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ABSTRACT 

The resonant beam extraction method proposed by C. L. Hammer 

and L. J. Laslett for constant gradient and alternating gradient accel-

erators has been extended to fixed field alternating gradient accelerators. 

It is possible to find field perturbations which are effective in causing 

the radial betatron oscillations to grow exponentially at a particular 

azimuthal position, and which at the same time have an effect upon the 

equilibrium orbit which greatly enhances ease of extraction. Digital 

calculations verifying the analytical predictions are presented. It re-

mains necessary, however, to choose field perturbations which do not 

introduce nonlinear effects having unfavorable extraction characteristics. 
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I, IlifTRODUCTION 

Fixed field alternating gradient accelerators as compared to 

ordinary alternating gradient accelerators have the distinct advantage 

of a much larger internal beam intensity. This advantage could be ex-

ploited in performing high-intensity scattering experiments in the ener-

gy machines or storage rings. However, only single-turn extraction 

has been demonstrated for this machine, whereas many-turn extraction 

is desirable because its more extended beam burst aids in coincidence 

studies. Also, when one is using the fixed field accelerator as an in-

jector into a larger machine, a longer beam burst will enable one to fill 

more completely the phase space of the larger accelerator. 

Integral or half-integral resonant beam extraction is deemed 

particularly suitable for use as an injection process into a higher ener-

gy machine for it is anticipated that the resonant extraction process 

will reduce the radial phase space of the beam. In addition, the per-

turbation may be applied spatially so that long term extraction can be 

achieved by slowly moving the beam into the extraction region. Reso-

nant beam extraction has been investigated analytically and checked by 

digital computations only for constant gradient and alternating gradient 

synchrotrons. 1 In the above cases the betatron solutions may be writ-

ten in the Floquet form if th,e dynamic nonlinearity of the equation of 

motion of the betatron oscillation is omitted, which is reasonable for 

these machines. The type of perturbation used in this analysis is an 

azimuthally dependent perturbation of the azimuthally dependent part 
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of the field, This perturbation drives the operating point into the inte-

gral or half integral radially unstable zone, which opens up with a width 

proportional to the perturbation strength and within which the solution 

for the exponentially increasing betatron oscillations attains its maxi-

mum value at one particular azimuth regardless .of the initial conditions 

of the particle. Therefore, in principle, the beam can be extracted on 

success.ive revolutions with no spread in the angle tangent to the equi-

librium orbit, thus making the radial phase space of the extracted beam 

zero. 

Because of the high nonlinearity of the guide field of a fixed field 

alternating gradient accelerator, it is an interesting question whether 

a fair approximation to a Floquet solution for the betatron oscillations 

may be made and the resonant beam extraction method applied to ex-

ploit its obvious advantages. This paper will consist of a linearization 

of the equation of motion for the fixed field machine and the application 

of the resonant beam extraction method to these equations. Determina-

tion of the feasibility of the method will be established by the use of 

digital computations. 

II. THEORY 

A. Derivation of the Linear Equation of Motion 

The equations of motion of particles in a fixed field alternating 

2 gradient accelerator are: 



2 2 -1/2 
x' = (1 + x) Px (1 - Px - Py) 

2 2> -1I2 y' = (1 + x) Py (1 - p - p x y 

. (PX) I (1 ' 2 2) 1 I 2 = -px-Py + 0"(1 + x) [ (By/B0 ) - (Py B9/B0 ) x 

(1 - p; -p:) -112_) 

p' -y -

where 

x = (r - r 0 )/r0 y = z/r0 

a prime indicates differentiation with respect to' 9 

Px = (dx/ds), Py = (dy/ds) . 

One sees that the radial motion and the vertical motion are 
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(1) 

coupled. For the accelerator considered, it is assumed the perturba-

tion of the radial motion due to this coupling is small so that the radial 

equation of motion may be written with no vertical motion. The coupling 

effect will be investigated by digital computations only. Further, to 

make possible an analytic calculation, the radial equation of motion is 

linearized and perturbation theory is applied to this linear equation tO 

determine the field perturbations necessary to give the beam an ex-

ponential growth and to properly orient the beam so that it will enter 

the extractor region without loss of the beam to the walls at other azi-

muths. 
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Thus, for motion in the median plane, in which case the mag-

netic field of the accelerator is 

By/B9 = - (1 + x)k G (9) 

B9 = Bx = 0, 

the equation of motion becomes 

(1 + x) 2 x" ((1 + x) 2 + x'2) - 3 / 2 

(2) 

= ((1 + x) 2 + 2 x 12) (1 + x) ((1 + x) 2 + x'2)- 3/ 2 - (1+x)k+ 1 G (II). 

Ignoring all terms of order I 
xx' 

2 
x ' 

,2 
x ' and higher order, one ob-

ta ins 

x II = 1 - G (9) + x [ 1 - (k + 2) G (Q) J . (3) 

Making the substitution x = w - 1 / (k + 2), one obtains 

w" + [<k + 2) G (Q) - 1J w = (k + 1)/(k + 2) . (4) 

B. Derivation of the Betatron Oscillations 

If w is separated into w =we + wb, with we representing the 

periodic solution to the lnhomogeneous equation, (4), i.e., the equi-

librium orbit, one is left with the desired linear equation of the beta-

tron oscillations, wb, about the equilibrium orbit. Thus the equation 

of motion of the betatron oscillations is 
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(5) 

With a G (9) given by 

G (9) = F (9) + )... f (9) 

where F (9) represents the unperturbed field, 

F (9) = A + [ my/(k + 2) J H (II) 

while H (9), the field flip-flop, is given by 

H (9) = 1 for - iT/2 N <. (9, mod 2-rf /N) <. tr/2 N, 

H (Q) = - 1 for 71/2 N <. (Q, mod 2rf /N) <. 377' /2 N, 

and the perturbation of strength }. has the form 

f (9) = 2- ; cos c er e + ~O" ) • 
IT <T 

(6) 

The solutions to equation (5) may be written in the Floquet form, 

.Al 9 - )I. 9 ,;:: 
wb=Ce ~ 1 +De ~ 2 (7) 

in which )A. is real for operation inside an unstable zone and where if> 1 

and ~ 2 are functions periodic ir,i 'two revolutions about the machine in 

the case of the half-integral resonance. These functions are deter-
1 

mined by the structure F (9) and the perturbation A f (9). 
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The problem is to determine f (9) such that the unstable zone 

is opened and so that µ has a value which permits the ascending solu-

tion to dominate and \P 1 has the spatial dependence and periodicity 

required for beam extraction. 

Perturbation theory may be used to solve equation (5) conven-

j iently, using the complete set of functions, x 11 T , where 
' 

~v,T" + [<k + 2) A - 1 + m.,H (9)] xi,-r = - at,-r. ).,,,,.. 

The latin superscript refers to the parity of the eigenfunction, 

the subscript 1' refers to the fundamental frequency of oscillation in 

the eigenfunction xj,,,1' and the subscript II is the fundamental frequency 

of the unperturbed eigenfunction. 

To first order, the exponential growth factor pis 

where 

1/2 
[ o<.(1 -ot>J -.:::: 1/~ 

<j,v(f,lj,v>2-
1 'z: cos(E -jrr)+ l: cos S 

'?211 2v So o 
(9) 

4TT 
<j,'T' /r J j.-r) = i xjv:r (9) f (9) )v,T (9) d9. 
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The stopband is thus opened to first order if 

<1,v If I 1,v) -/. <2,v If I 2,v) 

Only a ~ cos (2 v 9 + $ ) perturbation term will accomplish 
2v 2v 

this. 

A first-order approximation to ~ 1 is 

~ 1 ::: cos V(9 - • 0 tv) + B., cos [ (N - v) (9 - f 0 /V) + N ; 0 /v] 

+ C ,.. cos [ (N + V ) (9 - ; 0 I V ) + N f 0 IV J 
+ (2a(l) )-l !; {cos[<v+,o)(9-f

0
/V)+ YI'] 

v,v+p 2v+p 

+ B cos [ (N - v - p) (9 - ; 
0 
I V ) - )',, + (N f 0 I V ) J v+p ,-

+ c cos [(N + v +p) (9 - f 0 /v) + )'p + (N f 0 /v>] (10) v+p 

where 

The maximum of qi 1 occurs at 90 = f 0 IV , with the dominant 

terms reinforcing the fundamental if one chooses 

I! _(IY+pl-V)~ N¢/v :2rr.L 
s2v+p - I< v+p -v)j 2v+p' 0 

' 

D. = 1, 2, 3, .••• 
(11) 

~ = - (2 f 0 + f 0 /).)) = 217' N-l (2 V + p). Operation in 2v+p 
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the center of the stopband gives the auxiliary condition 

- 0 = (n + ~)11' , n = 1, 2, 3, • • • , so that 1"" (8 v )-l (4 n + UN . 

A first-order approximation to ~ 2 is 

- ( ~ 2 / 2 a v ) {cos [< Y + ,.o ) (9 - ~I ).) ) + ~ - 2 ; 0 ] V+p ,Y+p . 

+ BV+p cos[(N-v.-,.o)(ll--0 /'V)- )f. +Nf0 /JJ + 2f0 ] 

+ CV+,.o cos [<N + V +p) (9 - • 0 fv) + Yp + N f 0 /"V - 2 • 0]}. 

For operation in the center of the stopband, the aux:iliar1 condition 

holds, and g;i 
2 

becomes 

+ c \) sin (N + v) (9 - •of y' ) 

- l; 2 v ± e { sin [ ( ).) + p ) (9 - •o I µ) + ;rf' J 
2a v, v ±p 

- B sin [<N - )) -p) (9 - 1>0 /V) - Y,e + N f 0 /V J v+p 

± C sin [<N ± v +p) (9 - •0 fv) + ~± N f 0 /v]}.(12) v+p 



The conditions which maximized ~ 1 at 80 = d0 /v thUJll give~ z 
a value of zero at 8 ,. d0 /v • 

The coefficienta of equations (10) and (12) are 

2 [ z . J-1 C'I"' ., .;:1""' (N + 1' ) - (k + Z) A + 1 - al.,,,, 

ajv;r '::! [ 1 2 - ).I 2 J ( 1 + 4 ( \) /N)2 J -1 

m~ "" .;: [ V 
2 

+ 1 - (k + 2) A]( (N - )) )2 - (k + 2) A + 1 J :z: 

[ (N + V )2 - (k + 2) A.+ 1 ][ N 2 + v2 - (k + 2) A+ 1 J-l 

C. Derivation of the Equilibrium Orbit Solution 

Since the homogeneous equation (5) does not contain first 

10 

derivatives of wb, the WroIUlkian is equal to a co!Wtant. That is, for 

properly normalized independent solutions w~l) (8) and w~Z) (8) of the 

homogeneous equation, 

(1) (9) N ,,9 ;i:: (") and wb(Z) ("). "' Nz e-All ""2 (n) . wb = 1 e,... II<( 1 " " ~ " • 

= 1 

Hence, one can construct the periodic solution of equation (4) using the 

Green's function, 
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G (9, 8 1) "' w~l) (9 1) w~Z) (8), 0 < 9 1 <. 9, G (8, 8 1) 

The general solution to the inhomogeneous equation therefore becomes 

,«9 ' - f(9 ;;:. 
we= Ae ~l (81+Be l!./ 2 (9) 

9 
k+ 1 -,u9 

©2 (9) i e +µIii' ~ (91) d8 1 
+ k + 2 N 1 N 2 e 

1 

k + 1 ~9 r4rr -µ9' ~ (8 1) d8 1 
+ k + 2 N1 Nz e @: (9) e 

1 1 • 
9 

To obtain the equilibrium orbit, the constants A and B must be 

chosen so that the nonperiodic parts of. We vanish. Thus, an approxi-

mation to we to first order in the pertll' bation is 



where 
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(13) 

+ Ci1 ~+ zv >] cosN8'- ZBvCv cosz N8' 
. lN +J.J )v NZ -VZ 

+ ;Z)J+,.O {[ /' + CµBy 
z a ( v + n )V + jJ j),Y+fJ · I (N + v )(N - )./ - ,.0 ) 

- B v c z N + I' ] cos (Z ).) + p ) 8 I 
)I +,P (N + v + I' ) (N - )) ) 

+ [ (N - /.J ) B V + ;> _ (N + /' ) B v ] cos (N - Z J.I - f' ) II' 
y (N - )) - ~ ) ()I+ I° )(N - )I ) 

+ [(N t fl) CV+ f' _ (N - f') CV J COB (N + Z V + f' ) 8 1 

(N + V + f> ) ( V + f' )(N + V) 

,..OB v Bv+,.o + cos {Z N - Z v - /' ) 8 1 

(N - y - f' )(N -)J ) 

,PCvCll+I" 
+ (N + y +j> )(N +.V) cos (ZN+ Z .V + /') 8 1 

+ M sin z v 8' - ,MBv[~ + 1 
2 J sin (N - Z iJ) 8' 

V 2 V (N-V) 

+ MC 11 [ ~ + 1 J sin (N + z v ) 8 1 

Y (N + v )z 

z Bv fa 
- sin {ZN - z v ) 9' + 

(N - )) ,z 
CZ 

" µ. z sin (ZN + Z ).) ) 8' 
(N + v) 
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It is evident that the coefficients of the harmonics added to the 

equilibrium orbit which contain the factor 1/( v + ;') are large if· 

( JJ + fJ) is small. Thus the largest harmonic added to the equilibrium 
1 . 

orbit is that for which ( J/ + jJ ) = - z:, in the case of the half integral 

resonance. One always has two choices of~ in picking the field per-

turbation introducing the harmonic with the fundamental frequency 

( l) + jJ) into the ascending betatron solution. That is, one can choose 

such that ( JI+/' ) = ±. / ( j/ + !' >/. The chot::e of ,,a 4. 0 auch that 

( J) + p) < il always has a much more favorable effect on the equilibrium 

orbit than the other choice, because it always adds harmonics to the 

equilibrium orbit which have their maximum at the extraction azimuth. 

In the case of ;O <. O, the choice (JI +;i ) ? 0 has a deleterious effect 

since the largest harmonic added to the equilibrum orbit has its mini-

mum at the extraction azimuth. The choice, for/ >O, ( V+ ,,a)~ 0 

adds its largest perturbation harmonic to the equilibrium orbit such 

that its maximum is at the extraction azimuth, but its maximum is 

usually much smaller than the choice ,,o <. 0, ( Y + ,,o) <. 0. In addition, 

some of the smaller harmonics added have their minima at the extrac-

tion azimuth. 

Although it may not be possible to make ( v+ I') small in intro-

ducing certain harmonics into the ascending betatron solution, it should 

be possible to choose a perturbation so that a favorable effect on the 

equilibrium orbit is obtained. 
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The terms in the equilibrium orbit which are multiplied by the 

growth factor)'< have, in general, a deleterious effect upon the erlrac-

tion properties of the equilibrium orbit since these terms take on the 

value O at the extraction azimuth, while they may add to peaks at other 

azimuths. Hence, one should usually avoid large values of ,)A. 

ill. APPLICATION OF THE THOORY TO THE MURA. 

50 MEY RADIAL SECTOR MACH1NE 

The MURA macb:i.ne tuned for one-way operation operates on 

the V x = 4. 5 resonance and has an unperturbed magnetic field in the 

median plane, G (9) = Q. 57015 + 5. 65325 cos 16 9 plus small harmonics 

of 16 9, k = 9. 3. 

It is desired to choose a perturbation for the field that enhances 

~ 1 at some particular azimuth. From equation (11 ), chclftaing 1 = 4, 

one obtains •o I J.) = 1T I Z as the extraction azimuth. By equation (10) 

the unperturbed function is 

?I? -:::= cos 4. 5 (9 - f1 /2) + o. 298 cos 11. 5 (9 - -rr /2) 
1 

+ o. 091 cos 20. 5 (9 - 17'/2) . 

To aid in extraction, it was decided to add harmonics to the 

function l> 1 such that its magnitude at any azimuth other than the ex-

traction azimuth is no greater than O. 9 of the magnitude of (fi 1 at the 

extraction azimuth. In particular, the harmonics added to the unper-

turbed function must reduee the absolute value of the function at 
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azimuths other than the extraction azimuth where it takes on large 

values, It remains, therefore, to find an economical combination of 

harmonics which will accomplish this. In addition, one must recognize 

that the magnetic field perturbations used to produce these harmonics 

in ~ 1 may affect the equilibrium orbit in a way which may greatly 

enhance ease of extraction or may have a deleterious effect. Keeping 

in mind that perturbation harmonics closest to the resonant frequency 

have the greatest effect on the oscillation amplitude, one obtains by 

trial and error a sum of the harmonics cos O. 5 (fil - 'ft /2) and cos 

5. 5 (9 - 1Y I 2) as a combination which gives the proper shaping of g;) 
1

• 

The perturbations required to intl'.oduce these harmonics are found from 

equations (6), (10), and (11). Thus the perturbation added to F (9) to 

introduce cos 0. 5 (9 - 1T / 2) into i;5 1 is either - I'; 4 l cos 4 9 or 

- li; 5 \sin 5 9, The pei\urbation introducing a harmonic of 

cos 5. 5 (9 - 11I2) is eith~~ - \; \ cos 10 9 or - \ ~ \ sin 9. 
10 1 

It remains to choose between the alternate perturbations intro-

ducing the desired harmonics into if? that combination of perturbations 
1 

which has the most favorable effect on the equilibrium orbit. One sees, 

from equation (13), that the two alternate perturbations of equal per-

turbation strength which introduce identical harmonics into ~l' intro-

duce into the equilibrium orbit different harmonics which may be of 

greatly different magnitudes and may even be of opposite sign. To 

clarify this, consider the principal harmonic of the equilibrium orbit 
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cos (2 J) + f' ) (9 - 7f/2) 

added by a perturbation term of the form 

~ cos [ (2 )} + L'l ) 9 + 
2 v+f ,-

Here only the main coefficient of the principal harmonic is inclu~ed. 

Thus, the perturbation - I ;
4 

\ cos 4. 9 adds a positive harmonid of 

cos 4 (9 - 11'/ 2) to the equilibrium orbit, of magnitude 0. 65 times 

the magnitude of the principal harmonic cos 16 9 for j "t
4 

\ = 0. 05. 

On the other hand, the perturbation - l-g5 \ sin 5 9 adds a negative 

harmonic of cos 5 (9 - 1f /2) of the same order of magnitude. Hence, 

the perturbation - 1~4 j cos 4 9 is chosen since it enhances the maxi-

mum at the extraction azimuth, while the - I 15 5 \ sin 5 9 perturbation 

depresses the maximum at the extraction azimuth with respect to 

maxima at other azimuths. Similarly, - 1~10\ cos 10 9 adds a 

cos 10 (9 - 71I2) harmonic and a cos 6 (9 - rf ! 2) harmonic to the 

equilibrium orbit, both of magnitude o. 05 times the magnitude of the 

principal harmonic, for J5
10 

j = O. 08. The perturbation 

- l~o \ cos 10 9 produces an equilibrium orbit in which the extrac-

tion azimuth maxima is enhanced over all other maxima by a magnitude 
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0. Z times the principal harmonic except for the azimuth 9 = 3 T(/ Z, 

at which point the maximum is equal to the extraction azimuth maxi-

mum. Since the ascending betatron oscillation amplitude is near zero 

at 9 = 3 1r' I Z, this equilibrium orbit is also very favorable for extrac-

tion purposes. 

IV. DIGITAL CALCULATIONS 

A. Radial Motion 

The perturbed azimuthal field component, G (9), used in the 

digital calculation is 

G (9) = 0.57015 + 5,5 cos 16 9 - 0.05 cos 4 9 

- 0.08 cos 10 0 - 0.0113 cos 9 9. (14) 

The cos 9 9 term is used to open the stopband. The approximate 

normalized function ~ 
1 

then becomes 

~ = 0,678 cos 4.5 9 1 + 0.194 cos 11.5 9' + 0,061 cos zo 9' 
1 

+ 0, OlZ cos O. 5 9' + 0, 040 cos 5. 5 9' 

- 0,004 cos 7,5 9' + 0.015 cos 10.5 9' + 0,003 cos Zl 9' (15) 

9 I : 9 - 1T'/ Z , 

This function has the property of having in no region other than 9' = 0, 

mod, Z, an absolute value greater than O. 9. 
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The approximate equilibrium orbit is obtained from equation (13), 

+ 0.042 COS 4 9 1 + 0.011COB12 9 1 + 0.004 COB 10 9 1 (16) 

+ o. 003 cos 6 9~. 

The factor N 1 N 2 could be obtained by using the approximate solutions 

of if? 
1 

and ~ 2 in normalizing the Wronkskian, 

I ~ 1 (9' = o) ~~ (91 = o) j = (N1 N2f1 (17) 

This is impractical since the higher frequency harmonics, which have 

small coefficients and therefore are neglected in the approximate solu-

tions, have a large effect on the nor!nalization of the Wronskian. There-

fore, an empirical determination Of N1 N 2 ~~·: ;~ is made. This is 

done by equating the average value of the equilibrium orbit calculated 

digitally to the average value of the equilibrium orbit, 

(xe)digital = O. 215 [ N1 N2 10. 3/11. 3 J -1/11. 3. (18) 

One obtains 

N1 N 2 10. 3/11. 3 = O. 34. (19) 

This is in contrast to a value of O. 23, obtained from equation (16). 
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Figure 1 represents the analytic calculation of e-"9 ' ~ (9 1), 
1 

and the digital calculation of the displacement from the equilibrium 

orbit for the initial conditions 

u (9' = 0) 
-3 = 1 x 10 , u' (9 = 0) 

-5 
: - 2, 86 X 10 , U :: X - Xe , 

Figure 2 represents the digital calculation of u (9') for the larger 

initial conditions, 

u (9' = O) -2 -4 = 1 x 10 , u' (9 = O) = + 2. 86 x 10 • 

The initial conditions of u used in the digital calculations were chosen 

to pick out only the ascending solutions. The growth factor of the ana-

lytic solution portrayed in Fig. 1 is chosen to match the digital results. 

Figure 3 represents the digital and the analytic calculations of the 

equilibrium orbit. The total motion for the initial displacement 

-2 u (9' :: O) = 1 x 10 

is shown in Fig. 4. 

B. Vertical Motion Effects 

In all the perturbation fields investigated, care was taken to keep 

the vertical tune as far from an integral or half-integral vertical reso-

nance as practical. This was done, when necessary, by adjustil!J.g the 

relative strengths of the field perturbation terms, thus putting a.restric-

tion on the form of the perturbation field. For the perturbation fl.eld 
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under present consideration, 
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y = 2. 80, well between the integral 

and half-integral vertical resonances. 

Coupling effects due to the vertical motion were investigated 

for two ranges of vertical amplitude. For a total vertical amplitude, 

Yv of magnitude O. 004 and O. 0048, corresponding to initial radial 

amplitudes of O. 001 and O. 01, respectively, the coupling effects were 

entirely negligible. For a 200 cm radius machine, these vertical ampli-

tudes are O. 8 cm and o. 96 cm. For total vertical amplitudes of O. 04 

and O. 05, corresponding to radial amplitudes of O. 001 and O. 01, re-

spectively, coupling effects were quite pronounced. This range of 

vertical amplitudes is much larger than would be encountered practi-

cally, however. Table I compares the radial oscillations for the un-

coupled cases, Yt = 0, and the coupled cases. 

C. An Additional Perturbation Field 

One additional perturbation field studied is of the form 

G (9) = 0.57015 + 5.91cos16 9 - 0,01cos99 - 0.1cos10 9 

- o. 2 sin 11 9 •. 

With this perturbation field the approximate function 111 is 

~ 1 = o.632 cos 4.5 9' + 0.190 cos 11.5 9 1 + 0.058 cos 20.5 e1 

+ 0.042 cos 5.5 9 1 + 0.017 cos 10.5 9 1 + 0.038 cos 6.5 9 1 

+ o. 023 cos 9. 5 9 1 

(ZO) 



TABLE I. TOTAL RADIAL OSCILLATION 

Total Radial Oscillation, 

9/2 Yt = O. 004 Yt = 0 Yt = 0.04 

X - Xe = 0. 001 x-xe=0.001 X - Xe = 0. 001 

0.2500 0.26773 0.26773 0.26773 
. 3125 - • 02705 - . 02689 - . 04350 
. 3750 - .11011 - .11006 - .11501 
• 4375 .08099 . 08098 . 08109 
• 5000 .17343 .17379 . 138 30 
. 5625 .06464 . 06452 .07546 
.6250 - .10212 - .10208 - . 10731 
. 6875 - .01050 - . 01010 - . 04612 
• 7500 • 25787 . 25786 . 26080 
• 8125 - • 03671 - . 03684 - . 03142 
. 8750 - .10488 - .10473 - • 11 770 
. 9375 .10066 .10084 .08870 

1. 0000 . 14116 . 14110 .13485 
1.0625 . 08352 .08350 .08758 
1. 1250 - . 09480 - . 09464 - .10736 
1. 1875 - .1942 - . 01920 - . 04521 
1.2500 • 24612 . 24605 • 25324 

r - r x = 0 ' ro 

Yt = O. 0048 

X - Xe = 0. 01 

0.35773 
- • 09743 
- .19681 

.13331 
• 22 939 

- .03479 
- .12877 

.08409 
• 26022 

- .13408 
- . 11902 

. 20134 

.07027 

.01422 

.00382 

.04037 

.13049 

multiplied by 10 

Yt = 0 Yt = O. 05 

x-xe=0.01 x-xe=0.01 

0.35773 0.35773 
- • 09724 - . 11677 
- .19673 - . 20453 

• 13332 • 13194 
. 22990 .18133 - • 03506 - .01112 

- .12877 - .13379 
. 08481 . 02266 
.26005 • 27745 

- .13416 - . 137 52 
- • 11868 - . 14772 

. 20151 . 19411 

. 07001 . 07033 

. 01428 • 01165 

. 00414 - . 01679 

. 04048 . 01604 

.13027 .15088 

N 
CJ1 
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The analytic calculations for the betatron oscillations and for the 

equilibrium orbit drastically fail to agree with the digital calculation. 

Figures 5, 6, 7, 8, and 9 represent the digital calculations of the 

equilibrium orbit and of the ascending solution wlth the initial ampli-

tudes u = O. 001, O. 003, O. 006, O. 01. The form of the solution is 

dependent on the magnitude of the initial conditions, which is an un-

desirable result. Figure 8 demonstrates an extreme nonlinear effect. 

The large peak is very smooth when the equilibrium orbit is added in. 

It is possible that this large oscillation can be used as a feasible ex-

traction process. At the present time this behavior is not under-

stood and should be investigated further. 
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V. CONCLUSIONS 

The first field perturbation used is very favorable for extraction 

from the particular machine considered. The favorable equilibrium or-

bit shape rel.axes the requirements on the ascending betatron solution, 

requiring only that the ascending solution have an amplitude at the ex-

traction azimuth significantly larger than the amplitude at the azimuth 

9:: 3 rr /2 and have their extraction azimuth peaks enhanced over all 

other peaks. In addition, but for the difference in the exponential growth, 

these two ascending solutions are almost exactly the same, the one of 

larger initial amplitude being almost a photographic enlargement of the 

other when the exponential growth are factored out. This enlargement 

characteristic suggests strongly that all amplitudes between the two 

amplitudes investigated will similarly be enlargements, and the particles 

will be brought from small amplitudes to extraction amplitude without 

any beam loss. 

In addition, it has been shown that for some fields the process 

of linearizing the equation of motion and applying the perturbation theory 

developed by C. L. Hammer and L. Jackson Laslett produces results in 

remarkable agreement with the digital calculations of the ascending 

betatron oscillation solutions when one considers the appreciable non-

linearities inherent in the problem. Thus, the linear theory provides 

an excellent guide to the important features of the betatron oscillations 

of a guide field with 11,zimuthal perturbations present. 
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The analytic solution derived in the text for the equilibrium or-

bit provides a convenient method of finding the approximate values of' 

the magnitudes of' the various harmonics added to the equilibrium orbit 

by a given perturbation. However, as pointed out in the text, the aver-

age value of the equilibrium orbit as determined by the Wronkskian was 

inaccurate by approximately 30%. 

The magnitude of the growth factor fi may be estimated analyti-

cally from equation (8) using the approximation 

<2,v I d/dej1,v> = v-~ (N-U)+c2 (N+v>. 

This gives fl= O. 055/217', as compared to a digitally calculated value 

using small oscillations, of µ = O. 063/2 rf. The width of the stopband 

may also be calculated from equation (8). The analytic calculation of 

the width is 3. 01, as compared to the digital result of 1. 95. 

A complete breakdown occurred for the linear theory in the case 

of the second guide field studied. It is therefore apparent that careful 

consideration of the extraction problem is necessary when the operating 

point is chosen for the accelerator. That is, the operating point should 

be close to a half-integral resonance that does not introduce severe non-

linear characteristics. 
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