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ABSTRACT 

The general behavior of plane orbits in a simple spiral 

magnetic field is studied both analytically and numerically 

(for a specific sample case). Techniques employed are 

heavily geometrical in nature and the motivation is the 

search for some simple conditions in the field parameters 

which control orbit stability and orbit economics. Pragmatic 

simplicity dictates a choice of approach which is only 

justified by a final numerical test. But reasonable rigor is 

accorded the fundamental equations in order to avoid getting 

lost from the very start. 
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I. Introduction 

An orbit problem, which is of more practical interest 

than it may seem at first look, can be conceived in the 

following manner: Given a small number, A , representing the 

maximum oscillation amplitude of the orbits a system can 

tolerate, given a large number, p , representing the minimum 

desired time span within which these orbits are to have their 

oscillation bounded by A ; then let F enumerate the parameters 

which characterize the magnetic field structure under study. 

We ask what conditions (the best choice, a compromise, etc.) 

there are among the F's so that a maximum number of orbits 

can be admitted by the structure under the desired conditions 

in the most economical manner. Such a problem is not trivial, 

neither is it hypothetical. The trouble with it is that it is 

too idealistic, and, with our present available techniques, 

barring individual case studies through the aid of digital 

computation in a purely numerical manner, it is unlikely that 

we can give it a rigorous analytical survey and arrive at • 
some intelligibly simple conclusion. In such a problem, two 

aspects of the orbit properties are involved, viz., orbit 

stability and orbit economics. To achieve good orbit 

economics (such as the usual notion of a small circumference 

factor of a structure), one has to deal with such structures 

that a simple linear approach to their stability properties 

is in general not realistically adequate. Confining oneself 

to a simple spiral magnetic field and taking only a one 

dimensional problem (plane orbits) into consideration, so that 
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the dynamics involved is Hamiltonian in nature, one would 

immediately have the notion that to follow Moser's general 

transformation theory and carry out a resonance neighborhood 

study for those important resonances considered as in 

Sturrock's theory, one should be on the right track to break 

through the stability aspect of the problem. However, such a 

handling, conceptually simple, is technically greatly 

difficult, particularly in respect to the transformation of 

working variables. Nonlifueai!t problems cre·ate new transcendental 

functions which are intimately associated with irrational 

numbers and the analytical manipulation of them is 

Qiscouragingly cumbersome. 

This study, initiated by George Parze~, is aimed at a 

much restricted interest regarding the above·problem. 

Although it has been constantly kept in mind how far we can go 

in order to at least scratch the surface of such a general 

problem, due preparation is always made for eventual retrea~ 

into an oversimplified situation by giving up much of the 

theoretical delicacies in order to obtain some numerical idea 

.from a purely pragmatic viewpoint. A simple spiral field with 

Parzen's prearranged parameters is taken as a numerical sample 

case. The general theory of plane orbits is examined at first 

in search of some working variables believed to be appropriate 

for this purpose. Some kind of stability criterion is looked 

for, based on realistic simplicity rather than sufficiency and 

necessity._ Numerical study on some sample orbits is carried 

out in order to gain some sophistication in the general 
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tendency of orbit behavior so that an "orbit model" can be 

conceived. Such a model eases out much of the transformation 

procedure. It is rather an awkward approach but is perhaps 

the only short cut that can lead to some simple result. 

Most of the numerical intuition needed in this study is 

supplied by George Parzen. Background in acceleratior physics 

is obtained from F. T. Cole's Notes on Accelerator Theory 

(TN-259), and findings resulting from numerous discussions 

with H. k. Meier are freely used in this report. Computer 

numericals are based on FLEXIBLE FIVER (Program 280, MURA-604) 

with the aid of M. R. Storm. 

Relevant plots regarding the behavior of these sample 

orbits are partially made available in the figures with some 

brief explanations. 

II. General 

The theory of plane orbits of a charged particle in a 

magnetic field can be most conveniently formulated by basing 

the geometrical aspect of the problem on one of the Frenet 

formulas which essentially defines a curvature function, and 

then incorporating half a physics law, viz., the magnetic 

part of Lorentz force law, into the problem. In Fig. 1 is 

shown a piece of plane curve, which, if represented in polar 

coordinate system, can be put as 

r=f(I), 

i.e., the radius vector is a function of the polar angle. To 

avoid the occurrence of loops and cusps, one may require that 

this f(8) be a single valued function of 8 so that the arc 
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length measured from any arbitrarily chosen reference point 

on this curve, 4(8), is a monotonically increasing function 

of 6 . Then, using.4 itself as a parameter, we see the 

three intrinsic unit vectors associated with this curve: 
A e4 defined positive along increasing .;$ • 

~~ directed upward from the plane of the curve 

and kept constant (for plane curves), 

e 
" 

defined by ~A 

convention), 

= ~ n 
A 

x e-" (right-handed 

are functions of 4 . The Frenet formula says 

" ~ = IK! ~ IKI usually defined as a scalar d.1,1 "} 

and the law of physics says 

I KI = l p 

in which pis the particle scalar momentum, H{4) is the 

magnetic field intensity as a function of the arc length. 

The electronic charge and light velocity are set equal to 

unity here. Then with appropriate sign convention one has 

K(4) =-l H(4) . 
p 

Since H(4) is almost always prescribed as a function of r = f(S), 

i.e., H(4) =J((r (9), 9 ), the most natural course to follow is 

to express K(.&) in terms of r(9) and its derivatives in the 

polar system 

K(4) = r 2 + 2r 12 -rr" 
( r2 + r 1 2)3/2 

The differential equation 
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r 2 + 2r' 2 -rr" 
( r2 + r • 2) 3/ 2 =-l. J{, (r(9),8) 

p 
( 1) 

serves as the starting point of plane orbit study. Of course, 

one can always choose a Lagrangian or a Hamiltonian function 

in one form or another to star.t with and arrive at the same 

result in a more elegant manner and better prepared for 

systematic approximation in the event (almost a certainty) the 

equation cannot be rigorously solved. No matter.which course 

is followed, the basic difficulty in approximating this 

equation is a tremendous one, particularly when J(. is of 

periodic structure, the only case of practical interest. 

More particularly, one's interest fs not just to obtain an 

approximation for a prescribed field function; rather, it is 

instead to explore the behavior of the solutions in their 

dependence upon .the parameters which characterize the field 

function. For this kind of interest, a systematic procedure, 

such as Moser's theory, 1 becomes technically too arduous to 

apply. In this note, an approach motivated by this interest 

is explored, emphasizing the geometrical aspect of the 

problem, with the hope that while analytical expressions may 

be lengthy and their meaning obscure, some inference from 

the behavior of those variables which have a precise 

geometrical meaning will help to soothe the difficulty. 

One can start the problem from the viewpoint of 

elementary plane geometry, such as the following angle 

relations among the three angles associated with the curve 
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in Fig. 1 

in which all angles are defined positive in the sense shown 

and the requirement that r(O) be everywhere single-valued 

implies t being bounded within ~ ~. Obviously, y and ol. 

are just the direction angles of the unit vector~fl and~ 

in the polar system. They are functions of the polar angle 

& So analytically 

of(B) =~-o<.(9) +8-, (2) 

A closer examination shows that, unlike o< ( 9), yUJ) is 

numerically invariant under coordinate rotation and should be 

regarded as more suitable for the description of the curve 

than DC'. (8). We, therefore, set out to eliminate o1 in the 

following manner. 
e11eJ 

Elementary 

and 

o( (8) = f d o((6l) + o< (o) 
o(jO) 

calculus supplies the following information: 

do<= K(4) 
d4 

tan+ =L 
r 

where prime refers to d 
dB 

Consequently 
9 

"/'(8) = ~ + 9 - o( (o) - l dlJc:s K(-1) 
0 

= () + n. + i rd& costle J lf.(r(•) ,& ) 
0 
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in which the constant~ -o<.(o) is rep.laced by the symbol .n. 
representing the value of"}'(&) on the initial polar axis 

9 = o This express ion may be called an "integra 1 

relation" which can readily be converted into an integral 

equation. For example, by integrating tant , we have 

Jde tani} = ln r(9) - ln r(o) 
~ 

r(B) = /\ e ( d& tan.J. or 

in which the symbol A is used to designate the value of r on 

the initial axis. While y(B) itself is numerically 

invariant under rotation of the initial axis, its integral 

:i. ( e) = J9 
de tan 1" ( 9) 

• 
is numerically invariant under scale transformation (i.e., 

independent of the unit used in measuring r) as is evident 

from its definition. 

We now have a transcendental integral equation: 

• +.n. + J\JB d9 [
9 

dll tan"l-18ld' ( 
p cos~(e) e dL 11f detanif(e),8) 

• 
0 (3) 

which, along with the easily proved kinematical relations: 

.I. hljl' 8 Pr tan '1'(9) = =-r 9 p8 

p cos 

p sin 
* (8) 

v (8) 

constitutes the dynamics of plane orbits. 

(p = scalar momentum), 

( 4) 

However, this equation, as it stands, promises little 

hope of soothing our original difficulty. Integral equations 

of such complicated structure discourage further attempt at 
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proceeding with the problem in any mathematically rigorous 

manner. Nevertheless, this equation, from a physicist's 

point of view, can serve a rich source of information in 

connection with certain aspects of the orbit problem. So the 

study here, instead of seeking a solution, will be centered 

on how to extract as much information as possible to meet 

with our special interest. 

Incidentally, it should be pointed out that the equation, 

except. for minute details, is really just the first integral 

of the original differential equation. In fact, if we 

differentiate the angle relation (2) with respect to 9 , we 

can obtain a "differential relation" 

1 - -J,i (19) .'"" K(4) ~ 
1 d 8 

which is generically the predecessor of a differential 

equation. For, by eliminating y' (6) in favor of r(i9) 

through the elementary formula 

.~. (9) = _d 1 d9 
r' arctan -·- = r 

rr 11 
-

r2 + 

this relation leads back to equation (1). 

2 
r' 

( 5) 

The justification for inv~sting time and effort in the 
"" t--~ 

study of the orbit problem in this approach is based on the 

belief that: 

(1) Whilst differentiation is basically a coarsening 

operation, integration tends to smoothen out 

roughness. Approximations based on integral methods 

can lead to analytical results of relatively compact 

structure, if a systematic procedure striving for 
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better accuracy is not a desired feature. 

(2) Whilst causality is "hidden" in a differential 

equation, it is brought out in some tangible forms 

in an integral equation. The retrospect nature of 

integral equation should be more appropriate for 

the study of problems in which initial conditions 

are of prime interest. The formal presence of 

initial parameters from the very start could be 

visually a guide to searching for a method suitable 

for a particular aspect of the problem. 

We specialize the curvature functionJ{'(r(t),6) to that of 

a spiral field. having the following structure 

l{_(r(9),9) = -B rk h[NfJ. - K ln r +(] 

in which k is the momentum compaction constant, K the spiral 

ridge wave number and N the number of periods of the field 

structure in an angular span of 21( (i.e., N sectors per one 

complete revolution). Y is an arbitrary phase subject to 

choice at one's option. 2 The function h is to have its 

fundamental normalized to unity and is to have only one 

leading harmonic of amplitude not greater than unity. 

Essentially, we shall take 

h (f) ~ l + sin t }"' N 8 - K ln r + ( 

as the object function for discussion and, for numerical 

illustration, Parzen's numbers N = 48, k = 63, K = 450 will 

be used (to be referred to as #4863450). 

It is appropriate, at this early stage, to narrow down 

our interest in the usual manner. That is, we shall not be 
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concerned with motions vigorously transient in nature. For a 

r~latively steady oscillation of the particle within a finite 

region in the field, the initial parameters, particularly A , 
the accepting radius, must be prescribed compatibly for a 

given scalar momentum. Such a compatibility requirement can 

be stated in the following manner: For a given scalar 

momentum f , there is a unique choice of R (with the 

dimension of length) such that 

p = BRk + 1 

that,the exponent should be k+l is dictated by dimensional 

requirements. Then, for/\ to be compatible to this p , it 

must be sufficiently close to R such that if 

/\ er R -
then 'f e ~ l + f shall always prevail, implying f must be 

( 6) 

( 7) 

reasonably smaller than unity. R so defined can be 

conveniently (but not necessarily) used as the unit of leogth 

in the system. As usual, the unit circle defined by R will 

be re'ferred to as the reference circle. f will be ref erred 

to as· the oscillation parameter and the condition in ( b) is 

to be referre·d to as the unit gauge. 

In terms of the above language, we summarize: an orbit 

characterized by two initial parameters ( f, .n1 ) is 

represented by an orbit state function 

the equation 

"f,(9) = e + n, ,. 
where i(&) :._J d6l 

0 

9 

f d 9 
- coslf\ 6) 

0 

tan V (61) 

-11-
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b . B k+l . su Ject to the gauge condition p = R . and the scale 

condition ~ = er 
R 

equation is 

The corresponding differential 

l~' (8) = 1 - 1 tJ e(k+l)[i(9)+f1h(N19 -K(!E(e)+f l]. 
11 cos 1f,(e • 

f 
It is apparent that the equation will respond only to 

the numerical values of J fed into it and is unaware of the·· 

extra scale-gauge conditions adopted by'. the observer. So .f 
is twofold degenerate with respect to the parameters I\ and R 

(which defines p). This degeneracy precisely implies the 

well-known scaling symmetry of the orbits in a spiral field; 

The orbit-state functioni and its integral! mutually 

define each other through the medium of the initial . 

parameters and the field parameter~ in a very intricate 

manner. In addition to their geometrical meaning, they have 

a very direct connection with the conventional canonical 

variables Px(6) and X(e) as used in computer proqrams from 

which numerical results are derived for comparison with 

theoretical prediction. Essentially 

i.(3)+f 
e - 1 = ( i ( & l + r ) + ( i. ~! l + r l 2 + 

• 
should be identified with the total oscillation X(9) while 

3 
p sin if ( 9) = p °4' (9 ) - p "'¥ ( & l + 3J._ 

is obviously equivalent to the oscillation momentum Px(B). 

These apparently rather complicated relations are actually 

only formal, for insofar as the practical ranges of numerical 
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values are concerned, the simple approximation 

%(&) ~ :iE.(&)+f 

Px ( & ) ~ '/' ( & ) 

x(o) =f (p=l understood) 

Px(o) = n, 
always prevails. The conditions for validity of such 

simplification lie in the fact that in no case shall we be 

interested in orbits with oscillation momentum (px) exceeding 

10% of the total scalar momentum (e.g., in a particle 

accelerator of 1 Bev. energy, the betatron oscillation 

momentum certainly is well below fa Bev./c). Confining 

interest to this range of p , one can always take the x 

advantage of the extremely accurate numerical approximation: 

lf l"J>j~O.l. (10) 

We shall refer a problem in which this approximation is valid 

as a problem of 0.1-boundedness interest and in problems of 

this nature, (9) and (10) are understood to be numerically 

good. 

Before concluding the general discussion in this section, 

let us describe in a very preliminary manner the topic of 

interest in this study. The word "stability" needs a precise 

definition in order to attain an unambiguous and concrete 

meaning. In this respect, we shall define an ideal stable 

orbit as one which will remain oscillating about the reference 

circle for an infinitely long time with its maximum amplitude 

bounded by some prescribed finite quantity. Such an 

idealization implies that only two cases are possible: 
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(1) . The orbit is a "closed" orbit, by which is meant 

that if the orbit is represented by the state ( J , 
.n. ) on sector axis no. I, it will come back to 

this same state after a finite number of sectors 

and in the transit, its maximum oscillation 

amplitude stays bounded within some finite 

prescribed value. 

(2) The other alternative is that it must be "quasi-

closed", i.e., it will come back arbitrarily close 

to its initial phase of the motion but never 

precisely so. This is merely a consequence of the 

ergodic hypothesis which we shall take for granted. 

This idealization is now relaxed. We shall say an orbit 

is stable with respect to a spatial limit AL (finite), if its 

oscillation will stay within this bound.for a very long time 

p (e.g., time measured in number of sectors and pL stands 
. L 
~or some large integer). In this sense, the meaning of the 

word "stability'' is brought out by two definitive numbers and 

thei~ dependence upon the field parameters is what we want to 

study. 

III. Formulation of the Problem 

Equation (8) defines the orbit-state function if,(8) 
! 

labeled by two parameters ( ! , SJ.1 ), in the same sense as 

a quantum mechanical state labeled by two quantum numbers. 

Its dependence on field parameters is not notationally 

brought out and it shall be understood that these field 

parameters are not firmly prescribed entities. Two numbers 
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( f I, -'l I) given on the initial axis ( 8 = 0 ) define an 

orbit state '/'I{&). As the motion is propagated to the axis 

°II ( 9 = 2~), the function 1J>I( 2?{) assumes a numerical 

value .!J..II, while the function ~I( 2rr) + f I assumes a 
· II II II) numerical value f' . These two numbers ( f ·, .{). certainly 

can also be usec:l on axis 1 to define an orbit s·tate 'l'II(&) 

representing the same orbit but at a differen{ inital phase. 

And, in the sense of stability defined earlier, this 

difference reflects one important fact: if state ( f I,JlI) is 

expected to have a stable life of pL sectors, the state 

( f II, .n. II) can only be expected to have a stable ·life one 

sector shorter. In other words, stiltes ( '! I, ..n. I) <i.nd 

( Y' 
( f 

II II , ..n. ) represent the same 

I, .J'2.. I) being younger than ( 

orbit at different "ages", 
II II) b t f , .n. y one sec or. 

This situation can be generalized to any number of sectors 

and we conclude that different pairs of ( f ; ..(l ) specified 

on an axis do not necessarily represent different orbit 

identities; they might represent the same orbit at its 

different age states (different substates of the same orbit). 

We now wish to set up a chronological standard through which 

the age of an orbit can be referenced in order to bick out 

only those states which, by some arbitrary convenient 

standard, represent the "youngest" states of each individual 

orbit for study. Such a procedure is obviously very 

arbitrary; nevertheless, it is a useful notion when one wishes 

to compare the relative properties of different orbits. To 

achieve this aim, one must ask the question: what intrinsic 
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property does a state function if have that characterizes the 

identity of the brbit irrespective of its state of age, An 

answer to this question is that the absolute maximum numerical 

value of 1}' may be used to characterize the orbit identity. 

(The statement is equivalent to: the maximum value of the 

oscillation momentum Px attainable by a particle along its 

orbit characterizes the identity of this orbit). The 

geometrical meaning of l/' hints that wherever the orbit has a 

point of inflection,"f' has a local maximum (or minimum) so the 

absolute maximum of'/' occurs at one of these local maxima. 

We now demonstrate that, in a 0.1 bounded problem, this 

absolute maximum can be made to occur in the immediate 

vicinity of the origin (but never precisely at the origin), 

if the field function has the form 1 + sin[_ N 9 - K( i, + j ) J 
which is the function we have chosen for study. 

If Y is to have a maximum at t9 = o tf' ( ~ = o ) must 

vanish, and if this maximum is in the immediate neighborhood 

of the origin, f must be very small. Then the differential 

relation in (8) gives: 

y'( 9'WO ) = 0 = 1 - e 1 + sin (-K(it(o)+f)] . (k+l) ( i.(o)+f){ } 
cos v (o) 

= 1 -
( k+ 1 )I' [ } 

..._c_o_s~W~ 1 - sin Kf where if-Col:= w. 

Since W is 0.1-bounded such that cos W~l-l/2w2 always 

prevails, and f is to be made small, we have 

i> l J = 2 
w2 

k - (k+1) 
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Consequently, given a number W representing the maximum 

numerical value of °'1' , defines an orbit state on axis I: 

( I 1 W2 
J = 2 K-(k+l) !lf" , ..QI = W). 

Since the numerical significance of y I is almost nil, we may 

often regard the simpler state ( o , W) as the "birth state" 

of an orbit whose identity is recognized through a single 

label W. In a sense, W on axis I serves as a total quantum 

number while a pair of ( S , .rt ) on successive axes may be 

regarded as subquantum numbers that remove the many-fold 

degeneracy in the problem. By referring to Fig. (6), in 

which a conventional phase plot (constructed with the aid of 

the computer) for several sample orbits is illustrated, it 

can be easily seen that W is nothing but the pinnacle point 

in each of these idealL:ed phase "curves" while ( ! , .n. ) 's 

represent other points in the plot. As George Parzen puts it, 

the computer numericals are a theoretical worker's experimental 

data; he is saying the pairs ( f , ..Cl.) are dynamical 

'observables." Such observables supply us an abundance of 

information regarding orbit behavior, but they need not be 

the appropriate variable for use in theoretical analysis, It 

is because of this very difficulty that we cannot straight-

forwardly follow Moser's rigorous theory in this study. For, 

transformation back and forth, with different working 

variables carrying along in the transformation coefficients 

the complicated dependence on field parameter~, is algebraical_._ 

very difficult even in a lowest order ~stimate. In the 
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interest of simplicity, we have to approach the problem in a 

less rigorous and systematic manner by recourse to some kind 

of simplified physical picture of the orbits, for example, a 

model, which eases the transformation difficulty at the 

expense of theoretical soundness. 

No matter how the particle is accepted into the field, 

the mere fact that it is to stay oscillating' about the 

reference circle implies that the state of the motion must 

inherit from the structure of the field certain modes of 

vibration characterized by the field parameters. We conclude 

that the basic frequency N of the field must constitute one of 

the modes of vibration in the orbit. The fact that the 

harmonic part of the field, viz., the sine term in h, should 

on the average fluctuate out implies that in the long range 

behavior of the orbit there must be exhibited a mode of 

vibration whose frequency is predominantly dependent upon k, 

which dictates the average intensity of the field. This 

frequency, referred to as the propagation frequency).) , 3 

depends on N and K only weakly and its dependence on the 

state of orbit W will be discussed in section IV and V. 

Therefore as a first survey we may conceive a model based on 

a doubly periodic system with both the oscillating periods 

confined on the real axis (N is given real, while y must be 

arranged real). The commensurability of these two numbers, 

reflected in the orbit behavior as a result of interaction of 

these two modes of vibration, is the center of all complications 

that affects orbit stability. These complications cannot be 
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directly ex~mined if the orbit states are repiesented, as so 

far it has been done, in the f -representation alone. The 

usual notion of phase shift must be introduced, amounting to 

a transformation from the f -representation to some other 

representatfon more intimately associated with the properties 

of the two numbers N and ')) . 

In this respect, we must first examine in a purely formal 

manner, how motion is propagated, once the particle is 

accepted into the field, from the viewpoint of the definition 

of the state function iJ;,(e). 
If initially at 9 =O the state of motion is ( ! , .Qt ) , 

then at e-1 the state function becomes: 

1.,..., ~-· - -
({t-1) p .t8 {...,..) JetB) 

.1. (9-i.) = ll-" 'i'.n - e +. e h. fwl-Klit9>+f'1 'ff l I f C., Cf) 
,, I 

A dummy variable transformation brings this equation to the 

form 

At certain values of , such that 
'l 

j = f dB 
0 

tan 'fr ( t - t 
-1 

) (= - s 
• 

is satisfied, a new constant n'l can be defined 

-'19-
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cos if. ( & -~ ) 

. , ' 

MURA-661 

h ( N( 11 - \ ) -K * ( It - 'I. ) ] 

(13) 

Then equation (11) adjusted in notation can be put in the form 

.. ~ (9 d~ ({,.1>f1(&l 
1,(&) = 9 +.a,-) cos 11:. (e} e h[N( 6 :.- ~ )-K~(e)l (14) 

a 7 
which defines a function ~(8) in the same manner as equation 

(8) defines '!'1(9), except that now a phase 1 in the field 

function has taken the place off in the exponential. The 

meaning of this change of representation is really trivial if 

one takes a look at Fig. (4), in which the geometrical 

situation is quite lucid. The transformation equations (12) 

and (13) are quite involved; however, we shall use them only 

in a very simplified case. Essentially, the two functions 

1ff(e) and ;,(&) are orbit..state functions in two different 

representations. In the f-representation, two numbers 

( f , n.,.) are specified on the sector axis representing the 

state of the orbit: f stands for the oscillation while 1lr 
stands for the oscillation momentum, both being computer 

observables. In the '1, -representation, two numbers ( 1_ ,.A,) 

are specified on the reference circle representing the state 

of the orbit: 1 stands for the location where the orbit has 

a zero, while .fl\ stands for the oscillation momentum at this 

zero. In the limiting situation f ~o and 

so for the birth state, the two representations almost coincide. 

We are going to compare all orbits in their birth states 
on the initial B:.o axis. As motion is propagated to 
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successive axes, each orbit becomes capable of two very 

different representations. By studying the transformation 

equations, we expect to find some kind of criterion to 

judge the stability of these orbits as a function of the state 

number Wand the field parameters. 

To establish this connection, we have to introduce the 

notion of the conventional equilibrium orbit which defines 

the central fixed point in the phase plot. This orbit, for 

all intents and purposes, can be defined (i.e., to avoid 

bothering about its existence) to be periodic of a period 

equal to that of the fie19 structure. The state of this 
l Wo orbit is therefore (2 K-(k+l) <>:O, W0 ) and it has no substate. 

The numerical value of W0 as a function of field parameters 

will be discussed in ~ection IV. The unique properties this 

orbit possesses can be summarized: 

(1) It is immortal: once a birth state is defined for 

it ( o, W0 ), it will never age. 

(2) It is simply periodic and only one mode of vibration 

of frequency number N characterizes the motion. 

(3) Its long range average behavior is that of a circle, 

i.e., the amplitude associated with the propagation 

part of its motion is zero. 

This orbit owes its immortality to its capability of 

rejuvenating its state after each cycle of the motion. If 

such a rejuvenating process can also be incorporated into 

other orbits, we can expect long stable life of these orbits 
too. We certainly cannot achieve this for a wide range of 

-21-



MURA-'661 

VI values; however, we may attempt to arrange the situation 

such that each orbit within a narrow W-cone at the origin 

after a certain period (e.g., after every propagation period) 

will come back to a state resembling'its birth state. Such 

a rejuvenation process is not complete, but we at least can 

expect a slower rate of aging of these orbits. 

The birth state, as defined, is characterized by the 

simultaneous smallness of f and 1 in the two representations 

discussed. With ! and l numerically small, the transformation 

equations (12) and (13) render the very simple relations: 

f ::::: 'l. n1 

.0.,9nl =lK - (k+ll)111 -t , t 
...a. 2 r 
2 

They are solved for 'l and .n, : 
r-~~-L~-~~~-;;--. 

n" = .n, [ 1 +j1 + 21> - 4 [K-(k+11 L ] 
2 ) .!ly2 

' 1 = 

Since .Cl'l must be rea 1, the following condition must be 

observed: 

l__J'_____j "' 1 !Cl' 2 f 
1+2f"' l+f 
K-(k+l) - 2(K-(k+l))t 

(15) 

(15a) 

(16) 

which says that for any substate ( f, .Ur ) to "resemble" the 

birth state, this inequality must be satisfied in addition to 

f and t being both very small. The requirement that the 

orbits after approximately each propagation period will 
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assume a state sat1sfying this condition implies that we must 

arrange the field parameters so that the orbits will have a 

spectrum of zeroes, rathei regularly spaced, to fall within a 

"linear" neighborhood of a sector axis which will be referred 

to as the "propagation axis" (on which the conditioh (16) is 

to be observed). The word "linear' is used instead of "very 

small" so as to make the condition more concrete in the 

following sense: If the zero occurs at a distance ! from the 

foot of the propagation axis, then t must be sufficiently 

small as to satisfy sin L-:.< t . Figure 3 illustrates the 

situation. 

We must now define what a propagation axis is. We shall 

see that the propagation frequency V in general is an 

irrational number smaller than N. One propagation period is 

therefore an angular span of 23 corresponding to 

2.!I 
JI 

21T 
N 

=!::!::m_r v - d sectors, with m an integer and 

Let a state W start its trip from axis I. After a little more 

or less than one propagation period, it arrives at axis M (m 

sectors away from axis I ll-= 0 ) to assume a substate ( f M, 

M) . ...n., which shall be arranged to satisfy (16). Starting from 

axis M, it continues its trip another propagation period and 

arrives at an axis on which it is to assume a substate to 

satisfy (16) again. This axis would be 2 m sectors away from 

axis I if 21&1<~ and would be 2 m ~ 1 sectors away from axis I 
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if 2111> ·~. (Equality never occurs since Y is irrational). 

In general, after p (integer) propagation periods, the 

propagation axis on which the propagation condition (16) is 

to be observed may be represented by the symbol 

< ~):: q sector away from axis I. 

The integer q is defined by: 

fraction f, 

Let p d ·- an integer i + a 

then q = mp 

q = mp 

i if f<Y;i 

i-1 if f:,Y;i. 

(17) 

For lack of a good 'general orbit solution, to formulate 

a stability condition in which initial parameters, field 

parameters and '"desired'' parameters (such ?S the parameters 

in connection with the minimum s~able life time and maximum 

tolerable oscillation amplitude the user may desire) all 

appear in a fully analytical manner, in terms of some 

necessary and sufficient language, is believed to be impossible. 

The criterion established in (16) is neither necessary nor 

sufficient; it is just a humble criterion for the particular 

case of a simple spiral field with parameters in the range 

of practical interest. Only actual numerical sophistication 

can lure one into the confidence that this condition could 

serve as a reliable guide to the problem we wish to explore. 

Although considerable time and effort have been invested in 

the search of a ''better'' condition, nothing more intelligible 

and simple can be materialized than (16). The rest of the 

study is devoted to interpreting the meaning of this condition. 
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IV. The Central Fixed Point and Harmonic Gauge Curves 

It was defined that the central 

to the e~uilibrium orbit) shall have 

fixed point (corresponding 
2 l Wo · 

th.e state (2 k-k-1..:::o, _W0 ) 

with W0 dependent upon the field parameters. This dependence 

is now to be studied with the aid of the integral equation Jn 

(8). We sha.11 approach the problem by a method which can only 

be modestly called "probing for information." Nevertheless, 

this method will give us a very accurate numerical result in 

connection with the f.p., (central fixed point) state and a 

good physical picture in connection with other orbits. 

From the analytical point of view, the equilibrium orbit 

is perhaps the most singular orbit, but looklng at it just as 

a curve, a geometrical entity, it has the simplest outward 

form; fo~ whatever it is, it by definition should be represent-

able by 

( nN & - E- ) n 

And, corresponding to a simple one-aarmonic field function as 

the one under study, an approximate representation E sin(N8 -E: 

should be adequate for the purpose. We shall refer the following 

one-harmonic form 

E sin}.<-( & _,.,. (18) 

as a one-harmonic prober, to be fed into equation (8) in order 

to look for conditions that bind the three parameters E, j> 

and ~ . In the event?- is made to approach N, we obtain 

information regarding the fixed point state. If)"" is made to 
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approximate v, we obtain some first-order information regard-

ing other orbits, such as the general propagation properties 

of these orbits in their one-harmonic average. We are here 

taking advantage of the integral structure of our fundamental 

equation (8), which overlooks local roughness of a function 

and is willing to respond to an oversimplified probing 

function by yielding information which is not critically 

dependent upon such local roughness as possessed by the true 

solution. Just like any approximation method in mathematical 

physics, be it perturbational or variational in nature, one 

needs a zeroth-order function to start with. Form (18) serves 

a similar purpose. We replace i.(&) +f in equation (8) by 

this form: 

This function y(8), thus defined, represents only the first 

harmonic average of the 

state function). So at 

orbit (and 

19= .2L +~ 
21'-

is not the true orbit~ 

,f( f> = ;. '*' E- ) should 

have a zero. Equation (18) then gives an informative relation: 

f
{A_+E:- . ci.,>[i:s.;.,,.._(&,~il 

o: 2r+E:--t-.n- [t:JB le f 1+&:...[J>J&-aces..;.rl•-+>7} J.,. "" µ.f: (",,, j'-(/H.) ( 20 ) 
0 

The evaluation of integrals of the type in this expression is 

quite a difficult problem; however, approximation methods for 
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two extreme cases are rather well explored. In the case 

(k+l)E is a large positive number, then an asymptotic 

treatment in one form or another (such as the saddle point-

methbd, or a very simple Laplace's method of critical point~) 

is in line. 4 If E is sufficiently small, such that expansion 

of the integrand in terms of Bessel's functions converge very 

rapidly that only the leading term is important, then aa 

accurate and simple result can be made available although at 

times the calculation may be lengthy. The detail~ of this 

second method are presented in the appendix. The result of 

the evaluation brings equation (20) into the form 

..n- !!,! .n. ;.. 1-c..os ( ~ f + "'.:) _ _.!... ...I.. [ 
)!!> - N C~/-1. ,.;. ( 21 ) 

~ t-i+n f c..s < ~ "f + ut-)+ ~.:.../"'\!> }"'" K{ ~ ~C~f~w(;).;.c..srt-)] 

This result is accurate to a maximum error of 1% if .(1) the 

numerical values of E and K (k«<K assumed) are such that 

E~~K and (2) if the ratio J!. is kept away from an integer 

) 1 by at least two orders of KE. Both these conditions 

come about because of truncation of the series involving 

Bessel's functions in the approximation and are in general 

very easily satisfied in a 0.1-bounded problem. 

If we let f'+N and approxi.matet-"oand further observe 

that if the initial parameterll. in (21) is that of the 
WO equilibrium orbit, W0 , so that E~lT' we obtain the result: 

(22) 
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.Simple as it is, this formula is quite accurate. For the 

field #4863450, it yields W0 ~ l.985 x 10-L', while the computer 

result is.1.98783 x lo-2. 5 

We can see from the left-hand Side of equation (21) that 

if p.· is made close to .{k+T, then the· dependence on .n (the 

initial condition, and numerically equal to W foi a birth 

state) in this relation is minimized. This implies th~t the 

propagation frequency v discussed in III must be something 

l'ikejk+l
1 

(1+1). 1 ) with a small L1 1 . This serves as a guide 

to the study of the propagation properties of the or6its in V. 

Let us prescribe a family of harmonic curves of arbitrary 

amplitude A and constant frequency}) : A sin ( VO -Y) with 

Y ~ «> , in the field structure, in the same manner as we 

prescribed a reference circle before. Just as the reference 

circle was used to define a constant unit gauge (Eq. 6), these 

harmonic curves define a system of oscillating gauges. Further, 

just as the reference circle, which is itself not a possible 

orbit, represents the average motion of the equilibrium orbit, 

these harmonic gauge curves, which are not orbits themselves, 

represent the average motion of the other orbits in a W-cone 

for which a constant~ is a meaningful concept. A mode of 

vibration with frequency equal to the frequency of the 

structure riding on the referenc~ circle yields the equilibrium 

orbit; a mode of vibration with frequency almost equal to the 

frequency of the structure riding on a harmonic gauge curve A 

should yield the orbit corresponding to an average oscillation 

amplitude A (which should be a function of W). Thia mode of 
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vibration will be termed the "modulator" as against the gauge 

curve itself which will be called the "propagato~' The concept 

of propagator vs. modulator is of course relative in nature. 

The observer may at his pption use the mode N as a gauge 

curve and treat the mode ~ as the riding component such as in 

the conventional approach in the linear betatron oscillatibn 

theory. For orbits of oscillation-so large that the equilibrium 

orbit as seen by ·these orbits is· just a small wiggling component, 

the approximation procedure in which the ~ -mode is used to 

define the gauge curve should be in favor. Io complete the 

description of the orbit model here, we need the answer to a 

very important question. An orbit with state numb!xW 

geometrically means it is accepted into the field on the 

initial axis at an angle W with the circle. To this orbit W 

corresponds a gauge curve A which makes an angle JJ A with 

the circle at the origin. We ask the question at what angle 

relative to the propagation is the modulator accepted into 

the field, i.e., what is the difference W - V A
1

• Ws expressed 

as a function of A and field parameters? · The nature of this 

question is shown in Fig. 2. A rigorous answer to this 

question calls for a good orbit solution which we do not have. 

Nevertheless, since the question concerns only the limiting 

situation 8-.o , an answer approximate to within a first-

order infinitesimal can be supplied using a scaling trick in 

the result already obtained for the equilibrium orbit. For 

very small yl) (which eventually is to go to zero), the gauge 

A sin )18 behaves like A )Ill! and may be replaced by a tangent 
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line A)!(J at the origin. The situation then is similar to 

that of the equilibrium orbit problem with the coordinate 

system rotated counterclockwise an angle VA. This rotation 

incurs two consequences: the apparent periodicity of the 

structure is now N-KAV instead of N, and the unit gauge 

condition is now ~-dependent, being scaled by a factor 
(k+l) )IBA e These are seen simply by replacing the form 

A >18 + E sinp.9 for (18) so that the integµind in (19) now 

has the form 

+ (k+l)E . ..,.e { l sin 1 + sin (N-KA 'II ) 6 -KE 

For arbitrarily small Av8 , e(k+l)A>'~ l+(k+l)AY9 • so 

sin!""] J 

that integrand after some manipulation can be made to equal 

9(k+l)E sin,....& [ l+sin [ (N-(K-k-1) )/A) e - KE sinr•Ir o2 , 

where o2 is a term which approaches zero faster than vi and 

is· one order smaller than the first term, being of the form 

a(l+sin b - cos b) with a - O(A) 

and lim a~ o, lim (1 +sin b - cos b)- o. 
YO""° ~e~a 

o2 is therefore negligible. This approximation amounts to 

tiansferring the effect due to a small difference ~R in the 

gaµge condition (8) to the equivalent effect due to a phase 

A'{ in the field function. For 
5 is numerically very accurate. 

R sufficiently small, it 

Following the same procedure as in the fixed point 

problem, we should come to a result similar to (22) with all 

N replace~ by N-(K-k-1) ~A, i.e., 
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This result will be used in the modulation theary in Section VI. 

V. Theory of Propagation 

In this section we will analyze in some- detail the 

important number y defined to represent the mode of, vibration 

in the average long range behavior of those orbits within a 

particular W-cone. If, as we expect, this 'J) should depend 

on W very weakly, it is more appropriate for us to start the 

investigation from the differential relation in (8) in which 

the initial parameters are not present: 

For notational simplicity, let us denote i(D)+.f: x:(9) so 

that 

x.." = 1 - cos x.' 
1 (N 8 - Kx)} ( 24) 

If this equation can be solved for ~ ~s a function of 8 , we 

may expand the solution about some neighborhood center a
0 

so 

that 

x. ( 8) 2 1 a ) + .....,,. 
o a " 

1 

2 3 
(2a 2 -a 1 a3 ) ( 19 -a) + .. ; 

(25) 
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in which the expansion coefficients are so arranged that if· 
6 we invert the series, we may have 

. ( 25a) 

The. procedure is similar to inverting a sine series to obtain 

its cyclometric counterpart. We note that the c~efficients 

a ·~ are functions of the neighborhood center a
0

• They depend n . 

on how we choose a 0 • The following series expansions are then 

readily obtained; 
2a 2 

2 
. , L 4a 2 3a 3 + ... ( :. 'I- - L) x. = -+ (-- -) 

al al 2 a 3 a 2 al 1 1 

2a 2 
2 

3a3 2 1 _l_ 6a 2 = 1 + l( +(-- -) " + (26) . cosx.' 2a 1 
2 

al 3 a 4 a 3. 
1 1 

( ) ~ ( ) 2 ltu )2 • 6in Nl9 -Kx sin Na
0 

+ ~. Na 1 - K cos Na 0 '- X 'T"''al ~K sin Na 0 + 

(k+l) 
e . = 1 + (k+l)1' + 1.k+l) 

2 
1(.2. + ... 

2 

and equation (24) assumes the form 

x" = 1 - (1 + ~) (1 + sin Na
0

) 
2a 1 

sin 2 Na 0 (Na 1-K) 
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2 
+(l+sin Na l((1+ ~) (k+l) _ (k+l) 

02 - ,:: 2 al 

3 + O(ic ) + ... 

2 3 
!! G - P )( - D>t - M X + 

We wish to extract from this equation of motion the first 

harmonic average part of 1<"( & ) and find out what is the 

natural frequency associated with this average harmonic motion. 

The conception of such a natural frequency is useful and will 

depend on the state of the orbit W very weakly only if the 

maximum value of ?( , say )! is sufficiently small that m 
o( Xm3 )<< 7(m· If this is not the case, introduction of such 

a natural frequency, although it would be still meaningful 

and could be unambiguously done, would be of little use in 

the problem. In either case, we may justify the truncation of 

the series (27) at 0( x; 3) term by defining a "practical zero" 

in the problem. Whatever ?{ m is (it is always much smaller 
,, 

than unity by definition), we agree to treat Ym'"'S!ro so that 
-3 

X'm ~ oo • Such a notion permits us to set all expansion 

coefficients an with n ~ 3 equal to zero, and, in exchange, 

we have placed ourselves under the obligation that any results 

deduced from the theory should be interpreted as valid at 

most for a time span of 

are meaningless. 

0( ~ -3) beyond which the deductions 
m 
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We now choose the first neighborhood center at 6 = Y ~ o 
(for numerically very small t) in the expansion (25), the 

second neighborhood center at Na 0 + y' and the third at 2Na
0
+Y, 

etc. This procedure implies that we mean to extract from 

1'(9).its odd harmonic component (i.e., the sinusoidal part 

which is ~o at ~ = '( ~o ) which has a period of Na
0

, with 

Na 0 yet to be .sought. Since in the odd function there should 

be no evenrpower terms, the contribution from the coefficient 

a2 should be rejected. Consequently, we have 

(1). Thi coefficient of ;x.2 term in (27) 

D: (l+ ~)~Na 1 -K) cos Na 0 2a 1 t 
+ (l+ sin Na

0
) (k+l) 2 J 

2 

(k+l)-~ (Na1-K) 2sin Na 0 

( 28) 

(2). The coefficient of X term in (27) 

P: 

We are going to minimize D (setting it equal to 0) by an 

appropriate choice of a 0 and a1 . The condition is fed into 

P, which then plays the role of the natu'ral frequency y 2 in 

a typical simple harmonic motion. Then by definition of Na
0 

' 
be~ng the period associated with a frequency )J: JP, we have 

Na = ll 
0 )I 

fr0m which the numberiJ is obtained in terms of field parameters 

through a 0 . The procedure so far outlined involves rather 

complicated algebraic operations. We simplify the work by 
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intr9ducing a small quantity A1 as has beeri commented in 

Section .IV, such that. P can be put as 

( 1 1 ) 
2a12. I Na1 -K 

(k+l) k+l . co9 Na + 1 + s,in Na l= (k+l)(l+4 ) 2 
0 0 1 

and the expression D that is to be minimized is 

2,_Na_1_-_K 
k+l cos Na + 1 + s.in 

0 

2 
Na -(Na1 -K) 

0 k+l 

( 29) 

( 29~) 

which together with constitute a set of 

equations for us to investigate .ti 1 • 

· The problem is approached by the method of perturbation 

starting from the assumption that A 1 defined is small and by 

invoking the negligibility of the geometrical factor 2
1 

2 al 
which by definition. of a1 in (26) in a 0.1-bounded problem 

has at most an effect of 0.005 compared with 1, amounting to 

a numerically very insignificant correction which can be 

incorporated afterwards, if such a connecfion is desired. 

Let A1 (O) denote the first approximation of ~l by 

setting~"' O in (29), so that 
2a1£ 

2 A (o)_ Na1-K 
1 - k+l cos Na 0 + sin Na

0 

Neglecting the A. 1 (0) 2 term in (29a), we can solve for 

sin Na - l +,j 1+4(1+4 LI. (O)) 
.:!: --------~~~~~-1"-~-

2 
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which, when equated with sin 2 lr 
· Jk:r}_(l+A 1) 

Lll(O) cos -2__ 
k+l 

yields the approximate solution 

(30) 

So in the first appro~imation, a 1 depends only on k+l, 

Its dependence on N and K is brought in through the geometrical 

con.rection, which can be affected in the following manner: 

From 29b and 29c we approximate 

Na K 2 A ( O) - sin Na p 
k+ i - '.': --""~ o_s_N_a ___ ..;;.o "" '5_2 - 1 [ 1 + 

0 

so that 

9-/5 A 
8 

1 (0) ] 

2 . } ~ = = a 2 ,.. A ( 0) i l N
2 

, k+l - (1 1) - (1:+2 1 ) l+ 2 ~ . rl' 9-_r<;. I (0) ]~ K+(k+l ---(1+~ A ) . 2 8 1 

and Al ~ A ( 0) *' l N2 2 (30a ). 
1 4 [K•(k+ll)'5~1 J 

For the sample field #4863450, 6 1 (O) is 0.0379 and the 

correction is about 0.0023, giving v= 8.32. The computer 

result is Y = 8.3140004 which is obtained under the guise of 

"linear tune number" which has a slight difference in 

meaning from the propagation frequency ).) being referred to 

here. 
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VI. Theory of Modulation 

We are now in a position to introduce an explicit 

representation of our orbit model with our interest retreated 

into the following hideout: 

(1) Spatially we stay within a narrow W-cone which 

enumerates all those orbit states with average 

oscillation amplitude A satisfying 

A3 << A and A3 £: 0 

(2) Temporally we can only afford to look forward to a 

finite future defined by 

f) < A-3 

Under these circumstances, two aspects of the field 

properties, which may be deemed as intrinsic in the structure 

and as completely independent of the orbit state, can be 

summarized by two numbers, viz., the fiKed point state number 

W0 and the propagation frequency V 

To every orbit state W, we associate a number A, thus 

defining a propagator for this state A sin ( )19- - ( ) with f 
dependent on W (or A) analytically but numerically Y~O shall 

always be understood. This propagat.or is now subject to a 

process of modulation as a refinement toward the true orbit 

picture.· The process of modulation is certainly not unique. 

Different approaches can lead to equivalent approximate 

results and choice of the type of modulation in the 

representation calls for parameters of different nature which 

supply different information one desires to learc. The 
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purpose here is to study the condition (16) for which we 

desire to learn only the orbit behavior in a small neighbor-

hood about the foot of every propagation axis and for such 

neighborhoods, both )19 (mod. 21r) and N 6- (mod. 211") are 

very small. Further, we are concerned only with standard 
2 

initial states (~ K~k-l ~ O, W) on the fJ"' O axis, so a 

modulator approximated by one odd harmonic function of the 

form B sin (N & - Y0 ) with Yo-:: 0 should be adequate. 

However, the modulation amplitude B must itself be further 

modulated by the propagator. Whether such a modulation 

process should be effected through amplitude modulation or 

phase modulation is immaterial; we may generally assume B to 

be a function of both 6- and A, i.e., B(A, \9 ) so that what-

ever B(A,~ ) is, the orbit picture should look like 

A sin ( )J IJ - () + B(A, & ) sin (N & - "( 0 ) (31) 

with Y and YO very small. The structure of B(A, 9 ) can be 

as complicated as we wish to imagine. Nevertheless, the 

requirement that as A--+ 0, the whole thing should approach 

the representation of the equilibrium orbit, which in its 

one-harmonic approximation has the form Wrf sin (N 6 - ~ ) with 

& ':it 0, defines the limiting behavior of B(A,8 ): 

Lim B(A, & 
A-'>O 

w )-'ti- for all e 
And as has been discussed in Section III, as B-+ 0 (or both 

'Ylil (mod. 21r ) and N & (mod. 21r ) becomes very small), we 

should have 

Lim B(A, 9 
e-o 

)-'> Ws with Ws dependent on A. 
N 
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This ,much information regarding B(A, 9 ) ls all we need. It 

should be pointed out here that the propagator amplitude A ls 

defined to depend sheerly on the state W, implying that it is 

temporally a constant. Consequently, if there ls any 

monotonic growth in the oscillation amplitude of the orbit, 

such growth will have to be taken care of by the function 

tl(A, 9 ) . If the monotonic dependence on 8 in B(A, 9 ) ls 

strong, condition (16) cannot be satisfied for any time 

duration long enough to be of interest. We can therefore 

afford to stay ignorant of what the detailed structure of 

B(A, 8 ) is and get along with this representation (31) which 

actually is more general than its simple form would suggest. 

The two lowest derivatives of this representation are: 

~(&)= vA cos { >J8 -Y) + B'(A,8 )sin(N9 - ( 0 ) 

+N B(A,9 )cos(N& - '( ol 
2 y' ( ) = - V A sin ( N 6 - r ) +2NB' (A, 8 ) cos ( N 8 - YO) 

+B"(A, ~ )sin(N@. - Y 0 ) - N2B(A, fJ )sin(N(C) - ( 0 ). 

To satisfy the standard initial conditions, the following 

relations are observed: ( Y0 ~ 0 used) 
w2 

-A sin Y= ~ 0 so that r ~ 0 
2[K-k-l) 

VA cos r +NB(A, O)=W so that w ~ )I A+NB(A, 0) (32) 

')J2A sinY + 2NB' (A,0)=0 ~1 w2 
so that B1 .(A, 0) = f J !! 0. 2N 2 K-k-1 
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On any sector axis, say on the qth axis, the state of the 

orbit is 

J ~ A sin (2-rri 

..n. "'YA cos (2 iri 

- B'(A 2 lr} , N 

J) )- B(A, 21J:4 ) sin r 0 N - ( N 

1) - r ) + NB(A, 2 lTN$' ) cos r 0 (33) 'N 

sin Y 0 • 

If this qth axis ls a propagation axis as defined in Section 

III, ql!<tN> , we can approximate B(A, 2 lt"N").. ) by a linear 

extrapolation from B(A,~)-:;:. B(A,O) so that ,,, 

B(A, 2 \'k )=B(A,O)+B' (A,O) 2Nrr f <. ~r >_NJ} 

This correction term is of the same order as Y and Y 0 and if 

we mean to neglect )'and Y0 , this small correction can also 

be consistently disregarded. In the interest of analytical 

simplicity with little loss of numerical accuracy, this will 

be done. 

Condition (16) can now be put in its simplest possible 

form: 

sin { 2 1f N' ( Ny p ) } 

{2 "lf"V 
cos) N 

where r NB(A,O) V(s "' 
~ yA :: yA 

(34) 

1 . 1-S VA ( 35 ) l (1-S YA) 2 •(_L -l)j 
NWe 

V NA 
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This inequality, along with (32), which is now expressed as 

W = VA+ l N 
1 - S).)A 

(1-S Y A)2 ~ (.J._ - l) NW0 

and its derivative with respect to A 

,.., - J w 
x ::, 7A 1 

(l-S)IA) 2 + (--L - l) NWo 

which shall be called the "admissibility" of the field 

(36) 

(37) 

structure, constitute the set of equations we wish to study. 

In looking for information from these equations, one must 

clearly observe their limitations. In addition to the 

conditions that must be fulfilled in deriving the numbers v 
and w0, the neglect of small numerically insignificant 

quantities like rand the rather arbitrary choice of an 

explicit representation in (31), all should have profound 

influence on the kind of information they are capable of 

supplying. From the manner these equations are derived, we 

cannot expect them to yield such delicate predictions as 

concerning a particular resonance pheno•enon. They are only 

ready to give numerical ideas pertinent to the over-all 

properties of the field structure, the orbit states, ind 

their mutual dependence. They do give some guidance in such 

matters as the choice and the compromise to be made among 

the field parameters, but whenever a quantity whose 

numerological structure enters into the problem in some 

critical manner, to look for information from theseequations 
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without refined considerations extended to the analytically 

non-vanishing small phases like Y, Yo and other connections 

so far disregarded, will do us no justification. 

VII. Conclusion 

To apply and discuss the equations (34-37), we start 

from the admissibility function, the definition of which 

implies that a structure with large! is preferred. For if 

a slight increase in A would bring about a large increase of 

W this implies ~ore orbits can be admitted for a prescribed 

fixed average oscillation amplitude. Since >1..rr+f, large k 

is of first choice. This deduction is consistent with the 

fact that large momentum compaction gives small circumference 

factor of a structure. Equation (37) also tells that if the 

f.p., state number w0 is made such 

enhanced. w0 as a function of the 

that ~ ,., 1, j 
0 

field parameters 

can be 

(equation 

(22)) is subject to the validity condition in the evaluation: 
Wo 
"N* L 

5K (Section IV). So the best we can do is to arrange 

2 
NW ,.., N 

0 5K 

For the field #4863450, 

"' 1 . 
482 

this is 5x450 
= 2304 - 1 03 22'5'0 - . • 

If these preliminaries are observed, the quantities f' and W 

assume much simpler dependence on other parameters: 

1-S ~ A (or )I A = it -f 4;2 - N~~ ) 

W ~ >I A + J.l A r< 1-S v 

-42-
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and we may proceed to ask what conditions there are in the 
,, L N) ratio iii ~r ; , so that the satisfaction of the inequality 

(34) can most favorably be effected with as small a value of 

~ as possible for all possible integers ~ • We note here, 

small f" imples large A (or W) and therefore large stability 

limit. 

Certainly, if the argument 

can be arranged to be small for all integers p , this inequality 

would accommodate small values of r for fixed field 

parameters. To explore this condition, let 

mA 
= m - 1 +4 (40) 

in which m is an integer and A a small number, being very 
N N . 

involvedly dependent on k, N, 41 , (c.f. ; =Jk+f.(l+ A 
1

) tn 

Section V). Then 

and 

Q(mod. 2 lf" ) = 2 Jr l : A f f>mA 
1 +A rm"" >} - ( l + A , ( 40a) 

in which the brace, 

than ~ in absolute 

by definition, is a number 
1 + .a value and the ratio m 

always smaller 

is just ~· 
Apparently a large m will insure a small Q whatever p is. 

However, we cannot make m very large since on the RHS of this 

inequality there is also a factor N (in addition to other 

conflicts which may arise for too large an m). The compromise 
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is to arrange m sufficiently large such that if the value of 

the brace is stretched to its maximum possible ' , Q will 

satisfy 

sin Q ~ Q ; 

i.e., Q assumes a value about or smaller than ~ or m ~ 6 so 
)J that the factor N in Q and same in the bound on RHS may in 

effect cancel out. This cancellation implies that, when m 

is sufficiently large, the dependence on m in the satisfaction 

of (34) becomes very weak, being only in the brace whose value 

is firmly bounded by ~· If one notices that the ratio~ is 

equivalent to 2"; , where er is the linear phase shift in 

Flo<f.uet's theory one immediately sees that choice of m large 

enough implies keeping 2~ away from such dangerous fractions 

as i or i· For m ~ 6, the lowest resonance nearby would be ~ 
which is not very harmful (even exactly at resonance). This 

latter statement is concluded from Moser-Sturrock's theories, 

a coordinated study of which is available in Cole's notes. 

With m chosen sufficiently large being agreed upon, the 

propagation condition may now be put in the simplest possible 

'form 

~m.o. _ < f mA ) I 
+ l +.o, 

(41) 
co sf 2ir-.l-m+_.a._ ,. ~ mA -( 1>m..:> I 

1 +A 1 +A 

m ~ 6 

I ~ l 
l+A I< 2 

The argument Q in the cosine function is formally very 

complicated, but its numerical value is quite constant, being 

usually 0.92 +small fluctuations depending on choice of m~ 6. 
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Without going into details regarding the small number 

6 , we can now derive an estimate of th~ stability limit as 

a function of field parameters. 

Take the extreme situationj1 f ~A 
whatever p and LI may be, and define the 

by the equality 

l 
~ _1 IT 

Q+r. 4rrJ'S' 
L 

cos 

JIA :...L - .l.... f1 .. 4S 
L29 2S N 

so that 

and 

-< e m A >/ "' 1 1 +A - 2 
marginal value of r 

(42) 

' 
cos Q 

WL gives the size of the stable cone and AL gives the 

propagation amplitude at the stability limit. If to AL is 

added the maximum modulation amplitude, which differs negligibly 

from that of the equilibrium orbit amplitude, one obtains the 

numerical value of this stabill.ty ll.mit usually referred to. 

For the field #48634:>0, m is 6 so that cos Q ~ 0.88 S is 8.04 , 
with )J: 8.314 so that A._ = 0.0017 while WL:: 0.038. The 

amplitude of the equilibrium orbit is approximately 0.0004. 

The estimate thus gives a stability limit of about 0.002 

corresponding to a phase plot curve with a pinnacle value at 

0.038. Such a number is meaningful for a time span estimated 

to be of order ( 2 x 10-3 )-2..., lOS sectors or better. George 

Parzen's computer numerical analysis also concludes a number 

about 0.002 with a stable life expectation adequately long 

for application. 
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We conclude this study with a discussion of the small 

number .t1 defined in (40) by raising the question: What kind 

of small member this A we would like to choose and why? The 

question is meaningful only if more refined·considerations 

are incorporated into the propagation condition. The neglect 

of small phases and the notion of standardization of all orbit 

initial states are no longer justifiable. In fact, the 

assumed existence of a continous W-cone at the origin which 

defines the limit of stability in such a clear-cut manner as 

so far has been conceived ls really a fiction. Condition (41) 

can only supply us some idea in the limiting case f.. """"" (!Iii() 

defined in the sense of Section VI) and A-PA,,. · To associate 

some A beyond this AL with some p smaller than this p.. in 

order to answer the question mentioned in the Introduction 

will call for an approach in which every substate of the same 

orbit be considered on an equal footing and only under this 

general situation will some scrutiny into the structure of 4 

be meaningful and essential. 
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Appendix 

We are concerned with the evaluation of the following 

two integrals: 

1', 
j :f ct& 

o - cos [,....Ecos.M.( & -e- )J 
0 

(k+l)[ e: sin,M( 9 -"") e 

&, 

J_. :i!J ~Os [ µ.S ~:s,u.{ & - €:-) 
() 

The transformation @:)'!-(II - .,_) and the approximation 

cos [ fo E cos @ ) ~ 1 _ Lt::,2 E 2 cos 2 e 
2 

are first effected. Then up to order 0( E )2 , "° can be very 

simply handled by quadratizing the integrand. Straightforward 

integration leads to the result: 

(\ 1 2 2 2 r ..,_ { .,,_ P. ~ + 4 E (#- +( k+1 l ) J's, - ( k+1) E co"l"'( e. - "" ) 
- cos.14£-] +i f 2 (p. 2- (k+l) 2 ) [sin 2,f'-( ~ -t-) 

+ sin 2)'-E> ] 

up to O(E) with & = ..1!..... + f:- 1 this yields 
I 2f"-
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ek1e1.PE sin® = f 

ll(m+l)I 
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) 

are used. Only the leading terms in Jm(z) need be considered 

if the argument Z is bounded as /zl~~ , or approximately 

for an accuracy of about 1% in error. 2 2 Then up to O(k1 E ), 

Up to O(k1E) and transformed back to variable 6 , one has 

"'"'"' e ~I 

i !! ,... 
+ "'e~t= [ e•t.i-,....>&.+~p-*' ei""-

.l !1-r 
With ~ = 2;:_ + l" as the integration limit, 

e '-l~>~-~,..t- -•JV.• 
-e J 

J!+ I 
one has 

The complex conjugate of ~T defines '- • The three integrals 

'· '· ~- are used in Section IV. 
I I ~4$-
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References 

1. The relevant parts of Moser's work and Sturrock's work 

mentioned here are available in Cole's Notes, TN-259. Original 

references are listed there. 

2. It is understood these parameters K, N, k are already 

loosely bound by the requirements of vertical motion stability 

and avoidance of those most harmful coupling resonances. Both 

these latter requirements are not given any further considera-

tions in this study. The structure is a perfect one. 

3. V customarily is used to denote the linear tune number 

which is connected with linear phase shift er as ll: N fT • This 211'." . 
same Y is used here to denote the propagation frequency, 

although there is some difference which is numerically 

insignificant because of the small equilibrium orbit amplitude. 

4. Both these methods have been studied for application here 

1. A. Erdelyi: Asymptotic Expansions (Dover)f2.3 

2. Morse and Feshbach: Method of Theoretical Physics~4.6 

The results are not intelligibly simple for the purpose. 

5. FLEXIBLE FIVER (MURA-604)Program 280. OVERWRITE 2 is used 

for fixed point search. The size of unit circle in this 

program (programmed R~l) is not the same as the size required 

in the work here. The comparison is made in the following 

manner. A field function 1 + sin J is used to integrate the 

equilibrium orbit which is then plotted. The point at which 

the orbit has its maximum k (which is 1.987 x 10-2 for 

#4863450) can be very accurately located in the plot, and the 

oscillation there x N 2.2 x l0-4 estimated. This fw by 
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definition is w0 in the work here and ~gives the approximate 

difference in the sizes of the unit circles. To make sure 

that such is indeed the situation, as well as to have a 

numerical verification as to the validity of the phase-gauge 

equivalance approximation which leads to the result in (23) 

for Ws (only a heuristic argument was used there; it must be 

numerically justified), a double check is carried out in the 

following manner. The difference in gauge AR ..... 2. 2 x 10-4 is 

converted into an equivalent phase A(,.,;. (K-k-1) A R"'0.085 

(it could be 0.084 or 0.086, but no such critical consideration 

is needed). Then a field function 1 +sin ( J - 0.085) 

(actually -0.08425 was used, which covers an unjustified 

and unnecessary correction, later discarded) is used in the 

same program to search for the fixed point. The computer 

yields k,"'1.9878307 x io- 2 , x .. -2.1537204 x 10-.4 giving an 

accuracy up to third decimal place. This phase-gauge 

equivalence approximation should be extremely good in the 

limit Ll R-o 

6. K. Knopp: Infinite sequences and series §4.4 
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