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ABSTRACT

The general behavior of plane orbits in a simple spiral
magnetic fleld is studied both analytically and numerically
(for a specific sample case). Techniques employed are
heavily geometrical in nature and the motivation is the
search for some simple conditions in the field parameters
which control orbit stability and orbit economics.' Pragmatic
simplicity dictates a cholce of approach which is only
justified by a final numerical test. But reasonable rigor is
accorded the fdndamental equations in order to avold getting

lost from the very start.
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I, Introduction

An orbit problem, which ils of more practical interest
than it may seem at first look, can be conceived in the
following manner: Given a small number, A , representing the
maximum oscillation amplitude of the orbits a system can
tolerate, given a large number, p , representing the minimum
desired time span within which these orbits are to have their
oscillation bounded by A ; then let F enumerate the parameters
which characterize the magnetic field structure under study.
We ask what conditions {the best choice, a compromise, etc.)
there are among the F's so that a maximum number of orbits
can be admitted by the structure under the desired conditions
in the most economical manner. Such a problem is not trivial,
neither is it hypothetical. The trouble with it 1s that it is
too idealistic, and, with our present avallable techniques,
barring individual case studles through the aid of digital
computation in a purely numerical manner, it is unlikely that
we can give it a rigorous analytical survey and arrive at
some-intelligibiy simple conclusion. In such a problem, two
aspects of the orbit properties are involved, viz., orbit
stability and orbit economics. To achieve good orbit
economics (such as the usual notion of a small circumference
factor of a structure), one has to deal with such structures
that a simple linear approach to their stability properties
is 1n general not realistically adequate. Confining oneself
to a simple spiral magnetic field and taking only a one

dimensional problem (plane orbits) into consideration, so that
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the dynamics involved is Hamiltonian in nature, one would
immediately have.the notion that to follow Moser's general
transformation theory and carry out a resonance neighborhbod
study for those important resonances considered as in
Sturrock's theofy, one should be on the right track to break
through the stability aspect of the problem. However, such a
handling, conceptually simple, is technically greatly
difficult, particularly in respect to the transformation of
working variables. Nonliheas problems create new transcendenbil
functions which are intimately associated with irrational
numbers and the analytiéal manipulation of them is
discouragingly cumbersome,

This study, initiated by George Parzen, is aimed at a
much restricted interest regarding the above problem,
Although it has been constantly kept in mind how far we can go
in 6rder to at least scratch the surface of such a general
problem, due preparation is always made for eventual retreat
into an oversimplified situation by gilving up much of the
theoretical delicacies in order to obtain some numerical idea
.from a pHrely pragmatic viewpoint., A simple spiral field with
Parzen's prearranged parameters is taken as a numerical sample
case. The general theory of plane orbits is examined at first
in search of some working variables believed to be appropriate
~for this purpose. Some kind of stability criterion is looked
for, based on realistic simplicity rather than sufficiency and
necessity. Numerical study on some sample orbits is carried

out in order to gain some sophistication in the general
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tendency of orbit behavior so that an “orbit model™ can be
conceived. Such a model eases out much of the transformation
procedure. It is rather an awkward approach but is perhaps
the only short cut that can lead to some simple result,

Most of the numerical intuition needed in this study is
supplied by George.Parzen, Background in acceleratior physics
is obtained from E.'T, Cole's Notes on Accelerator Theory
(TN-259), and findings resulting from numerous discussions
with H, K. Meier are freely used in this report., Computer
numericals are based on FLEXIBLE PIVER (Program 280, MURA-604)
with the aid of M, R, Storm.

Relevant plots regarding the behavior of these sample
orbits are partially made available in the figures with some
brief explanations.

II. General

The theory of plane orbits of a charged particle in a
magnetic field can be most conveniently formulated by basing
the geometrical aspect of the problem on one of the Frenet
formulas which essentially defines a curvature function, and
theﬁ incorporating half a physics law,.viz., the magnetic
part of Lorentz force law, into the problem, In Fig. 1 is
shown a piece of plane curve, which, if represented'in polar
coordinate system, can be put as

r = f(a),
i.e., the radius vector is a function of the polar angle. To
avoid the occurrence of loops and cusps, one may require that
fhis £{0) be a single valued function of # so that the arc
-4-
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length measured from any arbitrarily chosen reference point
on this curve, 4(#), is a monotonically increasing function
of # . Then, using 4 itself as a parameter, we see the

three intrinsic unit vectors associated with this curve:

éd : defined positlive along increasing & .
3; : directed upward from the plane of the curve
and kept constant (for plane curves),
. A A .
ﬁh : defined by g = @n X € (right-handed

convention),

are functions of .4 . The Frenet formula says

A

%34 = |K| € Kl usually defined as a scalar
Ve ",

and the law of physiés $ays

A ~- L A A
-2, | K| = s & x e@‘H (A)l

in which p is the particle scalar momentum, H{s) is the
magnetic field intensity as a function of the arc length.
The electronic charge and light velocity are set equal to

unity here. Then with appropriate sign convention one has
K(4) ="k H(4)

Since H(4) is almost always prescribed as a function of r = f(8),
i.e., H(4) %R?r (6),8 ), the most natural course to follow is

to express K(4) in terms of r(#) and its derivatives in the
polar system

K(4) = ot 202 -z
(r2 + 1'2)3/2

The differential equation
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serves as the starting point of plane orbit study. Of course,
one can always choose a Lagrangian or a Hamiltonian function
in one form or anothexr to stant with and arrive at the same
result in a more elegant manner and better prepared for
systematic approximation in the event (almost a certainty) the
equation cannot be rigorously solved. No matter .which course
is followed, the basic difficulty in approximating this
equation is a tremendous one, particularly when & is of
periodic structure, the only case of practical interest.
More particularly, cne's interest is not just to obtain an
approximation for a prescribed field function; rather, it is
instead to explore the behavior of the solutions in their
dependence upon the parameters which charaﬁterize the field
function. For this kind of interest, a systematic proéedure,
such as Moser's theory,l becomes technically too arduous to
épply. In this note, an approach motivated by this interest
is explored, emphasizing the geometrical aspect of the
problem, with the hope that-while analytical expressions may
be lengthy and their meaning obscure, some inference from
the behavior of those variables which have a precise
geometrical meaning will help to socothe the difficulty.

One can start the problem from the viewpoint of
elementary plane geometry, such as the following angle

relations among the three angles associated with the curve
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in Fig. 1
:]T.nui-l'
¥ =1 b

in which all ahgles are defined positive in fhe sense shown
and the requirement that r(&) be everywhere single-valued
implies ¥ being bounded within + 3. Obviously, ¥ and
- are just the direction angles of the unit vector‘@n and ék
in the polai system., They are functions of the polar angle

8 . so analytically

Yo)=T-x()+8, (2)

A closer examination shows that, unlike o« (8), 1*(8) is
numerically invariant under coordinate rotation and should be
regarded as more suitable for the description of the curve

than o (8). We, therefore, set out to eliminate o in the

following manner, S
ot &)
X{(®) = fdu((&) + & (o) :]degi‘i’.’.+04(0)
o 2 ds 46 _

Elementary calculus supplies the following information:

d® _

d4 - r? + ¢1? where prime refers to d_

dg de

- I
and tan?’— o
Consequently
o
Yo =% <0 - xlo) - [ a0 2 kis)
2 cos

I

5 m"i_%of’ds ey (e .9)

-7-
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in which the constant.% -0&{¢) is replaced by the symbol L
representing the value of ﬁ?(&) on the initial polar axis
®#=0 . This expression may be called an "integral
relation" which can readily be converted into an integral
equation. For example, by integrating tan#’ , we have

fjéﬂ tanﬂ' = 1n r{#&) - 1n r(e)

]

Ae fd& tan¥

or r(8) =
in which the symbol A is used to designate the value of r on
the initial axis. While 1?(3) itself is numerically

invariant under rotation of the initial axis, its integral

()= fadﬁ tan P (8)
[]
is numerically invariant under scale transformation (i.e.,
independent of the unit used in measuring r) as is evident
from its definition.

We now have a transcendental integral equation:

& &
A dé £ d@ tany(® L
4(0) = 0 +Q+EJCOS . H U af astant (6),8)

0 (3)

which, along with the easily proved kinematical relations:
_r'(®) _pr p, = cos Y (8)

tan () = ;T%Tl-—p o = P (p = scalar momentum),

] pr T P sin ’1"(8)

(4)
constitutes the dynamics of plane orbits,

However, this equation, as it stands, promises little
hope of soothing our original difficulty. Integral equations

of such complicated structure discourage further attempt at

-8-
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proceeding with the problem in any mathematically rigorous
manner. Nevertheless, this equation, from a physicist's
point of view, can serve a rich source of information in
connection with certain aspects of the orbit problem. So the
study here, instead of seeking a solution, will be centered
on how to extract as much information as possible to meet
with our special interest.

Incidentally, it should be pointed out that the equation,
except. for minute details, 1s really just the first integral
of the original differential equation. In fact, 1f we
differentiate the angle relation (2) with respect to 8 , we

can obtain a "“differential relation"

1~ 3 (6) = K(4) %ﬁ} (5)

which is generically the predecessor of a differential
equation. For, by eliminating +‘ () in favor of r{#)

through the elementary formula
2

1 U
q‘ (®) = %@“ arctan 2? = i%%:f;%ﬁ“ ,

this relation leads back to equation (1).

The justification for‘%nvgsting time and effort in the
study of the orbit problem igﬁthis approach is based on the
belief that:

(l)_ Whilst differentiation is basically a coarsening

operation, integration tends to smoothen out

roughness. Approximations based on integral methods

can lead to analytical results of relatively compact

structure, if a systematic procedure striving for

-9



MURA-661

better accuracy is not a desired feature,

(2) Whilst causality is "hidden" in a differential
equation, it is brought out in some taﬁgible forms
in an integral equation. The retrospect nature of
integral equation should be more appropriate for
the study of problems in which initial conditions
are of prime interest. The formal presence of
initial parameters from the very start could be
visually a guide to searching for a method suitable
for a particular aspect of the problem.

We speclalize the curvature functior@ﬂz{@),e) to that of

a spiral field having the following structure

H(x(8),0) = -BrKn[N® -Kilnr+)]
in which k is the momentum compaction constant, K the spiral
ridge wave number and N the number of periods of the field
structure in an angular span of 2T (i.e., N sectors per one
complete revolution). )/is an arbitrary phase subject to
choice at one's option.2 The function h is to have its
fundamental normalized to unity and is to have only one
leading harmonic of amplitude not greater-thaﬁ unity.
Essentially, we shall take

h () = 1 + sin'g $=N@ - Klnr +{
as the object function for discussion and, for numerical
illustration, Parzen's numbers N = 48, k = 63, K = 450 will
be used (to be referred to as #4863450).

It is appropriate, at this early stage, to narrow down

our interest in the usual manner. That 1s, we shall not be

-10-
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concerned with motions vigorously transient in nature. For a
relatively steady oscillation of the particle Within a finite
region in the field, the initial parameters, particﬁlarly A,
the accepting radius, must be prescribed compatibly for a
given scalar momentum. Such a compatibility requirement can
be stated in the.following manner: For a given scalar
momen tum k , there is a unigue choice of R (with the
dimension of length) such that

p = grk * 1 (6)
that ‘the exponent should be k+l is dictated by dimensional
requirements. Then, for A to be compatible to this P , it

must be sufficiently close to R such that if

AR (7)
then e?:'.l +§ shall always prevall, implying f must be
reasonably smaller than unity. R so defined can be
conveniently (but not 6eCEssarily) used as the unit of length
in the system. As usual, the Qnit circle defined by R will
be referred to as the reference circle, f will be referred
to as the oscillation parameter and the condition in (b) is
to be referred to as the unit gauge.

'In terms of the above language, we summarize: an orbit
characterized by two initial parameters (.f , .f% ) is

represented by an orbit state function 1%}(9) defined by

the equation

o -
#}(9) -0+ aq, _'J %e(kﬂ)[!(ﬁhﬂh[l\w - K(E (0)+9)]

- 8
where %(8) 3I d® tan 4 (8)

=-11-
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subject to the gauge condition p = BR™.

~ condition % = ef . the corresponding differential

and the scale

equation is
q; (8) =1 - coi f é e(k+l)[1(e)+P1h[N8 -K(§(8)+f,)]f

It is apparent that the equation will respond only to
the numerical values of f fed into it and is unaware of the
extra scale-gauge conditioﬁs adopted by-the observer. _So_ﬂ?
is twofpld degenerate with respect to the parameters A and R
(which defines p). This degeneracy érecisely'implies the
well-known scaling symmetry of the orbits in a spiral field}

The orbit-state function‘+ and its integral‘E mutuaily
define each other through the medium of "the initial .
ﬁérameters and the field parameters in a very intricate
maﬁner. In addition to théir geometrical meaning, they have
a very direct connectiocn with the conventional ‘canonical -
variables px{®) and X(#) as used in computer programs from
~ which numerical results are derived for COmparlson with

theoretical prediction, Essentially

- 3 - ¥ (8)+
e S1= (g eepy HABLIR)T L
should be identified with the total oscillation Xx(#) while
3

. ' 6)
psin ¥(8) = p o) - p —HAEL o
is obviously equivalent to the oscillation momentum px(ﬂ).

These apparently rather complicated relations are actually

only formal, for insofar as the practical ranges of numerical

=12=
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values are concerned, the simple approximation

x(e) ~ ¥(e)+f x(e) =f (p=1 understood)
pX(S):ﬁ 1#(9) px(e) :-QT

always prevails. . The conditions for validity of such
simplification lie in the fact that iIn no case shall we be
interesﬁed in orbits with oscillation momentum (px) exceeding
10% of the total scalar momentum (e.g., in a particle
accelerator of 1 Bev. energy, the betatron oscillation
momentum certainly is well below %5 Bev./c}. Confining
interest to this range of P,.s oﬁe can always take the

advantage of the extremely accurate numerical approximation:

tanm}a oAb if | Iy|<o0.1. (10}

We shall refer a problem in which this approximation is.valid
as a problem of O.l-boundedness interest and in problems of
this nature, (9) and (10) are understood to be numerically
good.

Before conciuding the general discussion in this section,
let us describe in a very preliminary manner the topic of
interest in this study. Thé word "stability" needs a precise
definition in order to attazin an unambiguous and concrete
meaning. In this respect, we shall define an i1deal stable
orbit as one which will remain oscillating about the reference
circle for an infinitely long time with its maximum amplitude
bounded by some prescribed finite quantity. Such an

idealization implies that only two cases are possible:

-13=
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(1) . The orbit is a "closed"” orbit, by which is meant
that if the orbit is represented by the state ( § ,
£ ) on sector axis no. I, it will come back to
this same state after a finite number of sectors
and in the transit, its maximum oscillation
amplitude stays bounded within some finite
prescribed value.

(2) The other alternative is that it must be "quasi-
closed", i.e., it will come back arbitrarily close
to its initial phase of the motion but never
precisely so. This is merely a consequence of the
ergodic hypothesis which we shall take for granted.

This idealization is now relaxed., We shall say an orbit

is stable with respect to a spatial limit A (finite), if its

L
oscillation will stay within this bound for a very long time

lpL'(e.g., time measured in number of sectors and p; stands
‘for some large integer). In this sense, the meaning of the
word “stability" is brought out by two definitive numbers and
their dependence upon the field parameters is what we want to
study.

I11. Formulation of the Problem

Equation (8) defines the orbit-state function 1}}(0)
-labeléd by two parameters (.f , j?f ), in the same sense as
a quantum mechanical state labeled by two quantum numbers.

Its dependence on field parameters is not notationally

brought out and it shall be understood that these field

parameters are not firmly prescribed entities. Two numbers

~14-
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( f:I,JI_I) given on the initial axis ( ® = © ) define an
“orbit state I(@). As the motion is propagatéd to the axis
II (@ = Q%L), the function IPI(EﬂFﬁ assumes a numerical
value Ji?l, while the function gil(gﬁL) + f I assumes a

L. These two numbers ( f>II, IIII) certainly

numerical value f I
can also be used on axis? to define an orbit state 1#1;(9)
representing the same orbit but at a diffefeht inital phase.
And, in the Sense of stability defined earlier, this

difference reflects one important fact: if state ( [ I;Jll)

is
expected to have a stable life of p; sectors, the stateé
( £ II,_ILII) can only be expected to have -a stable life one

sector shorter., In other words, states s I,JI_I)-and

( ? 11
(¢

This situation can be generalized to any number of sectors

) ;LII) represent the same orbit at different “ages",

IT 11,

I,Iqu being younger than ( 3 . {1

by one sector.

and we conclude that different pairs of ( f ; {1 ) specified
on an axis do ndt necessariiy represent-different orbit
identities; they might fepresent £he same orbit at its
different agé $£ates (different substates of the same'orbit).
We now wish to set up a chronological standard through which
the age of an orbit can be referenced in order to bick out
only those states which, by some arbitrary convéﬁient
standard, represent the "youngest" states of each individual
orbit for study. Such a procedure is obviously ve}y
aibitrary;nevaiheless, it is a useful notion when one wishes
to compare the relative properties of diffé;ent orbits, To

achieve this aim, one must ask the question: what intrinsic

-15-
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property does a state functionﬁf ave that characterizes the
identity of the orbit irrespective of its state of ggéj An
answer to this qﬁéstion is that the absolute maximum Aumerical
value of ﬂ’ may be used to characterize the orbit idenfity.
(The statement is equivalent to: the maximum value of the
oscillation momentum p, attainable by a particle along 1ts
orbit characterizes the identity of this orbit). The
geometrical meaning of ¥ hints that wherever the orbit has a
point of inflectionf? has a local maximum (or minimum) so the
absolute maximum of ? occurs at one of these local maxima.
We now demonstrate that, in a 0.1 bounded problem, this
absolute maximum can be made to occur in the.immediate
vicinity of the origin (but never precisely at the origin),
if the field function has the form 1 + sin[N® - K( & +§ )]
which is the function we have chosen for study.

If q’ is to have a maximum at & =0 , 1#'( # =0 ) must
vanish, and if this maximum is in the immediate neighborhood
of the origin, § must be very small. Then the differential

relation in (8) gives: .
(k+1) | §i°)+f)f

o )
cos ¥ (o) Ll oein

(k+1)P
1 - gm—[l - sin Kf} where Y(o)= W.

y(8me ) =0 =1 - [-K(sz(om]}

I

Since W is 0.l-bounded such that cos Wal-1/2W? always

prevails, and f is to be made small, we have
_ L
§ =32 vy

~16~
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Consequently, given a number W representing the maximum

numerical value of 1P , defines an orbit state on axis I:

(5;1

Since the numerical significance of f 1 is almost nil, we may

2 .
= 1 L I
=3 RKkFIV X, o o= W),

often regard the simpler state ( © , W) as the "birth state"
of an orbit whose identity is récognized through a single
label W, In a sense, W on axis I serves as a total quantum
number while a pair of ( [ ) on successive axes may be
regarded as subquantum numbers that remove the many-fold
degeneracy in the problem. By referring to Fig. (6), in
which a conventional phase plot (constructed with £he aid of
the computer) for séveral sample orbits is illustrated, it
can be easily seen that W is nothing but the pinnacle point

in each of these idealized phase "curves" while ( § , o )'s
represent other points in the plot. As George Parzen puts it,
the computer. numericals are a theoretical worker's experimental
data; he is saying the pairs ( ¢ , ) are dynamical
'observables." Such observables supply us an abundance of
information regarding orbit behavior, but they need not be
the appropriate variéble for use in theoretical analysis, It
is because of this very difficulty that we cannot straight-
forwardly follow Moser's rigorous theory in this study. For,
transformation back and forth, with different working
variables carrying along in the transformation coefficients

the complicated dependence on field parameters, is algebraical.,
very difficult even in a lowest order estimate. In the

-17-
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interest of simplicity, we have to approach the problem in a
less rigorous and systematic manner by recoufse to some kind
of simplified physical picture of the orbits, for example, a
model, which eases the transfofmation difficulty at the
expense of theoretical soundness.

No matter how the particle is accepted into the field,
the mere fact that it is to stay oscillating about the
reference circle implies that the state of the motion must
inherit from the structure of the field cerfain modes of
vibration characterized by the field parameters. We conclude
that the basic frequency N of the field must constitute one of
the modes of vibration in the orbit. The fact that the
harmonic part of the field, viz., the sine term in h, should
on the average fluctuate out implies that in the long range
behavior of the orbit there must be exhibited a mode of
vibration whose frequency is predominantly dependent upon k,
which dictates the avérage intensity of the field. This
frequency, referred {o as the propagation frequency L‘,S
dépends on N and K only weakly and its dependence on the
state of orbit W will be discussed in section IV and V.
Therefore as a first survey we may conceive a model based on
a doubly periodic syétem with both the oscillating periods
confined on the real axis (N is given real, while » must be
arranged real). The commensurability of thése two numbers,
reflected in the orbit behavior as a result of interaction of

these two modes of vibration, is the center of all complications

that affects orbit stability. These complications cannot be

-18-
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directly examined if the orbit states are represented, as so
far it has been done, in the f‘—representation alone. The
usual notion of phase shift must be introduced, amounting to
a transformation from the ¢ -representation to some other
representati'on more intimately associated with the propertiés
of the two numbers N and M .

In this respect, we must first examine in a purely formal
manner, how motion is propagated, once the particle is
accepted into the field, from the viewpoint of the definition
of the state function #;(8)'

If "initially at 6 =0 the state of motion is (‘f ,I%,),

then at 8-7' the state function becomes:

8 —
;{H)P' .14,3 (Bei) i (8)

R i e [wd-4( E8)sp)
¢ftoq)-a1+ﬁr e ) &g b In0-K(E0):)]

A dummy variable transformation brings this equation to the

form )
y e&iﬂ) 4 ok | {. !‘] 49 i'u‘hb-))

-\}r(o-'[)=o-ll+ﬂr+[f's {Cm‘?)‘we -

.. h [ww*,)-kf-& (f-[:.fa,qa(,..])] -

At certain values of 1 such that
1 “4 ;
y = £d0 tan \Pr( & -4 )y (= - £ dé tan"l} {0)){(12)

1s satisfied, a new constantﬂ1 can be defined

=]9=-

(8}
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J‘ J(krl) ®(0) 200 )]
Q= 0,-+ | a0 ST h[Ni—p-'l )-KE(8 -9 )
(13)
Then equation (11) adjusted in notation can be put in the form
0
| q8 ke £, () _
xk‘(a) =9 0, -§ W e ! h[N(erll )-K§1(9)] (14)

which defines a function '*(8) in the same manner as equation
(8) defines 1%(9), except that now a phase 7 in the field
function has taken the place of $ in the exponential. The
meaning of this change of representation is really trivial if
one takes a look at Fig. (4), in which the geometrical
situation is quite lucid. The transformation equations (12)
and (13) are quite involved; however, we shall use them only .

in a very simplified case. Essentially, the two functions

Yy

representations. In the § -representation, two numbers

(8) and *58) are orbiwstate functions in two different

{ i1 ’QT) are specified on the sector axis representing the
state of the orbit: § stands for the oscillation while Rp
stands for the oscillation mementum, both being computer
observables. In the 1 -representation, two numbers ( 1 ,JH')

are specified on the reference circle representing the state

of the orbit: 1 stands for the location where the orbit has
a zero, while ILlstands for the oscillation momentum at this
zero. In the limiting situation fxe and h xo , ﬂ,‘-.(’llfx W,
so for the birth state, the two represéntations almost colncide.

We are going to compare all orbits in their birth states

on the initial ®=¢0 axis. As motion is propagated to

-20-
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successive axes, each orbit becomes capable of two very
different representations. By studying the transformation
equations, we expect to find some kind of c¢riterion to

judge the stability of these orbits as a function of the state
number W and the field parameters.,

To establish this connection, we have to introduce the
notion of the conventional equilibrium orbit which defines
the central fixed point in the phase plot. This orbit, for
all intents and purposes, can be defined (i.e., to avoid
bothering about its existence) to be periodic of a period
equal to that of the fiela structure. The state of this
orbit is therefore (%—Kg%E;TT =0, W ) and it has no substate.
The numerical value of Wy as a function of field parameters
will be discussed in section IV, The unique properties this
orbit possesses can be summarized:

(1) It is immortal: once a birth state is defined for

it (o, Wy), it will never age.

(2) It is simply periodic and only one mode of vibration
of frequency number N characterizes the motion.

{3) 1Its long range average behavior is that of a circle,
i.e., the amplitude associated with the propagation
part of its motion is zero.

This orbit owes its immortality to its capability of

rejuvenating its state after each cycle of the motion. 1If
such a rejuvenating process can also be ilncorporated into

other orbits, we can expect long stable life of these orbits

too. We certainly cannot achieve this for a wide range of

-2]1-
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\M valueé; however, we may attempt to arrange the situation
such that each orbit within a narrow W-cone at the origin
after a certain period (e.q., after every propagation period)
will come back to a state resembling 'its birth state. Such
a rejuvenation process is not compléte, but we at least can
expect a slower rate of aging of these orbits.

The birth state, as defined, is characterized by the
simultaneous smallness of ¢ and % in the two representations
discussed. With ¢ and 1 numerically small, the transformation

equations (12) and (13) render the very simple relations:

f = 1.-9-&1
2
- {1 , e
&’T—l =K - Ger)fq Ry - 5t (15)
They are sdlved for and,ﬁi :
Q 2"
Q = g [l+jl+2f—4[K-(k+l)-£—2-] (15a)
0 X
1= ="

Since,(_').,l must be real, the following condition must be

observed:

|?|<;f1+2f’ﬂ, 1+ - 1 , (16)
-~ -(k+1) ~ - k+ - *
Qe 24 K-lk+l 2{K-{k+1))3 QiKik 15)3

which says that for any substate ( ¢, e ) to "resemble” the
birth state, this inequality must be satisfied in addition to
f and 4 being both very small. The requirement that the

orbits after approximately each propagation period will
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assume a state satisfying this condition implies that we must
arrange the field parameters so that the orbits will have a
spectrum of zeroes, rather regularly spaced, to fall within a
“linear" neighborhcod of a sector axis which will be referred
to as the “"propagation axis" (on which the condition (16) is

to be observed). The word "linear' is used instead of "

very
small" so as to make the condition more concrete in the
following sense: If the zero occurs at a distance % from the
foot of the propagation axis, then 4 must be sufficiently
small as to satisfy Sin?,ﬁﬂl . Figure 3 illus?rates the
situation.

We must now define what a propagation axis is. We shall
see that the propagation frequency ¥ in general is an

irrational number smaller than N. One propagation period is

therefore an angular span of 2§K;corresponding to

21
v N )
éi Ty Em _5 sectors, with m an integer and ﬁ|< 3
N

Let a state W start its trip from axis I. After a little more
or less than one propagation period, it arrives at axis M (m

sectors away from axis I &=© ) to assume a substate ( ?h&

M .
Jlr ) which shall be arranged to satisfy (16). Starting from
axis M, it continues its trip another propagation period and
arrives at an axis on which it is to assume a substate to

satisfy (16) again, This axis would be 2 m sectors away from

axis I if 2|5|<% and would be 2 m + 1 sectors away from axis I

=03 -
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if 2l5|>'%. (Equality never occurs since ¥ is irrational).
Iq general, after p {integer) propagation periods, the
propagation axis on which the propagation condition (16) is

to be observed méy be represented by the symbol

. :
4 ‘%‘>E q sector away from axis I, (17)

~ The integer ¢ is defined by: Let p>§ = an integer 1 + a
fraction f,

then g =mp -~ i if f<%

q mp - i-1 if fsk,

For lack of a good general orbit solution, to formulate
a stabllity condition in which initial parameters, field
parameters and‘fdesired" parameters (such as the parameters
in connection with the minimum stable life time and maximum
tolerable oscillation amplitude the user may desire) all
appear in a fully analytical manner, in terms of some
necessary and sufficient language, is bélieved to be impossible.
The criterion established in {16) is neither necessary nor
sufficient; it is just a humble criterion for the particular
case of a simple spiral field with parameters in the range
.of practical interest. Only actual numerical sophistication
can lure one into the confidence that this condition could
serve as a reliable guide to the problem we wish to explore.
Although considerable time and effort have been invested in.
the search of a "better" condition, nothing more intelligible

and éimple can be materialized than {(16). The rest of the

study is devoted to interpreting the meaning of this condition.

-l ~
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1V, The Central Fixed Point and Harmonic Gauge Curves

It was defined that the central fixed point (corr%sponding
to the equilibrium orbit) shall have the state (% K:g%z4:o,_wo)_
with W, dependent upon the field parameters.  This dependence
is now to be studied with the aid of the integral equation in
(8). We shall approach the problem by a method which can only
be modestly called "probing for information."™ Nevertheless,
this method will give us a very accurate numerical result in
connection with the f.p., (central fixed point) state and a
good physical plcture in connection with other orbits.

From the analytical point of view, the équilibrium orbit
is perhaps the most singular orbit, but looking at it just as
a curve, a geometrical entity, it has. the simplest outward
form; fon whatever it is, it by definition should be represent-

able by

Z;En sin {nN@§& - &n)
And, corrésponding to a simple one~harmonic field function as
the one under study, an approximate representation E sin(N® -¢ )

should be adequate for the purpose. We shall refer the following

one-harmonic form

E sin/h(.B -& ) (18)

as a one-harmonic prober, to be fed into equation {(8) in order
to loock for conditions that bind the three parameters E, A+
and € . In the event A is made to approach N, we obtain

information regarding the fixed point state. If wis made to
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approximate 3, we obtain some first-order information regard-
ing other orbits, such as the general propagation properties
of these orbits in their one-harmonic average. We are here
taking advantage of the integral structure of our fundamental
equation (8), which overlooks local roughness of a function
and is willing to respond to an oversimplified probing
function by yielding information which is not critically
dependent upon such local roughness as possessed by the true

“ solution. Just like any apprcximation.method in mathematical
physics, be it perturbaticnal or variational in nature, one
needs a zeroth-order function to start with. Form (18) serves
a similar purpose. We replace %(8) +§ in equation (8) by

this form:

P+ Jim (wB~-KE ft-‘w/u.LS-&)}

£+ E Sne /u'.&-é) {
(19)

J d
Yi9) = 0+ -] ~
0

This function 1?(9), thus defined, represents only the first
harmonic average of the orbit (and is not the true orbite
state function). So at Q—rmm + & f’ -*e ) should

have a zero. Equation (18) then gives an 1nformat1ve relatlon.

f I:ZB (ke[ E Sompa(Br€) ] ]}

. - e S [ NO-KE i u(9-€)

o= + & 0 i+ N o

dp @ [iE Gop(6-6) ] { (20)

The evaluation of integrals of the type in this expression is

quite a difficult problem; however, approximation methods for

6=
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two extreme cases are rather well explored. In the case
(k+1)E is.a large positive number, then an asymptotic
treatment in one férm or another (such as the saddle point-
method, or a very simple Laplace's method of critical points)
is in line.% If E is sufficiently small, such that expansion
of the integrand in terms of Bessel's functions cen%erge Qery
~rapidly that only the leading term is important, then am -
accurate and simple result can be made availablé although at
times the calculation may be lengthy. The details of this
second methéd are.presented in the appendix. The result of

the evaluation brings equation (20) into the form

frl 'l,-—@dﬁ%*”i)_‘_ E ..L[

Y R u £ ——
M N (By-r (21)
ﬁ({+|){(_,s(ﬁﬂ+w&').;, Sen é-}-f K{EQ‘.(H'K*M'&)‘#C.S é}]
P  Z 4 mem2 /s

This result is accurate to a maximum error of 1% if (1) the
numerical values of E and K (k«K assumed) are such that
ELé%? and (2) if the ratioi%iﬁ kept away from an integer
» 1 by at least two orders of KE. Both these conditions
come about because of truncation of the Series.involving
Bessel's functions in the approximationrand.are in general
very easily satisfied in a O.l-bounded problem.

If we letfy’N ahd approximate€soand further observe

that if the initial parameter 2 in (21) is that of the

W !
equilibrium orbit, W,, so that Efj%, we obtain - -the result:

Wo = lv k+1 K : (22)
N - (1+z)%g~ » =y

-07-
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.Simple ‘as it is, this formula is quite accurate. For the
field #4863450, it yields W, 1,985 x 1072, while the computer
result is.1.98783 x 10-2.°

We can-see from the left-hand sgide of equation (21) that
P is made close to Jk+1, then the dependence on f (the
initial condition, and numerically equal to W for a bifth
state) in this relation is minimized.- This implies that the
propagation frequency ¥ discussed in III mﬁst be something
l'ikeﬁ:f (1+ A l) with a small 4,. This serves as ._a guide
to the study of the propagaticn properties of the orbits in V.

Let us prescribe a family of harmonicAcurves ofrarbitrary
amplitude A andrcbnstant'frequenCy ¥ : A sin (71!8 f}q with
)(e:o , In the.field structure, in the same mannef.aé we
prescribed a reference circle before, Just as the reference
circle was used to define a constant unit gauge-(Eq. 6), these
harmonic curves define a system of oscillating gauges. Further,
just as the reference Circle,-which is itself not a possible
orbit, represeﬁts the average motion of the equilibrium orbit,
these harmonic gauge curves, which are not orbits themselves,
represent the average motion of the other orbits in a W-cone
for which a constant ¥ is a meaningful.cbncept. A mode. of
vibration with frequency equal to thé frequency of the
structure riding on the reference circle yields the equilibrium
orbit; a mode of vibration with frequency almost equal to the
frequency of the structure riding on a'harmonié éauge curve A
sheuld yield the orbit corresponding té an average oscillation

amplitude A (whiﬁh should be a function of W); This mode of

-8
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vibration will be termed the "modulator" as against the gauge
curve itself which will be called the."propagatorﬂ The concept
of propagator vs. modulator is of coﬁrse relative in nature.
The observer may at his pption use the mode N as a gauge

curve and treat the mode # as the riding component such as in
the conventional approach in the linear betatron oscillation
theory. For orbits of oscillation.so large that the equilibrium
orbit as seen by these orbits isijust a small wiggling component,
the approximation procedure in which the ;’»mode'is used’to
define the gauge curve should be in favor. To complete the
description of the orbit model here, we need the answer to a
very important question. An orbit with state numbar W |
geometrically means it is accepted into the field on the
initial axis at an angle W with the circle. To this orbit W
corresponds a gauge curve A which makes an angle ¥A with

the circle at the origin. We'ask the question at what angle
relafive to the propagation is the modulator accepted into

the field, i.e., what is the difference W - » A'Z W, expressed
as a function of A and field parameters? The nature of this
guestion is shoﬁn in Fig. 2. A rigo#ous answer to this
question calls for a good orbit solution which we do not have.
Nevertheléss, §inCe the question concerns dnly the limiting
sitﬁation 8—0 , an answer approximate to within a first-
order infinitesimal can be supplied using a scaling trick in
the result already obtained for the equilibrium orbit. For

very small ¥® {which eventually is to go to zero), the gauge -

A sin ¥8 behaves like A¥8@ and may be replaced by a tangent

-20-
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line Ay® at the origin. The situation then is similar to
that of ‘the equilibrium orbit problem with the coordinate
system rotated counterclockwise an angle ¥A. This rotation
inCuré two consequences: the apparent periodicity of the
strudfure is now N-KAY¥ instead of N, and the unit gauge
condition is now @-dependent, being scaled by a factor
e(k+1) yoa . These are seen simply by replacing the form

AVE + E sin b for (18) so that the integmnd in (19) now

has the formr
6  sinaed
Jlir1)Ave o+ (k+1)E sinw® £ T (kA v )8 -KE sin/,.a]}

For arbitrarily small Ave |, e(k+l)AV£# 1+{k+1)Av@& , SO
that integrand after some manipulation can be made to equal
g (k*1)E Sin""e{l-l'sin [ (N-(K-k-1) ¥ A) & - KE sin/A.GI}* 02,
whére 02 is a term which approaches zero faster than @ and
is:one ordef smaller than the first term, being of the form
a(l+sin b - cos b) with a =~ O{A)
and lim a=% o, lim {(l+sin b - cos b)—s 0.
Y040 Y340 :
Ozjis therefore negligible, This approximation amounts to
tfénsferping the effect due to a small difference AR in the
gauge condition (8) to the equivalent effect due to a phase
iAY' in the field function. For R sufficiently small, it
is numerically very accurate.>
Following thersame procedure as in the fixed point
problem, we should come to a result.similar to}(22) with all

N replaced by N-(K-k-1) ¥ A, i.e.,
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W - L
s N-(K-k-1)>aA+%w(1_ K+l

F(k+1)
N-TE=-k-1] A

-

l S
- ® (- syA)1+(N1.W..-1)
0

L- 3SYA " with saﬁiﬁ:¥'

This result will be used in the modulation theary in Section VI.

V. Theory of Propagation

Ih this section we will analyze in some detail the
imporfant number » defined to represent the mode of. vibration
in the average long range behavicr of those orbits within a
particular W-cone. If, as we expect, this » should depend
on W very wéakly, it is more appropriate for us to start the
investigation from the differential relation in (8) in which-

the initial parameters are not present:
t},s(s) -1 m e(k+l)('§(9)+f){l+ sin[Nﬁ-Mﬁ(@)*‘f )]}

For notational simplicity, let us denote §(9)+f5x(9) SO

that
xn =1 - _g%?__ e(k+l))(. { 1 + sin (N& - Kx)} (24)

If this equation can be solved for X as a function of & , we

may expand the solution about some neighborhood center a, so

that
) - 1 02 2, 1 2 3
X (8) = gz_(& - a,)- ;:3 (8- a,)"+ ;:g (2a,"~aja ) (@ -a) +...
(25)
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in which the expansion coefficients are so arranged that if

we inVert the series, we may have
= 2
B =a, tax ta,x ..., (25a)

The. procedure is similar to inverting.a sine series to obtain
its‘cyélometric counterpart. We note that the coefficients
an's are functipns of the-neighborhood center g They depend
on .how we choose a,. The following seriesrexpansions are then
‘readily obtained:

o o
- 2a 43 3a :
B R e I G

X = = - -
a ai2 a3 a12 9
2
2a 6a 3a
1 1 2 2 3
. = 1 + - X+ - +,
.cos X 2a.2 a3 (a 4 a 3)X (26)
1 1 1 1

_ 2 2
6in(N® -Kx ) = sin Na_ + % (Na; - K) cos Na, = x %.L.Nal-'}() sin Na, +...

] 2
e(k+l) =1+ (k+l)® o+ Lﬁiil_x1-+,,,
. 2

and equation (24) assumes the form

x" =1 - (1 + =2 ) (1 + sin Na)

2
2ay
- 2} (1+ =) (Na, <K) cos Nag +(1+sin Nag)((1+ 1 )(k+1)-33-2-)]
] 2a, T © ° 22,2 ap3

of 1 225
x [(Nal-K) cos Na, ((1+ ZF)(kﬂ) - :5)
1

2
- % (1 + Eglz—) sin Nag {Naq-K)
1 ~32-
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o
o
N
w
jak}

_ 2 2a
e 1 3
Harsin tag) (1 =) B - o) =2 =2 =) [
7 1 1 1 1

+ 0(x7) +...
: 2 3

2,G - Px - DX - Mx +,..

We wisﬁ to extract from this equation of motion the first.
harmonic average part of %(8) and find out what is the
natural frequency associated with this average ﬁarmonic métion,
The conception of such a natural frequency is useful and will
depend on the state of the orbit W very weakly only if the

maximum value of X , say"x”lis sufficiently small that

o{ )cm3)<< Xm. If this is not the case, introduction of such
a natural frequency, although it would be still meaningful
andvcould be unambiguously done, would be of little use in
the problem. IQ either case, we may justify the truncation of
the series (27) at O( x3) term by defining a "practical zero"
in the problem. Whatever »_ is (it is always much smaller
than unity by definition), we agree to treat 3ﬂ;3§1> so that

xm_?’goo . Such a notion permits us to set all expansion

coefficients a, with nV; 3 equal to zero, and, in exchange,
we have plaéed ourselves under the obligation that any results
deduced from the theory should be interpreted as valid at

most for a time span of  Of %m“3) beyond which the deductions

are meaningless.
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‘We now choose the first neighborhood center at 6 = Y=o
(for numerically very small ¥ ) in the expansion (25), the
second neighborhood center at_Naor+ Y and the third at 2Na0+7',
etc. This procedure implies that we mean to extrécf from

%(8).its odd harmonic component (i.e., the sinusoidal part
which is =0 at ¢ =Y =¢ } which has a period of Na,, wi_th
‘Nao yet to be.sought. Since in the odd function there should
be no even:power terms, the contribution from the coefficient
a5 should be rejected. Consequently, we have

2

(1). The coefficient of x° term in (27)

' 2
D: {1+ Qal 2)[(Nal-}<) cos Nag (k+1)-5 (Nay-K)“sin Nag
2
. | . > (28)
+ (l+ sin Nao) .L_l'.(-il-_).— J

2

(2)}. The coefficient of x term in (27)

A L 14
P: (1+ 2a12)ENal_K) cos Na0+,(l*_sin Nao)(k+l%(283)

We are going to minimize D (setting it equal to O) by an

appropriate choice of a  and ay. The condition is fed into

P, which then plays the role of the natural frequency ],2 in

a-typicél simple harmonic motion. Then by definition of Naj

being the period associated with a freduency )JEJE: we have
Na = <

o ¥
from which the number ¥ is obtained in terms of field parameters
‘through CP The procedure so far outlined involves rather

‘complicated algebraic operations. We simplify the work by
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introducing a small‘;quantity A, as-has been commented in

Section_IV,-such that P can be put as

i Naj-K _ ] ; 2
1 + N + 1 + si = (k+ + 4
(1 Qalg? (k l)l ki cos Na_ | 1 + sin Na_ (k+1) (1 l)
| (29)
and the expression D that is to be minimized is
Naj-K ' oy 2 ‘
2 - . - Na -K 4 v
1 CoSs NaO + 1 + sin Nao (jihfa sin Najy —»® (29a)
which tdgether with Na, = 23?5__“2;5;__m constitute a set of
by [k+l(l+61)

equations for us to investigate 4.

" The problem is approached by the method of perturbation

starting from the assumption that Aldefined is small and by

invoking the negligibility of the geometrical factor 2;i2
which by definition of ay in (26} in a 0.l-bounded problem
has at most an effect of 0.005 compared with 1, amounting to
a numerically very insignificant correction which can be

incorporated afterwards, if such a cornnection is desired.

Let Al(o) denote the first approximation of 4, by

setting Eng‘v 0 in (29), so that
1

A (0)  Nay-K

2 4 X ~pFT—- oS Na_  + sin Na_ . ; {29b)

Neglecting the 1\1(0)2 term in (29a}, we can solve for

: ) - a (0)
sin Nal 1 +4/_l+4(l+4 1 ) _ (29¢)
2

=35
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which, when equated with sin Za1 ~ sin PAL

Jor(1ra ) 0 [kl

—20 0
T ‘d;ﬁ ) cos vields the approximate solution
L 43 1 41027
(o) 2 2 }k.‘_r'l"
a," : (30)
_ 2 (o 2.0 .g.ﬁ

SQ in the first approximation, Al depends only on k+1.
Its dependence on N and K is brought in through the geometrical
conrection, which can be gffected in the following manner:

From 29b and 29c¢ we approximate

' (o) .
Na.-K 2 A - sin Na o
—l a1 °~J5"1[1+ g2 4 1(0)]

——

k+1 7 cos Na_ =4 2

so that

N2 }
2
(e PR (12 a, 100 ]

z (1= Al)2 o (1+2 41(0)){ 1+ %

2
and A o A4 (0) 41 N e o
o l. ! -4 [K*(k+lyu§5l-]2 , (30a)

For the sample field #4863450, Al‘O) is 0.0379 and the
correction is about 0.0023, giving ¥ = 8.32. The computer
result is ¥ = 8.3140004 which is obtained under the guise of
“linear tune number" which has a slight difference in
meaning from the propagation frequency ¥ being referred to

here.
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VI, Theory of Modulation

We are now in a position to introduce an explicit
:epresehtation of our orbit model with our interest retreated
into the following hideout:

(1) Spatially we stay within a narrow W-Qone which
enuherates all those orbit states with average
oscillation amplitude A satisfying

2 << Aand A3 E O

(2) Temporally we can only afford to look forward to a

finite future defined by |
e < A3

Under these circumstances, two aspects of the field
properties, which may be deemcd as intrinsic in the structure
and as completel& independent of the orbit state, can be
summgrized by two numbers, viz., the fixed point state number
W, and the propagation frequency Vo,

To every orbit state W, we associate a number A, thus
defining a propagator for this state A sin( ¥® Y ) with ¥
dependent on W {or A) analytically but numerically Y= O shall
always be understood.r This propagator is.now-subject to a
process of modulation as a refinement toward the true orbit
picture. - The process of modulation is certainly not unique.
Different approaches can lead to equivalent approximate
results and choice of the type of modulation in the

representation calls for parameters of different nature which

supply different information one desires to learm. The
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purpose here is to study the condition (16) for which we
desire to learn only the orbit behavior in a small neighbor-
hood about the foot of every propagation axis and for such
neighﬁorhoods, both & (mod. 21 ) and N& (mod, 2m) are
véry small;  Further, we are concerned only with standazrd
initial states (% K¥§:T'Q:O’ W) on the § = 0 axis, so a
modulator approximated by one odd harmonic function of the
form B sin (N 8 - Y¥j) with Y= 0 should be adequate.
However, the modulation amplitude B must itself be further
modulated by the propagator. Whether such a modulation
process should be effected through amplitude modulation or
phase modulation is immaterial; we may generally assume B to
be a function of both & and A, i.e., B(A,® ) so that what-

ever B(A,8 ) is, the orbit picture should look like
Asin (v0 -7) +B(A,8 ) sin (N8 - Y) (31)

with Y and ¥ very small. The structure of B(A, 8 ) can be
‘as complicated as we wish to imagine. Nevertheless, the
requirement that as A=» 0, the whole thing should approach

the representation of the equilibrium orbit, which in its
one-harmonic approximation has the form %% sin (NGO -¢e ) with

&€~ 0, defines the limiting behavior 6f B(A,8& ):

Lim B(A, ® )-‘;Eﬁ?— for all 8
A0 .

And as has been discussed in Section III, as &-— 0 (or both

v8 {(mod. 27 ) and N® (mod. 2% ) becomes very small), we
should have

Lim B(A, 8 }-—= Ws  with W, dependent on A.
B~ © N
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This much information regarding B(A, & ) is all we need. It
should be pointed out here that the propagator amplitude A is
defined to depend sheerly on the state W, implying that it is
temporally a constant. Consequently, if there is any
monotonic growth in the oscillation amplitude of the orbit,
such growth will have to be taken caxe of by the function
B(A,® ). If the monotonic dependence on # in B(A, & ) is
strong, condition (16) cannot be satisfied for any time
duration long enough to be of interest. We can therefore
afford to stay ignorant of what the detalled structure of
B(A,® ) is and get along with this representation (31) which
actually is ﬁore general than its simple'form would suggest.

The two lowest derivatives of this representation are:
Y(8)= vAacos (¥6 -V ) +B'(AB )sin(NB - V)
+N B(A,® )cos(N& - Y’O)

4a'( )= —)IQA sin (N® =) )+2NB'(A, 8 )cos{N® -YO)

+B"(A,8 )sin(NB - Y ) - N°B(A,8 )sin(N@ - Y o).

To satisfy the standard initial conditions, the following

relations are observed: }’0‘2 0 used)

2
W
-A sin [Seer————— 0 so that ~ 0
sin ¥ 2[K-k-1] r
YA cosY +NB(A,0)=W so that W &« ¥ A+NB(A,0) - (32)
2 )
2, _. , Yo w
A + ' = B — ~ 0.
YA sinY¥ + 2NB'(A,0)=0 so that BY(A,0) N m 0

«3G~
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On any sector axis, say on the gth axls, the state of the

orbit is

f ~ A sin (211“% ?fc} -f )= B(A,"‘g“%%_) sin Y 0

£ ~VA cos (274 % -v )+ NB(a,&td) cos ¥y (33)

- BT(A 2X¥ ) sin Y o

TN

If this gth axis is a propagation axis as deflned in Section
111, qz(-%lj} y We can approximate B(A,Z-Eni-—) by a linear
extrapolation from B(A,g;%glwm)ﬂx B(A,0) so that

B(A,Z2 ﬁ )=B(A,0)+B"(A,0) gﬁt_!;{<%l’_> _1_\1;;}

This correction term is of the same order as Y and )’0 and if
we mean to neglect ¥ and ¥, this small correction can also
be consistently disregarded. In the interest of analytical
simplicity with little loss of numerical accuracy, this will
be done,

Condition (16) can now be put in its simplest possible

form:
in {2 8P} )
€ (34)
By
Iy, N , ;S
COS{Q -HI:I '( UP 7}-{- 'i'? 2 N
NB(A,0) s 1 _ 1-S ¥V A
where 'Pg —_—l e = = '35)
S YA » A yN A 2 1 !
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This inequality, along with (32), which is now expressed as

1 - SYA

1 .
W= VA + = (36)
No(1esw A)2 # (e - 1)

NWO

and itsderivative with respect to A

—~ _ 4w 5V 1
P = =V - (37)

g2 V- sy A% (e - 1)
NWgy

which shall be called the ®admissibility® of the field
structure, constitute the set of equations we wish to study.
In looking for information from these equations, one must
clearly observe their limitations. In addition to the
conditions that must be fulfilled in deriving the numbers ¥
and Wy, the neglect of small numerically insignificant
guantities like ¥ and the rather arbitrary choice of an
explicit representation in (31), all should have profound
influence on the kind of information they are capable of
supplying. From the manner these equations are derived, we
cannot expect them to yield such delicate predictions as
concerning a particular resonance phenomenon. They are only
ready to give numerical ideas pertinent to the over=-all
properties of the field structure, the orbit states, &nd
their mutual dependence. They do give some guidance in such
matters as the choice and the compromise to be made among
the fileld parameters, but whenever a quantity whose
numerological struéture enters into the problem in some

critical manner, to look for information from theseequatlons
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without refined considerations extended to the analytically
non-vanishing small phases like ¥ , ¥ and other connections
SO far_disregarded, will do us no justification.

VII. Conclusion

To apply and discuss the equations (34-37)}, we start
from the admissibility function, the definlitlion of which
impliés that a structure with large § is preferred. For If
a slight increase in A would bring about a large increase of
W this implies more orbits can be admitted for a prescribed
fixed average oscillation amplitude. Since x@fﬁiiz large k
is of first choice,. This deduction is consistent with the
fact that large momentum compaction gives small circumference
factor of a structure. Equation (37) also tells that if the
f.p., state number W, is made such that ﬁ%g.w 1, & can be

enhanced. Wy as a function of the field parameters {equation

(22)) is subject to the validity condition in the evaluation:

W
ﬁg < %E— (Section IV). So the best we can do 1s to arrange
NQ
NWO“'gENl
' ag? 2304
For the field #4863450, this 1is S xA50 = 5550 ~ 1.03.

If these preliminaries are observed, the quantities 7" and W

assume much simpler dependence on other parameters:

o1 1 D N 0 S -
= 5% PESEY A(o_rvA-:28 TV mm) (38)

W va e d s (39)

D
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and we may proceed to ask what conditions there are in the
ratio % br g), so that the satisfactlion of the inequality
(34) can most favorably he effected with as small a value of
T" as possible for all possible integers P . We note here,
small 1 imples large A {er W) and therefore large stability
limit.

| Certainly, if the argument

-~ 2N NP
Q= N < v; >

can be arranged to be small for all integers P , this inequality.
would accommodate small values of [* for fixed field

parameters, To explore this condition, let

N___I - m 4
y T +a ~ " TFa ¢ (40)
in which m is an integer and 4 a small numbei, being very
N N i
‘Involvedly dependent on k, N, 4, (c.f. V=[O A L) tn

SectionVV). Then
N
<-€T_> - k m - _aEi&£n>

and

Qmod. 2w ) = 27 l':A f 1"4}&: -<7 +§%‘ >}. (40a)

In which the brace, By definlition, is a number always smaller

than L in absolute value and the ratioc Lre is just ﬁu

2
Apparently a large m will insure a small Q whatever k is.
However, we cannot make m very large since on the RHS of this
inequality there is also a factor % (in addition to other

conflicts which may arise for too large an m). The compromise

wd3=
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is to arrange m sufficiehtly large such that if the value of

the brace is stretched to its maximum possible %', Q will'

satisfy

sin Q = Q ;
l.e., Q assumes a value about or smaller than %% orm 2 6 so
that the factor % in Q and same in the bound on RHS may in

effect cancel out., This cancellation implies that, when m

is sufficiently large, the dependence on m in the satisfaction
of (34) becomes very weak, being only in the brace whose value
is firmly bounded by —é- If one notlces that the ratio’-l‘% is
-?-i%, where ¢ is the linear phase shift in
Floﬂpet's theory one immediately sees that -choice of m large

equivalent to

enough implies keeping 5%% away from such dangerous fractions
as % oT %. For m 2 6, the lowest resonance nearby would be %
which is not very harmful (even exactly at resonance). This
latter statement is concluded from Moser«Sturrock's theories,
a coordinated studyof which is available in Cole's notes,.

With m chosen sufficlently large being agreed upon, the

propagation condition may now be put in the simplest possible

‘form
l_lmi .,i_%m_g] L m2s
£ < .
Lta_| bna pus (g~ AW Ad S (41)
B O L ARTYO

The argument Q in the cosine function is formally very
complicated, but its numerical value is quite constant, being

usually 0.92 *+ small fluctuations depending on choice of m 2 6.

44
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Without going into details regarding the small number
A , we can now derive an estimate of the stability limit as

a function of field parameters.

. e pmA PmA ~l
Take the extreme situation T+ A —(l + Zr‘), -3

whatever pand 4 may be, and define the marginal value of r

by the equality

1
2 ~ 1 N
cos Q + T = Awr J 5 (42)
$ ] A
so that yAgL-_l_[_‘L . 48 ,
L 28 28 N op % - cos Q
(a3)
~ i 1
and W= VA *NTTSV A

W, gives the size of the stable cone and A, gives the
propagation amplitude at the stability limit. If to A is
added the maximum modulation amplitude, which differs negligibly
from that of the equilibrium orbit amplitude, one obtains the
numerical value of this stability limit usually referred to.

For the field #4863450, m is 6 so that cos Q a'O.BS'S is 8.04
with W= 8.314 so that A_ = 0.0017 while W_= 0.038. The
amplitude of the equilibrium orbit is approximately 0.0004,

The estimate thus gives a stability limit of about 0.002
corresponding to a phase plot curve with a pinnacle value at
0.038. Such a number is meaningful for a time span estimated

to be of order (2 x 1073)-2. 10° sectors or better. George
Parzen's computer numerical analysls also concludes a number
about 0.002 with a stable life expectation adequately long

for application.

5
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We conclude thls study with a discussion of the small
number & defined in (40) by ralsing the question: What kind
of small member this A we wouid like to choose and why? The
question is meaningful only if more refined considerations
are incorporated into the propagation cendition, Iﬂe neglect
of small phases and the noticn of standardization of all orbit
initial states are no longer justifiable. In fact, the
assumed existence of a continous We-cone at the origin which
defines the limit of stability in such a Cleérmcut manner as
so far has been conceived 1s really a flction. Condition (41)
can only supply us some idea in the limiting case P ~voe (&0
defined in the sense of Sectlon VI) and A~ A, ' . To assoclate
some A beyond this A, with some ? smaller than this kL in
order to answer the question mentioned 1n the Introduction
will call for an approach in which every substate of the same
orbit be considered on an equal footing and only under this
general situation will some scrutiny into the structure of 4

be meaningful and essential.

46—
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Append
We are concerned with the evaluation of the following
two integrals:

/

= AL (k+1)] E st (io-at-)
"9 "'f cos Eu.E-cos/u.(Sne&»)J € [ A

1]

RN e sinuls -e )

J j cos| m€ cos,u.(su & )

2

where klgii K -1 =K

+ (k+1)? and $=tan”t Ty .

The transformation ®= (% - &) and the approximation

cos [/:A,E cos@] x

are first effected. Then up to order O(E )2, 2 can be very
simply handled by quadratizing the integrand. Straightforward

integration leads to the result:

Mso.:’}“'gl"‘% E ,!A-+ k+1) /!49 - (k+1) € [COS/A(Q,—(-)

- cos/u&J %52(,&2- (k+l)2)[sin 2/-»(%—6-)

+ sin 2}!-@]

up to O(E) with 8 = ; +& . This ylelds

J = ii(—g“*#é‘ ) +[(k+l)E cos,p.e-)}.

AT



MURA-661

For ﬁf » the expanslons

1$ il
ek}_e € sin® - };, eim@ Jm (1 k}_ ei¢é )
i s®w
and 1 _\m 1 w2
(% z) (= z)
m! 1{m +1)!

are used. Only the leading terms ip Jm(z) need be considered

if the argument Z is bounded as fz}é% , or dpproximately

- 1 .1
Bl < 5~ 5%

2
for an accuracy of about ¥ in error. Then up to O(kl E"),
integration leads to (in terms of variable ®)

) ed%"'(:-a-iﬁé: ) e + he G [""” (-2h g+ 8 (-2r8

-2

+ =Con (l"’#)ﬂ-u SEEH‘ ) @é % é‘i EY I‘Aé [{ﬂ;{‘z ?ﬁi@@(ﬁ"g)q .flq(go-}@u‘,@, (34@)&}
i+ 2, "
a3
Up to 0(k;E) and transformed back to variable 8 , one has
in8 L I o .
9 . i de ‘e g Py M-ine  _iue
My = TTTE + - €
i o | £ ot #
A P “+|

With 8 =

[ e 5.[!67&)3‘ 4 E.f::'ei#é

iap

+& as the lntegration limit, one has
wd s &(ﬁ*‘;%w@)# E
Yoo ()

(ﬁ [ koo (8 Fen€)ak G (¥ K wve)- Ksipe]

A e (va
-(‘ﬂ)%;&é—} + L‘f \ Cﬁi“%a'me) .,E... f[f.ﬁ«)ﬁo(ﬁgwe)
o {2yt

+ KSo {_35! Ei,@w@.)ae- (-éﬁ)ﬁm,uﬁ ] ”Kce‘/“""'} }

The complex conjugate of 3* defines 3ﬂ . The three integrals
3. 34, J. are used in Section4év_
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loosely bound by the requirements of veriical motlon stability
and avoidance of those most harmful coupling resonances. Both
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numerical verification as to the validity of the phase-gauge
equivalance approximatlion which leads fo the result in (23)
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converted inte an equivalent phase A7 ~ (K=k-1) 4 R~0.085
(it could be 0.084 or C.086, but no such critical consideration
is needed). Then a field function 1 + sin ( $ - 0.085)
(actually ~ =0.0842% was used, which covers an unjustified
and uhnepessary correction, later discarded) is used in the
same program to search fo: the fixed point. The cdmputer
ylelds p ~1.9878307 x 1072, %~ =2.1537204 x 10~% giving an
accuracy up to third decimal place. This phase-gauge
eduivalence approximation should be extremely good in fhe
limit AR -0
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