Field (Cycles/sec)

Gradient of Quadrupole Field (Gauss/cm)

0.75

2.4

0.81

200

9

leO8

160 x

s
s
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x 2
(h- £ A) ' (Fy-%A)

Wt L ‘e and N
3/ 'm°<‘) (% 7:— mof‘)

We now expand the Hamiltonian, making use of the fact that

2 2
(F‘,"e{ Ay) R (Py-e/c Ay)l and w/c-. /A P{f are
much less than { _‘g’; 7: - m:c'g . We define

CsW o s ol
\N" 3:"’ ﬁ'mf’c}: M,fsl’sc ) ¥s° (/" Fs) s ) (2.C.3)

and we neglect all terms which are of cubic or higher order in

(P"-% A’)/wé s (P,-e," AY )/ Wy and %’):7; Ff /W; . This
still does not lead to linear equations of motion, because we do not
neglect higher ordef terms in ( $- @, ) . We thus obtain for the

expanded Hamailtonian

t1 2 [ - 2
:}43__\/\/_‘%1,»%-:% if’:_'?z_"f_ls‘t__l-% 410 Fy
A g ¢ W,"
(2.C.4)
4
_ i (R-% AN *“"‘%"”’3 e ‘
P e - A KB Ry, 1Py

Next we substitute for K and 75 the expressions
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K—_: _Lﬁ?j "1_7’ X = _.“_).1 7s . A w
¢ e T W e
and
(2.C.5)
"— e . .
7= 56100t - RG) wn B)
to obtain for the Hamiltonian
Py I 2
= - ) 4 [~ -1) &
?#3' Ws + 3 W;((e‘; 1) t tKY,
e
tE g gaq)qu— RGISin 8] ¢ - & Ay (2.C.6)
Sy % AT (r-% A
* Ws 3 W

Because we can add or subtract an arbitrary function of z from the
Hamiltonian and not affect the equations of motion, we will drop the

terms W, and K ys . In addition, since F/_ << { , we will let

- a
I, (Kr)= K-{r and .Lo[}( Y ):; ¥ E_‘_i'j‘ when we substitute

for the vector potential K This gives an error in the Hamiltonian of
Y
the order (/L) . We write out the expression for A, , Ay and
Ay in the Hamiltonian and use the fact that Wy = Mo 8, ¥, C

to obtain for the Hamiltonian
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. _w o C . A
%{" 2E T} e fo T 2E 7 G (P +Py)

1 f, . ‘
+E,«n -:—é (513) cod P +UIF) SmP) (xf;fyP})

3

e'f,
ez, esrc(s’” cmgt i) Somg) ('ry?)

*-

(2.C.7)

- &1 (R wnprQY) i g)[1- 5 (o)

- ¢

e [ (Ra) coupp + Qc3) Sim ) [iﬁ’—”—l]

— €9(3) /ot o
S (L) 4 =R (03rem - Rip) SAP),

where Ed: yn,c,” and the quantities (Q(3), (5(3) ’ ﬁ(j)
R (3),

S (3) and Mlj) are defined by equations (2.A.11) and
(2.A.12).

Because the period of the field in the variable z is not a

constant, it is desirable to change from the independent variable z
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to 9 , where df= K/N d 3 and N is the number of quadrupoles

per period. Again we return to Hamilton's principle

k2 6,
§ g}{’(za - he) 4= § (20 B -k

(2.C.8)
b, ‘ .
= =3 =0.
§§6. (578, m)de
Thus 7’/7 () is the new Hamiltonian, where
N @s¢
GADE 2—% H, 31 = ﬁ A, (300)). (2.C.9)

Next we remove the cross term between X and £, and »y

and 7’7 by transformation to X, , P,l s )’, . ?y,

:’o; ,andPﬂ,

with the generating function

E,§,w\4
G (X,px.J»Pm LF; F"f’) 5)7' ( 7“(.:’) (X ?"l’ )IP),.)

(2.C.10)

+¢ Py - :(f [Ste)cantp + Lit0) Sim ) (’%lz)

From the generating function, we obtain



.26 _(EY w)% ¢ 31
he 5= ( ) g :g,c IS’D’W?rureJ&w]x,

- _?_é. - EU r;w & . FO .

i (5 ey
. 26 e W)k

hF Py /\lc.") g

0
.c
"
[\
[
11

°b et . xry*
op e v [5’9)&'3"-“‘9)00‘?]’;- z f%, (2.C.11)

=S
1]
\.-Iu
-306\
|
-

; 4 _d_gi e‘)co . f:"’__yj
boa S5 ?@;Isza)w(f +.u(a)s»<,o]( )

The third term in the new Hamiltonian can be neglected because

the change in ds over one'period of the x or y motion is less than
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1 percent of ¥ . The last term will be neglected because
’;‘ %L—E!ﬁ e L .01 L& ] where A L. is the
change in L in the distance L. We also neglect the new term of
order )(:l P(f that arises from the transformation, because we have
neglected terms of this order before. The new Hamiltonian which

results is

1

* 1 2 2
7#5' Nw P{f . A, +Py‘ enN J(é)?,c (x‘z_xz)

z'Eo (3: U: < E, ¥ w* a

IQ(Q)(‘fW 5«»?) QIO){SOSM(P('MP)J

+ Ne{oeac
w (2.C.12)

- ef Nt g(ﬁ(e)_@’;ﬂla))+ i",—%g cod P

X. + Y,
f(Q(é)* @s Qe) + }Sm ‘f’]

D. Carrier Wave Approximation

In this section we shall justify neglecting the 8 or 3

dependence of the functions (3 , 5. , R, R .U ana §

This neglect means using the average values of these quantities in the

Hamailtonian.
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First we will treat the CP motion. The equations of motion

are

d(f__ N w _ /
46~ g o= (¢-9%),

" (2.D.1)

AL MRS 5.(¢-0) Sin P + R (PR e h]
do w?

+ higher order terms in X,, f, and (’70‘

Combining the above equations, we obtain

(B e BeA0 o ot s

=~ higher order terms.

Neglecting for the moment the z dependence of @s and ¥,, we can

write the ()0 motion equation as

((f-ﬁﬁ)" ¢ [ianvm(nl\le*dn)] (- (Ps) (2.D. 3)

Ase
= higher order terms.
There are two reasons to keep terms in the Fourier series

other than the constant term, The first is that the linear tune may

depend strongly on the higher harmonics. The second is that one of
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the harmonics might drive a resonance (either linear or nonlinear).

Because the Tm 's are of the order of unity or smaller, then

Nief,c
E, . ¥Jw

A, ~

We use the smooth approxirnation16 to calculate the tune

a | £ an
‘()4,0 Z a, + 3 ’,2:7 T (2.D. 4)
Now if
([ehc /ag g tlw) << 1,
we can let |
7J¢; = a, (2.D.5)

We use the design parameters for the MURA linac from

Table 1 and calculate that
{ {, ¢ E 3 ) -2 N
€l ¢ [ AE, BsTs w) ~ o at injection energy

and smaller than 10-2 at higher energies. Thus the linear tune is

given very accurately By the assumption @x=0 for N ¥ 0. Because
-U(f -~ a_:ﬁ = .14 , and because the first linear resoﬁance occurs

at 1)? ~ 2 , then none of the harmonics can drive a linear resonance,

It will be shown later, when we derive an expression for 'l)x and 7)7 R

the linear x and y tunes, that only the constant term will drive non-

linear resonances
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Next we treat the X motion to show that we can neglect the
periodic [ dependence of the functions Q) , a , R ., E , S,
and U . It will not, however, be possible to replace 319) by its

average value (the average value of 9/8)% 0 ). The X, equations of

motion are

Jo " P
dP, . e N gio G ¢’ (2.D. 6)
do E, ¥, w* X, :
efoc N du
+X':.e.@,x,w§( “GRY %) e 1 (a-ReQ+ IF ) Sun ]

+ higher order terms in X, (¢~ )

Thus the X equation is of the form

(2.D.7)

[Zb coe(NNB+§,) - Zsum(ng A

..o\’,;“); n?

== higher order terms,

«©
with J [/8) = Z 3:1. m(né??:").
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From the smooth approximation we obtain

__..l N :
-\)x:-fbo-l-_,'z_/(e C%’)Z - dn
&

E,r,w‘ Nz | n
[ eNc g, ]*
7
+2 ZI‘YIN [(Fr‘ 3mN+b
mzsi

It is seen that contribution to the value of 1}: of 3,1 is N ’times the
contribution of J}:b ,, thus if
SNEE o) sy ] Ly
E,‘b'.wa' 3' d } /\(a !
we can neglect all 's for

We again use the MURA design parameters to obtain

GNC
~ 13,/ ~-3
E, ¥s w

Ju| L .3
/j /N"l l b 15{,‘(;. 5)(/0 at injection.

Therefore, for calculating the tune, we can ignore bm for m3 O,
It is also a fact that, if the b afor m -*\- O term drives a resonance,
that the jmd term will drive the same resonance and since

]3‘”] > !bm[ . we still can neglect bmfor mxo0 In

calculating the tune
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N 3n |
.Ux:: bo +:L (E ¥, W ) Z (2.D. 9)

we obtain for the MURA linac at injection
vy = .18,
Thus nonlinear resonances of the type m Yx+ n -:)7 = P ,
where M, n , and P are integers, are important only for
p=o

We have shown above that we can neglect the @ dependence of

thefunctions @ , Q , R , R, S , and U , and we can use
the average values of these functions in the Hamiltonian. We denote

the average value by the subscript a , and we note that in terms of

N

the transit time of the fundamental wave , /, ,

Q.= T, Re:
Qa = T Ra =0 (2.D. 10)
Sa. = T Ua"' (o)

Thus we now can write the Hamiltonian as follows.
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N - 2 New )n ; NefT(Bs

Py («fms& - S ¢)
3 Pt F, e /szle) s ¢ X*- yf) (2.D.11)
2 E, fyw ( 2
e f, cN'T X1 Y.°
-7.EJ @8 ‘(:w y

where we have dropped the subscript from 7:

From this approximation we obtain the linearized equations of

motion:

(——fi‘ﬁ" (¢~ (P)) + NC‘F T@‘(‘ &’”(ﬂ ( - ¢)=

2.D.12)
and (

\ - [eﬂ/vlc'f&;n‘f; , eN g ec lx

2E, Qs ¥y W E, ¥sw

We use the smooth approximation to obtain the following expressions

for the linear tunes:
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D2 = NefTe an P,
f Eo Qs % w ? (2.D.13)

2 . ]
.f T 3 a 2 .
‘l):‘: _ N e, 'C Awn (103+ eNe E‘ Jn (2.D.14)
1E QR Y w V.sz

where 3 o is defined by the equation

0
316)= Z In coe(n6+7.) . (2.D.15)
n=o
Because the expressions for the tunes contain the quantities
Qs and ¥, the tunes are functions of energy. Graph 1 shows the

variation of ‘U‘f and Uy with energy for the MURA linac.
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III, TRANSFORMATION OF (,0 MOTION INTO
ACTION-ANGLE VARIABLES

A. Relationships Between Old and New Variables

From the expression for ?#5 (equation (2, D. 11)), it is seen
that-the Hamiltonian is not a constant of the fnotion for two reasons.
The first reason is that (5, and xs are not constant but instead vary
slowly with 8 . The second type of variation arises from the term

\7(6) . For treatment of pure { motion and also for later work it
will be advantageous to obtain a constant of the motion for
X% P, = Y, = Fy, = 0 , the case of pure phase motion.,
For this case, only the 6 dependence of (5, and ‘6’, is important.

Because the trigonometric function in the Hamilténian is
difficult to treat analytically, it is necessary to approximate it with
another function. A Taylor series expansion is however, not satisfac-
tory, because { varies over a range of approximately 3 ¥, Whicil
in most linacs is of order T /.‘L . If we expand sin ¢ in Chebyshev
polynomials and then expand the result in terms of a power series, we
can obtain results with adequate accuracy. Expanding about ¥ =0

and keeping only terms cubic or lower, we obtain

: = J,%) +3J; ag) J, ( 3 |
Sim $= ‘F: 2 e P- -——-—-—“éf)? (3.A.1)

41



TABLE 3

APPROXIMATION TO SIN P

¢ (3.:4)+35,000)

(rad) - Ja“ﬁ)(ﬁ%)a San P
0 ' 0 0
0.1 . 0.099670 0.099833
.2 | . 198391 .198669
.3 . 295213 . 295520
.4 .389186 389418
.5 . 479361 . 479426
.6 / . 564712 . 564642
7 . 644517 . 644218
.8 . 717600 . 717356

.9 . 783086 . 183327
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where ¢ islimitedby - ¥, £ P £ = L ‘Fs Cand Jp
is the nth order Bessle function of the first kind.

~ Table 3 lists both the value of sin ¢ and the--fﬁlue obtained
from the above approximation for various values of ‘f , Wwhere ‘f;
is equal to 0, 4537856 rad or 260. From this table it follows that the
maximum error in the approximation over the interval = ‘f‘ < ‘fﬁ 2?;
is 0.0003.

We substitute for sin (f and obtain the following expression

for the Hamiltonian:
x . a a
P Px‘ + Py.

M= AL -dprel v 22

_C (bl‘f' lps)(x,‘;Yf)_ D(X;Y)

(3.A.2)

in which
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A= Alp)z NefT@C 3. (aq)

w 3
8

J

B = Ble)= 1° hTE QS grag)

w? 3
(lﬂ‘ )

2
C-crey= E2TN 3,9
2E@%w T T 0

(]

(3.A.3)

2 ¢’ J,(24)r 30,29)
( ¢, i} “"'f@J

J

b= 4 (J,mcfzwwsmg))
b, s

and 2 T
= D = e N C
D (0) = E"w gee) .

We now transform this Hamiitonian from ( ‘)0, P;() variables
to S, J , variables in order to obtain a constant of the motion for

particles on the axis., We use the generating function

© (3.A.4)

'
G6(?,5,0)= B\ /% (% dow) ralg-4* oo
¢
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where _{ ( J) is a function of J yet to be determined. We restrict {

to the limits -1< f £ 4 so that there are three real roots,

¥

£, @ and ¥ , of the equation %JZ‘ a{‘oi.a_"c)o_ ¢ =0
ordered so that § =< @ < A ., From this transformation we

obtain the expression for F‘f :

) : a 3"
P‘{"-"a'% - gE (% Katerae- p* . (3. A. 5)

L5

. The turning points for the motion occur for values of f such
that F‘f = O . There are thus three turning points, & , @
and ¥ . Fortherange @< ¥ £ « |, P‘f’ is a real quantity,
while for the range ¥ < ¢ < @ . f @ is an imaginary quantity.
Thus the particle oscillates between ¥= @ and @=L with
a period in £ equal to am /7)50 . Theroots &« , @ and

¥ , together with the period T are functions of J .
We now define ,? aé a function of J . From the generating

function we obtain the expression for _wr

| p
96 L oS 4 d®
w= === 3% = a . (3.4.6)
2% 34T e VHfg ath+ aP- ¢
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We now require that A M over one period of the ¢ oscillation be

equal to unity, thus fixing the function dJF/JJ .

d9
%Jg a?j+a3¢” ?3\ ) (3.A.7)

, d : )
AM:I:%E;—?@B/JS\[
e

or

AT gt d ‘
il iy g\/%\!%a»’l ra’¢-¢  dyp (3.A.8)

We integrate dJ-/d_,? and, because the equations of motion are in-
dependent of the integration constant, we set the integration constant

equal to zero. This now gives us J as a function of _§ .

y « '
J= 2B* g(‘\/‘gﬁa’}+ ae- p? cjy . (3.A.9)

Note that it follows from equation (3.A.5) that J is the action or

phase area integral:
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L8 .
N =
o g? Fo J¢ @ fo dep (3.A.10)

and hence is an adiabatic constant of the motion. 17

In Appendix I we evaluate this integral and show that
.4 R %
J= < B*a™ {,(r) (3.A.11)

in which

f(0)= (%i)% § (14%'/— 24'+2) E (4)

- (,ﬁ”_ 34@;,1) N(,,Q’)}J (3.A.12)

* = (25)
A=
K(A&') is the complete elliptic integral of the first kind'® and F(4%)
is the complete elliptic integral of the second kind. The roots & ,
@ and ¥ are linear functions of a and hence {“,_ (L) s

independent of A . Thus 7[;_ is independent of any of the linac
parameters and, once it is determined as a function of j , it will
apply to any linac. If ‘7”, is small compared to 27T , we can expand

a as a function of ‘ﬁ, to obtain & = \/3‘ CPS , and substituting
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this into the expression for J we note that J , which for f= /

is equal to the maximum stable longitudinal phase space J, m >

%

varies as ‘f‘

We want/Y as a function of J, or the equivalent,p as a

function of in order to obtain the Hamiltonian as a function of

2
J and A . The expression for -f-,_ (#) is rather complicated to

be inverted as a function _{ ( F; ) , because the roots « (5 s
and ¥ are not simple functions of _f , and therefore we will obtain

an approximate expression for J [ ﬂ,) . Since the equations of motion
will contain derivatives of /f’ with respect to ﬂ' , it really is the
function dl/ d ‘fa, which we will approximate and then integrate to
obtain ,? ('&) . In Appendix I we have evaluated pu)/ol 'fa. which is
given below:

dad _ /3 (.L—‘d'}’i I
df. g e Kek) (3.A.13)

Graphs 2 and 3 show _{ and d £/ a'f,, as functions of ﬂ' .

It can easily be shown that within an error of 0.5 percent,

dl _ 172§
df. 5.9‘/‘/&1(" F/{m) )

(3.A.14)

with fn= Fa(d=1) = 789647
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Upon integrating this function, we obtain

A= |- 8194 F(OJ 5'7‘/—’&"’(1' fa/fm)) (3.A.15)

in which
r
0, x) = 5 = = 19
( ) x t d t = E‘ {. x) .
We could use the asumptotic form for /—' (0, %) 5

e 2! 35
= - 1 -2 ...

and then expand /&n (/" f‘/fm) as a series in 'Fg, .

Instead we approximate oAt /d 'f 2 Dy the function

dJ
df.

which gives

=.293 - .0088Y {1, (3.A.16)

, 1
= -1+.293 f,- .oownz 1, (3.4.17)

This approximation for ,P has a maximum error of about
3 percent; however, for 'F; /,Cm = .9, the error in dj/a/*f;
is about 10 percent, while for 3/ §m > .9 the error in

dA 7o fz becomes much larger. Thus for particles near the
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stability boundary ( { > = 'F m ) we have to use the approximation
for ,‘9 which contains the incomplete gamma function, while for par-
ticles away from the stability boundary ( f + %.9 § m ) We can use
the power series expansion for _f{ . From the plot of df/d s vs.

-f 2, it is seen that for particles away from the stability boundary
the linear ‘f tune, which is proportional to .l /d f , varies very
slowly with -F 2 but for particles near the stability boundary 1)¢

is very strongly dependent on 'F 2 -

We combine equations (3.A.11) and (3.A.17) to obtain for par-

ticles with small enough 4 amplitudes

P ()= § | +.293 (% ) ;, o ooWZ( ) )Z (3.A.18)
In addition, by inverting equation (3.A.5), we obtain

2
L R 3
4= %05 hi -t @419

Thus for particles with small enough $9 amplitudes we write for the

first term in the Hamiltonian the following function of J:

af% . aeegt)

3 e §
PP ]: sy J i\ T (3.A.20)
T —= -1 +.293 (¥) x5 5%~ - ] e
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The next step in the transformation is to write ‘f’ as a function
of Ay and J . We rewrite thc expression for A~ as

? J
‘r‘ d,p 33”/‘*" 4 X (3.A.21)

¢ Vis-o)(p-p)(9p-¥)

With the aid of the substitution
1 .
@- ¥ A Sonin
(f - < . - J (3.A.22)
I - % SJMZJ/"

the integral can be performed and the i~ equation becomes

y KR ,
! AN -
-¥)* (&—r)f‘ [—n( c,-, ] ) (3.A.23)

.l
in which Am is an inverse Jacobian elliptic function. 18 Solving for

"f gives

8 - Yk Sn(2Kur,4)

£
/a o/mz (2 K, &) ; (3.A. 24)

with
2

dam = /*/kzmz .

The expansion for .am it and dn it are of the following

form:18
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e 3 a () g (BEDIE )

(3.A.25)

A a = fbs(k‘) m(%

Hence we can write (//a , which is an even function of_ 4~ , as

mzD
LEY =] '%

é: Zam,n -F.‘L Coqa dNT AU, (3.A.26)
n=m:d:o

Since the coefficients o/ -A*) and by /4k*) decrease very
rapidly with & except for 1’2.z= ! , we again restrict ourselves
to amplitudes away from the stability boundary. The expansion for

‘70/ a. is given below:

%
s e17-.0157F, ) - 265 {7 cocan
Plo.® (- ) (3.A.27)

2 2
+ .0473 ‘F& con AN + TW"'(FLJ'F&,{;,"'),

B. Adiabatic Invariance of the Actioh

The final step in the transformation is to examine the term
aé/ae . We will show that if [3 varies slowly enough with 8  we
can neglect the term 3 G/ae in the transformation and therefore the
new Hamiltonian will be equal to the old Hamiltonian with ¢ and Fp
written in terms of the new variables 4o~ and J . Because J is

the action integral, the neglect of a%e corresponds to the neglect
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of the change in J with © . The approximation which neglects the
charge in J with & is called the adiabatic approximation. This
approximation can be proved in general17 to be exact, for a finite
change in B, provided that the change in B occurs over an infinite
interval in @ and in such a way that dB /d 8 is zero.

Because /f is a function only of 'Fa. and because the only
explicit 4§ dependence in -FL arises from the @ dependence of B s
it follows that the only explicit @ dependence of (& arises from the

f dependence of 8 . Hence we write

26 _ 4B 3s _ 3’36
06 ~ do o ~ o8

(3.B.1)
We assume that for a constant 3 , —US" T* O so that we can
define a period of the motion equal to 1 /-usp . This proof will not
be valid for the case where ’l)sp goes to zero.
From the expression for ‘f , equation (3.A. 24), it follows
that ‘f is a periodic function of uxs , and from the expression for
G the same must be true for %—g— when we substitute for SD its

expression in terms of A" and J . We therefore write the term

o % B as a Fourier series.

2nenas

26 _ A
22 - ZAF(J,BJ e

. (3.B.2)
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y becomes

If we write AAJ as a function of 5

in 1)99(0',3)9

> A, (T,8)

6
In order to estimate the error in neglecting the term /ae
in the new Hamiltonian, we must investigate the effect of this term on

the equations of motion. The equation for 49/4p5 and 84/ jp are

26
z ?/(PY(J w), 93 w)- 8 a,w 98) (3.B.4)

L1

St Y

-93. H, (Ppld, ), P(3, wr)) +Bf;, %%)
It is interesting to note that for on-axis particles
;%,r 7#5 = O, and for this case the total change in J comes from
the term 96/;;) B . We now denote the change in J due to the
26/, A term as (;)'a- J,) andthe change in 4 as (4- 8 ).
Thus

-7 = 2 (28
Ti7 3, = 28"‘“’("78)(]&' (3. B. 5)

Since the variation of B with 9 is slow and not connected with the
7
period of the motion, we can bring B outside of the integral sign.
We now use the fact that 3%5 can be written as a Fourier series in

A to obtain
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b o .
_ - zﬂsn#r
{L-B_‘,Z'-:- S(ZznmA(J,B)C )de,
o, n (3.B.6)

where prime designates derivative with respectto & . We now write

AN ag a function of O to give

8
J.-J, LI inﬂ¢(6,830
_".'_é_l- : - S (Z,-?-m'n. A (@.R)e )J9 (3.B.7)
' 9, avi

This expression is no longer exactly periodic in 8 because the A n's
and V depend on 8 ( 0). We now expand these quantities in powers
of 8 , where the expansion will be used only for values of &

smaller than #7T/ 7@ . Letting the subscript o designate the

value of the expanded quantities at 8- 8, , we obtain for the integrand :

2 in Vo b
> amin A, """

n::

+ BIG i:rlin f(-D_AB:Jo +in A,,,(%gfaB_z Génﬂna'

(3.B.8)

We now do the above expansion at the beginning of the period

( 4,, B,) and integrate over one period of the first term; then we



58
expand again at the end of the first period and integrate over the second
period of this first term. We continue doing this until we have inte~
grated over the total interval ( g, ) (9;.) . The last integral will, in
general, not be taken over a complete period; however, the integral of
the first term will be finite. The integral of the second term will be of
the order of B 1(9;_ - 9, )

We have shown that it is possible to have a finite change in B R
i.e., B,/ 6, - o) ¥ O, andif B varies slowly enough, still have
u>zero variation in J .

We now show that we can neglect the error caused by neglecting

the change in ,W"' due to ihe ac’/d R term. In this case the term

P 74,'
93

is not equal to zero; we must show that

/D
(A ) (3.B.9)
b 4

2 2 (=2
5379./5>>Baa' 08

/
in the case where 5 is small., We use the fact that A" = ?a—(-; and
obtain
‘_ 3 "745 ¢ daur
Az + B —= (3.B.10)
o T d

If we write «u” as a function of @ , we obtain

AW ': a—————-%/c -—B—-I

P
0T T oo 0B [ﬁ?(J.B)Jé. (3.B.11)
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We integrate the above equation over one period of wr = 4 '7/1/ p

and obtain

anm 3“745 131)90
= 37 [ (3.B.12)

1= Yo JJ .'UT
Because of the variation of 'l)(P with B is finite and of the order of
magnitude of V¢ / B , it follows that for the case where
(3 ’/B) [ % ) <<1  we can neglect the second term in the '
equation.

We have now shown that, if the change in B over one oscilla-
tion is small, that we can neglect the term 26/38 in the new
Hamiltonian.

Substituting for ¢ and Py their previous expressions in

terms of J , and A, we obtain for the Hamiltonian

_ . 2
74"—'%’3%/9[-/*@,1 it Coon i |
Pert Py ryt ¥

x _ oo C“o(};_fil'_)._pq) (i—;') (3.B.13)

+

—1 %
+ Caoa %, (x +y*) + C,, (;qn) (x'ty!) conanaus
t Cﬂ.a.z. 2% (Xzz* y,‘) Coo 4TV,

in which



60

2T
Coo1 = (%) (293) a"zBUz

2
(_lf)" by
Cow T - .,004H2 q a.‘ )

C = E—e{g)(,olsﬂbzi* .0 HSI &
62

2T
2 a"*B"’),

(3.B.14)

?—f- (/’.,{) aLsb'r ausa’) ( %5%)

2

.
Coag = - 25 (f)[ 0473 b - ;oxa‘)( J%B,,)J

and

C = aC (s -92a),

100
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IV. MOSER TRANSFORMATIONS
Since the X, and Y, motion equations are similar and
uncoupled, differing only by a constant phase of 7T in the quadrupole
term, we will treat only the X, and f motion in all further work.
The conclusions for the Y, motion will be the same as those drawn
for the X, motion.

20 i5a technique that is used to study the insta-

Moser theory
bilities of particle motion because of the coupling between the longi-
tudinal and transverse particle motion. The motion of a particle can
be unstable whenever m Vx + nvgp = pP for m, n and p
integers. We say that an instability of this type is driven by the

muyy, + r)-z)qp = P resonance. Moser theory employs a series of
transformations, called Moser transformations designed to transfofm
all low order terms, except the resonance terms which drive an in-
stability, in the Hamiltonian into terms of higher order. We decide
which resonance to study by determining for what values of m, n and
P, mvx+ n ’)‘P =P . In order to use Moser theory we
will remove the periodic & dependence from the quadrupole term by
the transformation from ( X, , Px,) variablestothe ( § ,-¢ f)
variables, where § and ? are complex conjugate variables. This

transformation is due to K. R. Symon and is described in detail in

Appendix II. It is shown in Appendix II that

61
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(4.A.1)

Fx‘z '3_' (7{"7

—

where % and % are the usual Floquet functions and 7 and 7 are

defined by
- Y 4 (4.A. 2)

The transformed Hamiltonian is still not in a convenient form
for applying Moser theory. In order to bring it into such a form we
transform from (,w”) J) variables to (S ,-i 3 ) variables, where
again the bar above the variables stands for complex conjugate, by use

of the following generating function:

i 2 - YIT ¢ AT :
G = - 8 e (4.A.3)

This gives
J 12 amiw § T Y amiw
§-= an C , “(am) & (4.A.4)

and
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M3 e AlCnsE + G, 8T uld

u\N

‘1\9

PR e, (£ 7S s 2¥PTis e F TS s p'5s

s34 BOF5) ¢ Cu (PSS ariTsS

&

+ ¥

s P53 + ¥ (¥ES rab 558 (4.A.5)

)”z oty PP8 ra¥F 5TST 4 57‘3’332)}.

The Hamiltonian has the general form
= - £} (*

with

(3) {3) ‘o Lm H
Z —aoflﬁiﬂm { S S S

‘k’* v ' (4.A.7)
k_,},.k‘&l=3 .

& =8 imé

(ql
Z:—Qo.ki-é.ﬁm{ ; § g e

‘&utz
4‘¢J0-&+l

and

3
«
1)90 - ‘3:;, ——3-' A Cool. (4.{\-8)
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The Hamiltonian is now of the proper form for applying Moser
theory. The first transformation will remove all cubic terms: from the
Hamiltonian except those driving resonances under study. This trans-
formation will have no effect on the quadratic terms or the cubic terms
which are retained. However, the higher power terms will be altered
by this transformation. Next all the fourth and fifth power terms
which do not contribute to the resona—nces under consideration will be
transformed away. Again terms higher than fifth power are introduced,
while those of fiftn or lower are not affected.

This process can be repeated any number of times, although
the transformations become very complicated. Eventualiy the process .
is stopped, and the terms of all orders above the last transformed are
dropped. The justification of dropping all higher order terms is that
in present-day linacs these higher order terms are so small, such as
to have only a negligible effect on the oscillation frequency of a particle
and these higher order terms cannot contribute to the resonances under
study, i.e., these higher order terms cannot affect the amplitude of a
particle's oscillation.

In order to transform the cubic terms away, we use the generat-

ing function
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S§+ ff + m*,{ A 2 m ei'”é‘ L)
S,= 14, §{5 S

Bz rRLDIVp T "7 (4.A.9)

‘kh?r»ft f'J = 3

where the subscript 1 is used to designate the new variables. Since
)

the resonant terms, for which m = (A-4) ), + (R=2) 7)?

would have a term in the 'generating function going to infinity, we

exclude this term from the sum. This transformation will leave the
(3 ,

resonant terrn { o, R U4 A 2, m as a cubic term in the new

Hamiltonian,

From the generating function we obtain the equations relating

the new variables to the old variables. For example,

imé

J’-n-uu 2. C Aot R G
_ - (4.A.10)
57 5% ) e ka1 AR 3
hod, &L m

We solve the above for §’ by an iterative procedure. To first order

in variables § , 8 , § and .f, $=5 . }::% . etc.

To second order in § . § , § and S

,ﬂ_Q 44& 2 G_ --" * !
f': ;"z -tk Dy k2, ;

KDL 0 - T (4.A.11)
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etc. This iterative procedure is repeated until the order of the approxi-
mation in the variables g , —§ , S and § is one less than the order
of the terms in the Hamiltonian to be considered.  The highest order.
terms we will consider here are fourth order terms; we will therefore
need the expressions for the new variables through third order.

Since most linacs are designed to miss the third order reso-
nances (resonances driven by third order terms in the Hamiltonian), it
is possible to transform all the third order terms to higher order terms.

Thus, the new Hamiltonian, neglecting fifth order terms and higher, is

- - {
748 = 7)? < g’ D, 5% + .ﬂ_,‘” ) (4.A.12)

with
(%) ¥} (3)

ﬂ, = ﬂ R + terms from transforming ._Q‘ (4.A.13)
From Graph 1 we see that the only fourth order resonance present is
the 2 V-2 7]¢ = 0 resonance. We therefore next transform all
fourth order terms away except for those driving this 2VUx- 2 ‘l),,‘-' o

(4)
resonance. That is, we keep _fl,‘,k._gl 22, o term when

1%-} Y= - [&"J'J and transform all other terms to higher order.

For this we use the generating function
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—

- ° , dss e
g., $S.t% ?J+ ? Sy, a0 m { f: S, S, ,  (4.A.19
R AP m
O PV ANY LY

in which

ﬂ(,() ‘mé
1,40, AL m € _ (4.A.15)

nALA L m = A e+ (R2) Dy

4 4
unless ( A- 4) + éf-’/ J= © and m = O ., in which case
S‘/ ALt alm= O . The subscript 2 refers to the new
. 7 b B PR
variables,

The new Hamiltonian is now void of all fourth order terms

except those driving the 2 ‘Jx - 2 1J5p = O resonance. It has the

form
W7 = 1)"/ -g;,s-l. * v‘ g.tgz
(" . &) T —2
+ 4,0,0,22P ga g + 1,22009,0 ? i_

+ﬂ',3,9‘339° ;z S)_ + ﬂl.)ev%‘;°)° z SJ. (4.A.16)
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It is shown in Appendix II that we can approximate the Floquet

functions >p and 5& by \j 20 x . With this approximation in-

corporated the coefficients of the fourth order terms in Hamiltonian

are
o) 3
= 2 &
,]loﬁ,Zﬂ)O 3 \G“A COOH J
2
()
gL = Can -Lé——- + - L
112,2,0,01" - 2 —a 2 2 1))
16 YUy 7)<p YUx (2 Vit ‘f) Uy (2V Ve 5

ly) 2

R S M.
e3P g g, 8 LviYy (a0 W),

I

(4.A.17)
) )
'—r)" 1 A 600 = —ﬂ 1, 02,300
2 Yy l[
—n"‘ll _ C:ol + Ca,, §kz -+ " _M}
0,440 7 24)y y V(29 D) Vx (2 J

g 2 A
7)‘10: 3\"(;{' 202 _

Now that we have completed all of the Moser transformations,

we return to action angle variables by means of the generating function
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AR A I BT S P
G_ * ie B j i, e x (4.A.18)

which gives

- (e : ¢ J v $iaman
5. —) ¢ ) e

x a7

2 47 (4.A.19)
- T 4 _ianar L
Y :(i’?) c 7 g Ty |~ -iaras
x 7 P ?z* ?};} € |
and
1y
Bo= 23, 223 3 Lo
/6 2 LP 1 7 X A i S L)
g (am)? ¢
&) %)
+ 'ﬂl;tln,n,o _ﬂ 1,233,000 2
S UN Lt L A &
(2 i ' (4. A. 20)
JdU 2,0,0,2,9 o Wil (M,-M‘r) oW (anr, _M‘()
' 3 Jx th [8 + €
(2m)
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In order to obtain a constant of the motion, we transform from
these variables to new variables ( K,, 4 and K.z , @ )by means of

the generating function

G- K, (2 0y r 240) + I, (205 -2 M) | (4.A.21)

which gives the equations

\7;: 2{KJ*K.‘L) b) J‘f:l(K'—K‘z)J

(4.A. 22)
Az (2u0t2p) @z (20~ 2u0y)
and
AN, A,
.The new Hamiltonian can now be written as
- 2t 2/ -
B,z o, 2929 X
an i 21T
() y
+ 1 1,090,230 . s _D_ ) :.z,q,oa
(4.A.23)
(1) )
+ —n-lln,lo 'ﬂlzquzf

(K K) t ﬂ; {x,’— K:)m:zﬂ(a.
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The new Hamiltonian is independent of the variable A and thus
K, = a’):l/;)*._._._ O and K, isa constant of the motion. Since it is
possible to add or subtract an arbitrary function of @ from the

Hamiltonian without affecting the equations of motion, we will subtract

the term
) *
2Vxt 2 1)99 &) K
Kot 2 (Lliegmne + L, ap000) ==
2 i 1,083 1, 22,99 ) n:.

from %’,, . This gives

H, = (6 + PK ) K, * (3 + rconlﬂ@)(K,z— k:Z (4.A.24)
with

- 3«1))(— 21) 2 &) ]
€ - ——F ) F il 7}: (ﬂ’ﬂv”"l"ﬂ - ﬂ',%":’-:"}' J

21
’ (4.A.25)
| /4
- L ) o
g B n* (—-‘ Ll,l,l,l,lp - ﬂ/,oloaz.,‘b,o - ﬂ,'z,z)o_,o.o) )
and
)]

2
r = 415 ——[1/‘3‘0}),2-,0 .



V. RAPID TRAVERSAL OF THE RESONANCE

The Hamiltonian can be written
H,=(erPK)k,+(g+resan@)(K -k, ) (5.A.1)

where K, 1isa constant, € , P, § and I are slowly varying
functions of the independent variable & , and /(z and e are

canonically conjugate variables. The equations of motion are

(K,TKJ)I: (K,a— K:)r‘ S/x'm;LlT@J (5.A. 2)

and

e'= (e+ PK,) - 2 K, (g-r reee 270@) .

We use the relationships

J.= 2(K, + Kz} and Jy’: 2(K - K) A3

to obtain the quations of motion

Jx= 4 JxJp I Sn2all @,

(3/= (ETPK.)" J(J;J‘F)(ﬁr reen2ii(3)

For small values of Jx , it follows from equations (5. A. 3) that
Ka“.‘. —K‘ : \)S’: "/K; and (Jy" U(‘p)c"lg,

The equations of motion for small values of JX become

72
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39 (lndy)= 2K, r Sim2m e,

(5.A.4)
!
@: (61— PK ) + /-/}(, (Z-I' l"mlﬂ'@)
For the case where |€&l >> 4§ K, r and (3’ X , it
follows from equation (5. A. 4) that we can approximate @ by
e= Qo + 0 and obtain for J «x the approximation
akr cot 21 (Qn- To)
\J X - J xo e ’ (5. A. 5)

Thus for e':\: O the quantity \TX and hence the <X motion is

bounded. But the parameters & , P , Z and I are slowly

varying functions of & . For the MURA linac there is a value of &
/

such that (3 = 0 . When @/'—' O , the equation for Jx is-

_ (27K, ¥y wimad@l)(6-0,) A
J)‘ - \)*o e (5.A.6)
where the subscript i designates the value of the various quantities
when @/: O . Thusfor (o <L (3; £ }:o , the quantity
grows exponentially. But the parameters € , P, z and F are
functions of # . Thus (3”'%‘- o when @': (o) and we will

pass through the resonance. We assume that we can approximate @

by
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»

3
e= 0+ 4 2 (6-6:). (5.4.7)

Then for small Jx we can write

e-f . ”n 2
:x,rjmzn(ezf 4 @ (6-6:))d6
Jxg = Tre= € 7
xf Xo 2 (5.A.8)

where the subscript f designates the final value of a quantity and the
subscript o designates the initial value of a quantity. The integral'in
the expdnemial is a Fresnel integral?‘1 and is bounded even for an
infinite interval of integration. Thus the upper limit of the final value
of J x 1is

) zk,r@{mzﬂ@ww:zﬂ@z)
Jy,s 2 J,, € (5.A.9)

— '
In the case of small \)x , we differentiate the equation for @ and

obtain

" ¢ { ’

Be= (€7 B KJH K (4. + 1 coeal(i). (.10
As an example, we now use the MURA linac design values to

obtain an estimate for the growth in the X amplitude caused by this

resonance. For small values of :)-x we find
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K, Ty =

1 _ oy 4 &
y J= - B a” fa. (5.4.11)

From the graph of ,? versus 'F,_ , we obtain the maximum value of

{a ) “; = 7.896. Since K, isa constant of the motion for any
particlé, it is always equal to its value at injection energy. Thus the
maximum value of K, at any energy must equal the maximum value
of K , at injecfion energy. From MURA design parameters the maxi-
mum value of K = 2x 1011, and (3' = o for a particle with
kinetic energy of 23 Mev. At thisenergy r =1.5x 107 and

-3 )
Q'.’ = 1,6x 10 . Using these values in the formula for Jx.;, we

obtain
ol
< ,
JH - Jxo e y (5.A.12)
or
JTxf & 1036y (5.A.13)

We now relate J x to the original variable X by using the approxi-

mation that J x 18 small,

X | X, % Kl /?J;__ (Jx;)%

- -~
- — -y S————

X, %o Kl 15l  (5.A.14)

o (04)"
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The growth in Jyx for a particle with the largest possible
value of pr in the MURA linac is less than 2.6 percent. For small

J y the quantity X , which is the actual displacement, is proportion~-
al to (Jx ) ‘s’ Thus the maximum growth in X is less than 1.3 per-
cent.

Unfortunately, at this time the MURA linac has not been built
so that it is not possible to experimentally check these theoretical
results. In the CERN linac values for the tunes are chosen such that

Vx = 0.75 1)90 at the input end of the linac and ")’Z_,?increases up
to Vg = 1.5 1)7 at the output end. Thus particles accelerated in
the CERN linac cross through the 2 V¢ = 2 1)90 resonance. The
experimental results for the CERN linac do not demonstrate any
growth in the transverse motion. The fact that a particle can cross
the 2 Uy = 2 7)99 resonance without experiencing X growth is a
very fortunate result. It would be necessary to have Uy > 1)5,: at
the injection energy (since vp decreases with energy) if the trans-
verse motion experienced a large growth, and this reqqiremept would
demand higher quadrupole fields in the first few drift tubes. However‘,
the quadrupole field requirements for the first few drift tubes are
already very difficult to meet and it is doubtful thatr higher fields would
be possib.e.

The results we have obtained can be appiied to any linac that is

designed to pass through the 2 Yx - 2 Vp = 0 resonance by the
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following procedure. First, the following formulas are used to calcu-
late Uy and ﬂ? as a function of energy, and the energy for which

Vy = 1),f> is obtained.

> e f, T S &, N’ h
o= - Ne el Cgsz’g_ri

2E, s Ve W 26 w s n*
(5.A.15)

P = NefTc s
Eo Psmaw

#H
This energy is then used to obtain a value for (S and U from

7 6 C
¢= L8 d (av-2vp) _
T dy (5.A.16)

for which
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C = < g;_C_( 4713 b-.1084%) s 7
aaz L 04713 b- .1 o ’Za‘/;)g%' ,
N ‘f: Jiag) r 3J,024)
a z — - m‘ﬁ)
—3(2‘?3) LPS */s

s |

b = i— ( J,02%) * 3J33024) ) (5.A.17)
33{2.?;) (10_, J

g - .ze'ﬁ,TEoCQ:T‘B T2 )

3 Vi
(FS) (&“
and
— 1 _
el Te N Sieag)
C B 2F, @ %00 P

Since K, is a constant of the motion, it must be evaluated at

the injection energy of the linac. The expression for K, is

Yy pa %
R, 5 B 0—3{.1 (5.A.18)

”»”

where ’;z has a maximum value of 7. 896. These values for (3;,

I and K, can be substituted into the expression for X §/ X,
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Xe Kor J

X (5.A.19)

to obtain a value for the growth in the transverse oscillation amplitude

due to passage through the 2 'l)x = 2 _")5’ resonance.



VI. LONGITUDINAL SPACE CHARGE EFFECTS

If a large number of particles is accelerated simultaneously,
then the electromagnetic forces between particles will affect the par-
ticle motion. These forces will be divided ir.:o two categories. The
first which influence the transverse motion will be referred to as
transverse space-charge forces. The second which influence the phase
motion will be called longitudinal space-charge forces. The transverse
space-charge problem11 has been discussed in detail for linacs, while
the longitudinal space-~charge problem has been discussed for circular-

12,22, 23
type accelerators.

We will adapt the techniques used in the
treatment of the longitudinal space~charge problem in circular accel-
erators to the treatment of the longitudinal space-charge problem in a
linac.

The repulsive longitudinal space-charge forces tend to weaken
the total phase-focusing force and for a sufficient particle density
result in a complete loss of stability. We will define the maximum
number of particles that can be accelerated per unit time and still be
longitudinally stable as the longitudinal space-charge limit. We will
first obtain a general expression for the longitudinal space-charge
limit, and as an example the longitudinal space-charge limit will be
calculated for the MURA proposal linac. The results for this example

will show that the space-charge limit is greater than the expected

beam intensity.
80
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It has been shown in Section II-B that we can write the

Hamiltonian which governs the pure phase motion as follows:

T, L. 4
07, 9”,3)“;'2)’* 7'””)2 “TALD R an

where /7 = E/w and = ’7}1_ 3-w Z . In Section II-D the
carrier-wave approximation was discussed in detail and it was shown
that only one component of the standing wave had an important effect
on the particle motion. If we neglect all but one component of the

standing wave, we obtain
- C T ¢ 2 < U ()
A;‘{o{,/-&mso‘ 4w > (6.A.2)

in which UY) is the space-charge potential.

We make the same definition of the synchronous particle as in
Section II-B, namely 7 = 7‘ and &= ()e . We then make the
same transformation as in Section II-C to new variables Fcf and ? .

This results in the following expression for the Hamiltonian

2

P f, T
7’/3(@‘ ¢3)= {é& i—-—(qomsﬂ s P) (6.A. 3)

+ 2 Y, ufd)

with
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- E B ¥C
- S Vs
B' > w,“ , E°= m,c.2
(6.A. 4)
= A I
(5‘ /C. and Y.s: (I— (3‘) *

In the following discussion we will be applying proofs and
techniques which are discussed in detail by Nielsen and Sesslerl? to
the problem of space charge in linacs. We now define the quantity

W(Py tp,3) as the density distribution function in longitudinal
phase space. For a "stationary' solution, i.e., a solution }L such
that 2 sL/ o 3 = O , the function }L [ Pq_ (f) must satisfy the

Boltzmann equation

> ¥ P 4 3 ¥ @'= 0 (6.A.5)
— — L .
or, ¥ o¢ ’

ie., V w. VUp = 0O , where fl-)-tP is the phase velocity vector
directed along a phase trajectory. Thus any distribution function .
which has only a variation in a direction perpendicular to the phase
trajectories is a stationary distribution. We will assul;ne that the linac
fills a region bounded by a phase trajectory with a constant density of
particles. We thus write ¥ (Pe, )= T for Py <R (¥

and %(P?‘L/’):O , for Ptf > Pb(q’) with ﬂ?(‘lo) as a
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curve representing a phase trajectory. We now can write ?\ (f)
which is equal to the charge densify per unit angle of f

\ (@)= e gﬂp%(n,ﬁ,) dfpzaeTiBepl,

and we have used the fact that Pb ( ¥) is symmetrical about £,z o .
Since Fb ( ¢) is a phase curve which corresponds to the motion of a

particle, we can write

Poct) e 4T
5 o (Yt -song) ¢ 2 u(cp) 6.A.7)

H,-

as the equation which defines /o b () as a function of ‘f for a
value of %/3 = H,.

We now have reduced the problem of longitudinal space-charge
effects to a problem of determining the function P,, (®) for various
values of the constant Hb . From the function Fb (¢) we can find
the values of & and (3 such that Pb(d) = P,,( @)=o0 and

P;/({) >0 for (5 < P £ &« | where we have defined
@ £ o . Then the total number of particles accelerated per period

of the radio-frequency electric field is equal to N, and

(6.A.8)

Ne 2T §(:1P,,(wldsﬂ.
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Thus by knowing the function Fb ( &) , we can find the number of
particles accelerated per unit time for various values of H b*
The solution of P W (4 ) is dependent upon the function
W!Y) which in turn is dependent upon the function 3 / () by means

of the following equation:

= N R WA7L ’
U L) §m FIALP AP 6. A. 9)

in which X (¢ - ') isa potentiai kernel which takes into account
the shielding effect of the drift tubes.

The potential kernel K ( ¥- ¢’')  is derived in Appendix III
for the case of a beam with a periodic structure enclosed in a long
cylindrical pipe. The pipe is assumed to have walls of inﬁnité con-
ductivity. The potential kernel can be written as follows:

o < inly-)
K (- e TZg,,e (6.5.10)

n:z-4£

with
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- b by K, (1 na)
Gn ~ e Peba (B ) o (202) 2R

T, (snne)
[

3o am §)+2,&n e

J

Q. is the radius of the cylindrical pipe, (6.A.12)

b is the radius of the beam,
X

o (xy= s § LT, (8) dt,

b

X
o, (¥) = - "'/x L t K, (t)dt,

and I » and Ko are zeroth order modified Bessel functions. 14

The quantities d,(X) and dy(x) are plotted on Graphs 4 and
5 as functions of ¥ . Since L is a function of energy, the values of
the 3,,'5 and hence the form of the potential kernel are energy
dependent. The physical distafxce, a 3 , between particles
separated by an angle 4 Sﬂ increases with the energy of the particles,
so that the space-charge force between particles separated by an angle ‘

A (_,0 is largest at injection energy. For this reason the space-charge
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limit occurs at injection energy and we will restrict ourselves to the
problem of space-charge forces at injection energy. In the following
calculations we will assume for the size of the beam a radius of approxi-
mately 0.5 cm and for the size of drift tubes a radius of about 1.5 cm.
We use these values along with Graphs 4 and 5 to obtain the values of

3,«_ . Graph 6 shows jn as a function of n where it is to be under-
stood that n has only integer values and that J.p= gn . From
Graph 6 it is seen that a0 for n =>» e , and therefore we
will approximate the potential kernel by letting 9,0 for n >n,,,.
This approximation will ke valid if the variation A{(¢®) is small
over the angle 4 ¢= n/n max - The potential kernel K (¢-(p’)
is plotted as a function of (¢-¢') on Graph 7 where we have used-
the first 50 harmonics to calculate K ("f - ¢ ‘) .

We have approximated the potential kernel by a finite sum of
trigonometric functions. We now proceed to further approximate the
potential kernel by approximating this finite sum of trigonometric
functions by a power series in ( ¢ - (P,) over the range

0 < JCP - ‘-f”} < &-@). For values of the quantity (ot- (5)

which are smaller than 0.1 JT we will use the following expression for

K(yg-¢) = 2L (a,-a (¢-¢73*) 6.A.13)
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The validity of the power series approximation depends upon
the range | ¥-¢'1 2 (- () . Since we are interested in a
space-charge limit, it is important that this approximation be valid
for largé values of the phase density, We will show later that as the
phase density V' becomes large the quantity (o - (6) becomes
small so that the above expression for Kty "‘/") will be valid for
large phase densities. Care must be exercised to make sure that the
gquantity (et~ Q) does not become so small as to be of the order of

T /fmay Or else the previous approximation will be invalid.

We now return to the equation Fb (¢ ) in which we have

substituted for U (Y] its equivalent as an expression in terms of

P&(‘P)

= Ll e bl (p g )

b 28 W
2 A d (6.A,14)
n-e a ,
t ?—Z)--E" g [Rig) (2 ace-@) ) dy’
@

The term sin ¥ will next be expanded as a power series about the
value of $ = C)p, . Since we will be concerned with large values of
V" . the range of the expansion will be small, and we can approxi-
mate sin ¥ by a cubic polynomial in the variable ( ¥~ %) . We

now proceed to find a self-consistent solution for Pb () by

assuming that we can write



g2

fb'um E Sl[(«wmcf- @) (-

J

in which the quantities S . %, 8 and ¥ are to be deter mined.

We now make a change of variables from the variable ¥ toa

variable (,5:' ( ¥-%,) . The equation for Pb((-?) becomes
— _ F‘c‘_?,‘) e;T ‘P ¢J
e P B (B Gy
(6.A.15)
enee %
" § (26 3@ +0, @) |RLGI] Y
w L
with
Xz (2=4) @7 (@-%), T= (r-7)
N LIPS - _ - (6.A.16)
o @)= S [@-9)(F-3)(6-7))
and ’

= H.- g_fgI [ Som Bm b coe )

+ ?fae‘v'j (ao+ a, (75'2) ’Fb“,) ’C/V
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The function [b (?)  is dependent upon the value of the
‘constant F—-{ p - For certain values of .q p two of the three roots é-
and b—’- are complex and the phase curve 7’., /‘7) is not closed.
Since we are interested in calculating a space-charge limit, we will

pick the value for H) suchthat @= ¥ or C-i = ¥ , whichis

the condition for the maximum area inside of a closed phase curve.

We now substitute for Pb () the expression
_ A
[Po(@) )= S(L-P)*(P-3) (6.A.17)
into the iniegral equation for A % (@) and equate coefficients of

similar powers of ¢ to obtain the following conditions:
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_§_ - - C‘FoT ?ﬂze‘F H &

35 (2+28)+ S S f s o 2 4 (3-p)%

5‘ —2 -, -limer Y s

}E{(@ tag): ——— a,l S@(J-é)%%gd-éﬂ]
and

- Sl

CRPER

In the limit that T —> o0 we have the conditions that

b3 e 'FoT 8 - 3
P VIR A
(6.A.19)
and T LI
- e -f; 1§ ) .
-@8)* - — T Lam
(1-82% = £ ( Srmava ) 4 4
. - - - Y
From these expressions we see that o and (3 goas and

hence we are justified in using the quadratic approximation for

K(‘,’-lf’) when ¢ is large.
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The following formula gives the total number of particles, N,

accelerated per period of the rf field

< 5
/\/flw‘i eoldp. £ wg(a g)
: |

(6. A. 20)

We substiiute for g , o and @ the previous expression and obtain

2
N _ 1A "[; T L
- o~
9 ﬂzeaa, : (6.A.21)
The maximum current that one can obtain out of a linac is equal
to the charge of the proton times the frequency of the rf field times

the quantity IN. This gives for the maximum beam current, I, the

expression
T- (e{,n) Lsing ew)
E. o, g.1* R, am/, (6.A.22)
in which Ec is the rest mass energy of the electron (0.511 Mev) and
Ro is the classical radius of the electron (2.82 x 10”13 cm).

The value for &, is obtained from Graph 6andis a = 20 ;
the values for fe , J , L and sin ¥ are obtained from Table 1.
We substitute these numbers into the formula for I to obtain I= 50 ma
as the longitudinal space-charge limit in the MURA linac. Although

beam current expected from the MURA linac is 30, less than the
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calculated longitudinal space-charge limit, the accuracy of the calcu-
lated limit cannot be trusted to the extent that we can really say that
the des.igned current will be less than this limit. The inaccuracy of
the calculation comes from two conflicting assumptions. The first
assumption is that the variation in the charge density A ((; ) is small
over a distance A ‘;5 ~ )T/nMM where Mmax  is the highest
harmonic considered in the potential kernel, while the second assump-
tion is that difference (- @ ) between the two zero points of

Al (f) is small enough to permit approximation of the potential
kernel by a quadratic in the variable ( § - ‘-P')

While there appears to be a range in the variable (e - @.)

such that both assumptions are justificd, for the case where the phase
density becomes infi ite, the quantity (& - -(3) goes to zero so that the
number of harmonics needed to approximate the potential kernel
becomes infinite. The result for the space-charge limit is also rather
pessimistic since it assumes that longitudinal defocusing force experi-
enced by an off-axis particle is equal to the longitudinal defocusing
force acting on an ‘axis particle, but the shielding effect of the drift-
tube walls is such as to weaken the defocusing force for off-axis par=-
ticles. This calculation shows that the approximate space-charge limit

is of the order of the design beam current in the MURA case.
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It appears that the longitudinal space-charge effect will be very
important in limiting beam intensities from linacs. More exact calcu-
lations of longitudinal space-charge forces should be done in the future

design of linacs.



APPENDIX 1

First we perform the integral

o
I'= SQJ%E“JJ*“,*"XT of x

s

in which &, Q , and ¥ are roots of the cubic equation

i 3 2 7
%/3 \( é a j + aXx-X=0,
and « > 32 ¥y . The roots are functions of j and & ,

However, the roots are linear in QA so that we can write
2 ol - xX-Y
‘& /f/' < {;:—g) and 7 ) as a function of ,( only,

and also we write

ol
1= g Sot-x) (x-e)(x-¥) dx.
¢

We make the substitution
T . 2
/X - / - *‘ s";‘ a P A

and obtain

\

r .
_ 2 £, o Pe’P JYP
L= 24 =@ err) ) Sy

We integrate by parts and obtain
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1= /,k (4~ zr) (1-47 f 1M1,;)g Ay .

We let

K (A= gq Y

o [i-Aiie

and

E(4) = S,g J 1-Asle Jg

in which K and E are called complete elliptic integrals of the

first and second kind., We use the relations

J'—E = E -K ._OL_K_ = E - ..K_-
A8 : f\’ s AR R (1-4) i J
and the expressions for £ and K . and we obtain
(% aLle-o 2(1- H+AY) ) - (134" +R) Kik)
>a (I--—ﬁ,um?) 3%‘(,_,&’)1 ‘

This gives
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I-= 72:% (d’b’)% ?2(1-/&’%&‘/) E —(a- 3'&2*’&4)'%};

_ 2
Since ("' ~r/a_) and -R are independent of Q& , we can write

T-= % ag -F&(-P)

Next we want to determine

a4 . g_&}"
dfs dt

Since

_ s -% ) % '/a,gj-f—a,’x"x"a/’x;
-Y = a 3 VU7s
2 2
¢

then
y (7 dY
df. s [y “S -
_,;/j = 2 J’; 128 o ﬁa‘_x)(x-@)(x-b')

Again we substitute
2 .
f - % /& Sma(p
| = 4 e

X =

which gives



d 'E) (ac—b’ ) KM“’
or the inverse

4 J3 [eoENE

I T o ) K (&)
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APPENPIX II

The Hamiltonian considered here is of the form
Px :
= X X
H, =+ giey 3

The equations of motion are

/
/

x'= R and Pg=-j/a)y,
or rewriting as one second-order differential equation, we obtain

X"+ 9/8)x=0.
This equation has two independent solﬁtions A, and /42 , where we
write A, = 64'1);;9 }A/é) and U, T e'ldxa }2(0) . i
5 (8) is nearly a periodic function, i.e., (7 (8) = Z ) Lné
where gn is a slowly varying function of & , then % and )Z are

nearly periodic functions of @ . We can then write

-inp

%:Z%ﬂ eina and -}Z_"Z_}Z;e s

where %l and 7, are slowly varying functions of # . We substi-
tute this expression for }” into the differential equation, and neglect-~

ing the slow variance of jﬂ and % , we obtain
2
(”+ Vx) ¢n= Z";jm K—m

We set n = 0 , and we obtain the equation of the tune

_2);___ __;L; Z Im }é‘ . In order to solve for }ﬁ , we define
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% as our normalizing constant and proceed to iterate the equation
for %}1 . Since 3n << [ , we assume for our first approxima-
tion that %n / t/*o = O for h X O and derive a second approxi-

mation

%L: (,p ——3’—'5-— rn% o

(Y)*'l);)z ’

We use this approximation to obtain a third approximation

(/Ln: %(n[-n),)’ % gn* d o o } n¥o

(yz-m-r-r)y)z ,

We can repeat this procedure any number of times and for ?,,( 1
it will converge if Ux is not close to integer. We stop with the
second approximation for )bn_ , and we obtain for Uy the following

"smooth' approximation:

7);': 30 t Z M"

n§o (”*‘ux)

Since 7/,(“44 1 ., we can write

Notice that we cannot write ‘l/; = jo since even for
|gnl<< 1, it is possible that }fnl >>4, for nt o . How-

ever, it is possible to write ¥/ 5&, << 1 , nto for
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many other cases, and in particular, in the expressions for
]
SV, 4,4, %' 4, m we will be justified to use only the % term.

We return now to the Hamiltonian
T

| . .
Mz - + Jo)z

We again use _u, and 4{, as the two independent solutions and write

iV 0 )lz -iVx 8 -
M= € ¢e) , Ma=¢€ #re),
' . ‘.VA‘ / ‘5‘0 b —
M, = (e g16) Ay = -ce T Fe),
where
’/ - -

7= Iy ¥-c @ =D, $+if .

)

From the differential equation, we obtain

Y 4

7'= (g 9 Yeyp) y:-z(jsz—'ﬂxf).

The Wronskian, (4. A&, - 4, k,) . is a constant which we will

pick for normalization purposes equal to - 4 i, That is
(F#+9¢) =4

In transforming from (x,P,) variables to (f =i 5 ) , we use

the generating function
/ l. 2 ¢ 2
G= 7 (377217 - 57 %)

which gives
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G -
and W= %/w-' %-é = 1)X ?f_,

where we have used the properties of }b s V , 7 and 7 which
were discussed previously.

From the normalization condition we see that if

e nd

(nb -— -
peote xf wa ¥ =3t
then .
N A



APPENDIX 111
In this appendix we will solve for the potential of an on-axis
particlé as a function of the charge distribution. We will assume that
the charge distribution is periodic in the variable 4% 3 -w© T witha
period of 2 7T and can be represented by a step function in the vari-

able r. Thus we assume that the charge density e can be written as

follows:
- inthy-wt)
Q(r.3)= _S_ Q.r) e )
n=o
where Qn (v) = én: constant for o4r<b and

We will also assume that this charge di—stribution is enclosed
in an infinitely long circular pipe with infinitely conducting walls, This
gives the boundary condition that the potential equals zero at the walls
+{ the pipe. We now make the transformation to a moving coordinate
system such that 'j = 3= 1“2 t  which gives for the charge
density

> A
e(rnp = I_@urye "

We let [,/ (Y,:; ) be the potential function which we assume

can be written as
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- e [n.-k“
Uy = Zun(r)é :
ns=o

This potential function must solve the following Poisson's equation as

well as the previous boundary condition

L2 2 )

r or (rdr L((r,a)) + 3; Utry)y=- 4T ¢ (r 3)
Upon substituting a Fourier series for U (r. ’3) and (-‘(r,})
Poisson's equation becomes ’

Lod o d v,
" ;l—r rdY‘ Un(r))-—_n.»& Up(F) = - YT QL0

The solutions to the homogeneous part of this differential equation are
zercth order modified Bessel functions. We represent the two solu-

tions of the homogeneous equation by 7,( r) and y, rr] where
4, (0 L, (ndr) ;o A K,(nkr).

The Wronskian of ;{I and 'y, will be denoted by W (4.4, r)

and is given below

W (4, ';1.,r) = ’J, y,'- ’y‘l'z,_= - —!)-:
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The general solution to the above differential equation is equal
to a specific sclution plus Y. plus C, Y; where C, and Ca
are constants which are chosen to match the boundary conditions. The

specific solution to the differential equation is given below as

\/(Y'.-z): Z \/ﬂ(r)ﬁfﬂ{kj

T Qlt)
Vn (r)= j Wiy g ( y (t) j__(v’)— )’/r)?’._lt))dtl

which becomces for r> b

- T b
Vn(r): “n Q, 3(5. t I (nkt) J'b) K, crnkr)

b
- (ifK,,(r-akt)Jt) fo(n—ér)g

’

and for r<b
— r
V, (r)= 4@, §( (eI, cnhnde) K nhrs

- ( j;rt K, (nkt) Jt) I&(n&r)}'
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We now use the boundary conditions that U (&, ‘-5 )=0
where & is the radius of the cylindrical pipe, and that {f (9,3)

be finite to determine the constants C, and C2 in the equation

Up trd = Vrd s Gy tr) v €, Y, tr)

It follows from the second boundary condition that C1 must equal 0,

and from the first boundary condition it follows that

{

K, (nda) ;

C = uni aw (5.: K,nk )t ) - (56“:;““)‘“) T, (nhe)

By defining = 4 5 and A /@) as the linear charge

density per unit angle ‘;0 , we can write

< in
Alg)= 2 A,e ‘fj
A, % b Q.

We substitute this expression for A » into the equation for

U, (r) to obtain for the case F= O

Un(e) s 42 §:, (gt Ko(ﬂ—k‘f)a’f)' ;:(S LTkt )dt) T,cnhe)
o o 2

or



KO(Y'J“-)}
.T. (nka)

2

c
Un 3= =R N\ T, (nhb) + ol (nkb)

where
¥ pib
AT 5 LK, 1) dt
o
and
nhb
d (nhb) = a g +I,0t)dt .
(nkb) .

aft .
. -in¢
The coefficient A, is equalto :ZL’-" g AlP) e
>
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which gives the following expression for the potential function of an on-

axis particle

an
in(e-¢) ,
v (23,6 2oy

where
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oo - K, (nke)
Jn j‘ﬂ 2m § dytnkbit ol inbb)
Io(nvzéa) s

and in the limit that n»— 0o

3"‘—? g, = — /+.l.,£ma/b}'

an
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