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ABSTRACT 

Numerical methods have been developed to simulate solution 
of the Vlasov equation governing the (one-dimensional) azimuthal mo­
tion of particles in circular accelerators. Unlike previous analytical 
solutions~ these are not restricted to consideration of small perturba­
tions. The numerical methods are used to analyze particle distribu­
tions thought to be representative of those to be found in existing ac­
celerators. The results are found to be in accord with recent experi­
mental data~ in that the following features were found. Above transi­
tion energy~ the Coulomb interaction of the particles causes formation 
of long-lived bound clusters of particles. Such clusters tend to follow 
single-particle orbits in synchrotron phase space. even when radio­
frequency acceleration fields are present. When clusters interact. 
they can coalesce and orbit as entities about one another in the phase 
space. Below transition~ beam bunching may occur because of non­
linear instabilities of the beam. or with a fairly simple mechanism~ 

there develop two-stream velocity distributions which can be unstable. 
A symmetry principle is discussed. showing the eqUivalence of the 
"negative-mass" instability and the two-stream instability. 

*AEC Research and Development Report. Research supported by 
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INTRODUCTION 

Recent experiments at the Cosmotron by Barton and Nielsen1 

have indicated that the theory of the longitudinal or azimuthal motion of 

a circular accelerator beam under the influence of its own Coulomb 

(space charge) field as carried out by Nielsen, Sessler, and Symon; is 

a substantially good approximation to the physical behavior of the sys­

tem. However, because the theory has been limited so far to a linearized 

calculation, a number of the experimentally observed phenomena have 

not been well understood. 

The theory neglects all interaction of the azimuthal motion with 

radial and vertical degrees of freedom except insofar as these are counted 

upon to provide abeam consisting of a toroidal tube of charge with not too 

great spread in energy or position transverse to the beam direction. It 

is desirable to know which of the observed phenomena can be explained 

by the mathematical model when it is not restricted to linear effects. 

The general result of a longitudinal instability is an increase in 

the energy spread of the circulating beam., and because the energy spread 

which can be tolerated without substantial loss of particles is generally 

limited to values not far different from those injected into an accelerator, 

it seems clear that more theoretical understanding of the instabilitie s 

1
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is needed. The linear theory by its nature cannot predict the final 

energy spread attained in an unstable case. Similarly, it cannot predict 

or describe the type of resonance often found in the presence of large 

disturbances in complex systems. Because the perturbations on actual 

accelerator beams need not be small, the excitation of such nonlinear 

resonances cannot be neglected. 

The analytical extension to the nonllne&" region has thus far 

proved to be very difficult, and only a very few general results have 

been obtained. For this reason, two simple but fairly effective repre­

sentations of the mathematical model have been developed. Using nu­

merical techniques and a high speed digital computer, these allow the 

nonlinear motion to be studied. 

These representations use all the simplifying assumptions made 

in the previous work except that the interaction of a disturbance with it­

self may be neglected. One major assumption is that the parameters of 

the machine do not vary with time. As noted by Nielsen and Sessler, 3 

time variations which are small in times of the order of the characte:.:'­

istic times of the azimuthal motion, will not change the results signifi­

cantly. This is exactly true in FFAG (fixed-field alternating-gradient) 

machines of type designed by MURA, and is reasonably accurate for the 

Cosmatron. 

With the numerical calculations, we find that many of the experi­

mental phenomena are observed and to a certain extent explained, on the 
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basis of the longitudinal motion alone. In order to further understand 

the entire physical system~ extensions are currently being made at 

MURA on the related problem of the effects of space charge on the mo­

tion transverse to the beam;4 and. with not too much success so far. 

on the interaction between the azimuthal and transverse collective mo­

" t lons. 5 

In Section I of this paper the linear theory is briefly explained, 

some supplementary information found during this investigation is given, 

and pertinent results of the Cosmotron experiment! and recent studies 

made with the MURA 50 Mev test model6 are discussed. 

In Section n are presented a short discussion of previous numer­

ical calculations of the nonlinear dynamics, explanation of the two nu­

merical procedures used in the present study, descriptions of the re­

suUs. and comparisons with the experimental phenomena. 

Appendix I contains an extension of the space charge field calcu­

lation into the relativistic region. 

Appendices II and m present the actual computer codes used, 

and enough description to allow them to be deciphered by someone 

familiar with the Fortran programing system. 



L THE THEORY AND EXPERIMENTAL OBSERVATIONS 

We outline the mathematical model of the azimuthal motion of 

charged particles under tIE influence of their own collective Coulomb 

field and of possible radio-frequency (RF) fields applied externally. A 

complete and rigorous discussion of most of these results is given by 

Nielsen, Sessler, and Symon. Z 

Background. The properties of the external magnetic guide 

fields in the circular accelerator are neglected, except that the fields 

are required to vary appropriately in the radial, azimuthal, and vertical 

directions, so that a family of particle orbits which are bounded by the 

vacuum tank exists. Generally then, for a given particle energy, there 

is an equilibrium orbit which is. stable against small perturbations and 

is characterized as being closed, or periodic in the azimuthal angle with 

period Z1T. A particle on an equilibrium orbit has a lmown frequency 

of revolution which is given as a function !lE) of the particle energy. 

Within well mown stabUity llinits, a particle perturbed from an equilib­

rium orbit will follow an orbit with different periodicity, but will re­

main close to the equilibrium orbit. Comprehensive discussions of 

7orbit theory may be found in many books about accelerators. 

The azimuthal motion of a particle may be described in terms of 

an equivalent angular distance B along an equilibrium orbit. This is 

4 
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closely equal to the a.zJmuthal position of the particle in the vacuum 

tank. the deviation of the orbits from circles being neglected in the a­

nalysis. A variable 'W related to the single particle energy may be de­

fined. allowing a Hamiltonian formulation of the equations for the longi­

tudinal motion. The equations are 

d 8,dt • W('Zd""), 

(1) 
d-z.,rIJt = ~1I'e.R ~.(e)-t), 

where 
f 

W("W') -=~" fCE), and 1&Y(E) = S clE' (f(E,)]-t 
E. • 

and £0 is a convenient reference energy. Here R is the equivalent 

orbit radius, or the length of the orbit divided by ~1t • and the azimuth­

al field e. has two possible contributions. the space charge or beam 

self-interaction term and the term caused by the application of external 

radio-frequency (RF) accelerating fields. The RF term has little net 

effect except when the RF is in resonance with the rotation frequency at 

the particles and causing them to change energy rapidly. For detailed 

explanations of this the reader is referred to the paper by Symon and 

Sessler. 8 and for experimental verification to that by Jones et al.. 9 
. 

These motion equations are derivable from a Hamiltonian of the 

form 

(Z) 

where 

and 
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In most sections of this paper ~ the particle beam will be taken 

to extend over a range in energy which is small enough to allow neglect 

. of terms higher than order two in the lAY power series expansion of 

E.(-zo") about some point ~ • Then 

E. (~) ~ El"Ws} + Z1T U)c-ws) ("l.J-1J,) +Tr ~ J • (W -1.Us) z.. 
IUs 

If we now measure angles in a coordinate system rotating with the beam 

at frequency tA:J( "/.Js>/Z.1T, the Hamiltonian becomes 

1I(~t() ~ t f ~ Iu:. (1.cT-U;)~ i' Z1reR U(qJ+ t-{£j{'lVs) , t)) 

except for constants. Furthermore if &3-UJ; is measured in the appro­

priate units~ the number f Jtl'lJs may be taken as ;: f. The minus or 

plus sign is to be taken if the beam is above or below transition energy, 

above which the number elf lelf is negative~ and since the motion 

changes radically under change of this sign~ the alternatives will be 

carried specifically. Near transition energy ~ higher terms must be 

taken in the expansion of E(1J.). We reserve the letters (WJ ifJ) for 

measurements in this system and set of units. The Hamiltonian is 

and the motion equations are 

d<P/dt =~Wt 

d WI eli - Z1r e R C'e (~+-l. to ('Zcl;), of).. 
(4) 

The negative sign in (3) can lead to a "negative mass instabllity~II 

so-called on comparison of (3) with the Hamiltonian for a pair of non­

relativistice particles of charge e and mass 1rl in free space: 
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where 

In the scaled coordinates. the effect of the RF fielda may be 

eaaily included by adding to the azimuthal space charge field, a term 
o • 

-'lis + V sIn cp~
 

•

where Ws is the rate of change of J.r for a "synchronous" particle 

which stays in phase with the RF fields while these are frequency modu­

lated to accelerate the partiCles. Thevalue V is. the maximum 

energy per turn which a particle can gaJn from. the RF field. 

J! we choose the point 'IUS for expansJoa of the function Ec-r.u) , 

then the (W.4') coordinate system is accelerated with a synchronous par­

ticle. so that particles which are not accelerated have their coordfDate 

•
W decreased with time at an average rate ". Particles accelerated 

will.remain in the vicinity of teY:. 'JJS or W."o and execute "synchrotron" 

oscillations about the synchronous. point. Above the transition energy, 

the region of stable oscillations is botmded,· in the absence of space 

charge fields. b)- the curve 

•
W" = -2.\W(1r-9)+ZVlf .... C',t)s9l, 

811d below transition energy by the curve 

w.. = -.aWs (1') +ZV Cf· "'5 'PJ. 

The stable region is called an RF "bucket." The acceleration has been 

assumed to be at the first harmonic of the particle revolution frequency, 

but tbia is inessential to our later arguments. The reader is agaJn re­

ferred to Symon and Sessler8 and to Nielsen and Sessler3 for futher 
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details. 

We will analyze the collective motion of a particle beam in 

terms of a distribution function i! in the two-dimensional;" space 

(11'1, cPJ. Then '4J( W,(/J,i)·l\W ·114' gives the number of particles at 

time t in the AW bya4J rectangle centerett at W and ep. The dis­

tribution will be periodic in <f with period ~ and will be taken to be 

identically zero outside the region of interest which is assumed to be 

bounded. Parts integration then is valid .. and integrated terms are usual­

ly zero. When integrations over Ware written, the limits implied are 

the edges of the region. 

The Space Charg~ Field 

For a given distribution of particles .. we can calculate the space 

charge field. For completeness.. we write the full relativistic wave equa­

tion and indicate how it can be solved. but we must soon specialize to the 

nonrelativistic limit to obtain tractable solutions. 

We regard the beam as a collection of particles distributed 

throughout a thin tube extending around the accelerator at an average 

radius R • The particles are assumed to be on or oscillating about 

equilibrium orbits with random phases so that to good approximation, 

the beam is a tube of current. The azimuthal dependence of the charge 

density is given by e ~(~t)R-1 with the units charge/length. and in 

terms of the c00t'dinates (X. yJ which are transverse to the beam at the 

azimuth of observation, the true charge density is e. f (tP,~) Qlx,y) R-~ 
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The transverse distribution Q, of particles is held fixed in time and 

azimuth, and is taken to fall off quickly from its value at the center of 

the beam. The field used to find the average behavior of beam parti­

cles will be the actual field averaged over the distribution Q • The 

variation of particle ,orbit radii with energy in the beam may then be 

neglected. Figure 1 illustrates such a beam, and may clarify the co­

ordinate system (X, y) • 
In terms of the operator 

which is so written to emphasize that little notice will be taken of the 

curvature of the vacuum tank, the wave equation for the field is 

where charge and current densities are 

PlX,yJ),t) :. e Q(x.y> JR""' W(W; B- (D("£$s)tJt) d'lJ , 

JC"i)y,e,t) :: eQcx,y) JOO('W')'PI'Z.U)G-tol"Zcts)L)i:.)d"l.J' .. 
(6) 

The azimuthal charge density is 

f (il), t) 11J? (?J) 4» t)~ •s 

The botmdary conditions are that E:e should vanish on the tank walls 

and should be periodic in e with period 2.1\ • 

Since Q(t,yJ is taken as fixed, the transverse variation of 

ee{X)Y, B) t) may be separated and written down in terms of the 



Fig. 1. Cutaway view of vacuum tank and circulating beam. showing 

coordinates used. 
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eigenfunctions 9i of V: and the corresponding eigenvalues - Ki / RZ
• 

The subscript j symbolizes a two-parameter set of indices. As dis­

cussed in Nielsen, Sessler and Symon" 2 this separation is dependent 

upon the assumption that the radius R is very large. The general ef­

feet of this failure to separate exactly" is the possibility that the num­

ber J<; may be negative, 10 and that it is not completely independent of 

the variation of the field with B. In terms of Fourier coefficients of 

index 11, Kj depends upon 7t. for very low values 71 • 

The appropriate eigenfunction analysis of the remainder of the 

wave equation requires Fourier analysis in harmonics 12, of the e var­

iation and Laplace transformation in frequencies iT' of the time depend­

ence. If tex,y,e,t> is the source term on the right side of equa­

tion (5) and ~u: and tjLF are the full four-dimensional transforma­

tionsof F'lxl~e.t)) and EC9(X,y,e,t)) the wave equation becomes 

r;>"&e - rr'[ ja.,F· n +- j 't -'1-1 (7)jLF- ': ['t I< -; 6.>0 ,"'\ , 

where WoO: c/R and e and 8e/9t are zero at zero time. 

Equation (7) may be inverted generally to yield ee (X)'I' 8,t) 

when the charge and current densities are given. This result is not 

usable here" but shows the interesting behavior of fields in the geome­

try given. We will relegate the calculation to Appendix I and special­

ize to the more tractable nonpropagating limit. 

As is pointed out in Nielsen, Sessler and Symon" Z the simplest 

result of relativistic effects is the reduction of the space charge forces 
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by a factor ,,-: where the momentum of a particle is >' times the clas­

sica! value when the orbital radii of the particles are large compared to 

the transverse dimensions of the vacuum tank. We include this factor 

henceforth in the kernel which is to be calculated. 

Since we must restrict ourselves to shoJ:"t wavelength perturba­

tions in order that neglect of the curvature of the vacuum tank is accu­

rate. the delay in propagation of field effects will be neglected also. 

When propagation effects are neglected. the field calculation is 

an exercise in electrostatics. One correct method for performing the 

reduction to static fields is to take (,1,). in (7) as infinite and discard the 

term ,.- ",;l. in the denominator. This is the latest point at which W. 

may be made infinite without further worry about convergence in the 

process. 

With this assumption. the solution for the field has been calcu­

lated by Nielsen and Sessler. 3 Thus# the Laplace transformation inver­

sion is trivial and the Fourier series may be summed. We first note 

that F 

41t R-' 

has reduced to 

in tJf (1;). 

~-rr R-t 9/B9 POc,YJ~ t)J and FjF ('6) to 

We may use the convolution theorem for Fourier series: 

(8) 

and any table of Fourier series to perform the sum. Doing so. per­

forming a symbolic inversion of the j transformation. and integrating 

over Q to get the average field seen by the beam. we obtain 



-lZ­

€(~t) =te (<9,t.) 11: 

11'Sdtp' f (CP-<p') )(l<P'),
-If 

(9) 

where the field kernel K has the Fourier transform 

KF-: -Z.11 KUF ; - i 1l ;;l .ze z: j/ It Kj -torr), 
J 

(10) 

and is a sum of exponentials with characteristic widths ~tPt· :: (K' r'll.J J. 

We have defined l(uF, the Fourier amplit'.ldt.· vi the kernel Ku with 

which f(~ t) must be convoluted to obtain the space charge potential tT. 

Since the function jf./(rJ.":,.7f) has the same behavior as I(vJ: for large 

and small values of 1{, we may expect that a rough estimate of the be­

havior of K.v is afforded by a single term in the sum on 7l. In that 

case, the kerne1 has the form 

(11) 

assuming that ()( is normally large, being of order of the ratio R / G~ 

the machine radius divided by the vacuum tank height. This is clear 

simply from considering the shielding of electric fields by the vacuum 

tank. Thus, a charg~ will not have much effect on another at the same 

radius but an azimuth differing by more than G / R. 

For comparison, the potential kernel for the one-dimensional 

solution to Laplace's equation is just proportional to 4'1/91 which is 

the same as (11) with «= o. 

The Motion Equation 

In this section, the motion equation is discussed, a symmetry 

principle relating clusters o( particles above transition and particle 
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deficiencies below is stated. the motion equation is linearized about the 

stationary uniform beam solution with 5'(~ t) constant. a disper­

s.ion relation is obtained. and simple instabilities are discussed. Other 

stat.ionary states are described. and a prescript.ion for finding useful 

eigenfunct.ion expans.ions for them is demonstrated. Two uxamples 

are given where arguments may be made about the stability of states 

subjected to large perturbationSe 

The Vlasov Equation. We can now study the collective motion of 

particles since we have a method for approximating the fields. 

In general. the equation governJng the motion of particles is the 

IJouri1le equation in the ZN dimensional 7 space (WI - W,.) <P. - 4>. ) , 

wher= N :s the number of particles. However. since we have tacitly 

assumed that close collisions of small numbers of particles may be 

neglected. an a.ssumption justified by the calculations of Becher. 10 we 

can simplify the problem to solution of the Vlasov equation instead. 

This has been called the'p space (W) f) Liouville equation and derived 

for the special case of accelerator beams by Mills and Sessler. 11 It 

is also equivalent i;c the collisioD1ess Boltzmann equation since the only 

velocity dependent forces included in the theory are the electromagnetic 

ones. The general relationship between the lJouvil1e and Vlasov equa­

tions is discussed by Simon. 1Z 

The equation is 

(IZ) 
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A very important solution to this is given by 

'f(W,~t) = W·( VI, i,)t (13) 

which is a uniform distribution of particles around the machine. The 

density then is independent of 4', and the field is zero. The equation 

reduces to a'P /al =0, so that this state is stationary. It is this 

state which is attained by a coasting beam (no accelerating fields) if the 

particle density is sufficiently small and the energy spread is non-zero# 

because the particles have different circulating frequencies. If the den­

sity is slowly increased. or rather if in a number of experiments we in­

crease the number of particles injected. the effect of perturbations on 

this stationary state can be large. 

Line~ization and the Dispersion Theory. Again following 

Nielsen. Sessler and Symon. Z we may write out a first-order perturba­

tion theory in the form of solution of (l Z) when it is linearized about the 

stationary uniform state. 

If the perturbed system has the distribution ~: 11 0 + VJ, 

where W is small compared to ~o at each point {W,t(J), and =F W is 

written as £..:J(W), the equation takes the form: 

The right-hand side is of order r.p2' while the left is of order 7P. The 

linearization consists of neglecting the second-order term. Laplace 

transformation of the time dependence and Fourier transformation of 

the azimuthal dependence are now natural. The entire procedure is 
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carried out in the reference last cited. One important result is the 

derivation of the dispersion relation for the system. This obtains 

quickly upon consideration of the harmonic trial solution 

(15) 

The field obtains from (9) in the form 

(16) 

where - i 7l KOF is the Fourier transform of the field kernel K{(/J) 

at harmonic 71. The phase of k'vF, the transform of the potential 

kernel, has been chosen so that it is real. The trial solution then is a 

solution if 

Isolating the f in the first term and integrating over W: 

A non-trivial solution then must satisfy the dispersion relation 

= 1. (17) 

Solutions of this equation yield the normal modes. 

If the signs of WlttlJ, 9V/9&t,and i1 are all changed, equa­

tion (17) is not changed. A state subjected to this "inversion" then re­

tains all its modes. Since (U(W) is =F W, the inversion just displaces 

the system from above to below transition or the reverse, and inter­

changes the roles of particle excesses and particle deficiencies. 
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Nielsen, Sessler, and SymonZ prove a theorem stating that the solntions 

[J" ~ (17) occur in complex conjugate pairs. The inversion then inter­

changes the roles of damping and antidamping modes, and reverses the 

direction of propagating modes. The"symmetry" property is a special 

example of the invariance of (1 Z) under the replacements of £,L)( W) 

by-CO(w), t by -t, and ~(W)~,t.) by cOMsteUtl-?illw.. fJ,t). 

This symmetry principle is important because it says that each prop­

erty of a particle beam above transition energy has one and only one 

analogue for a beam below. 

We may see one consequence of the symmetry by choosing a 

simple initial distribution ij!°(W) in the form of a set of step f~ctions: 

o if Wz<IWI,� 
(f" if Wt <IW I <. WI , (18)� 

<f'-S if 0 '" IWi < W••� 

This is shown in Fig. Z. We may tak~ ;YfJ!/dH~ rcr o( wtWj)-t-S&W.rw.) 

to obtain from (17), the expression: 

1•II: (19) 

Here we have set ",(WI)': CU, and U)(W,\=£.D&, and assumed that 

w(- w).: - W (W») recalling that when sufficiently far from transition 

energy, a beam with narrow energy spread has lA:>( III) ==F Vi. The 

number 1" is given by 

Multiplication by CD: -l.cJt)· (fi'- t.U.~) yields a polynomial 

quadratic in n 1. with solutions given by 



Fig. Z. A two- stream velocity distribution 'tjJrW). 
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z Q..Z.:: [l.tJ. t 
... w,,'· of' r(Wdf'- W, S) ] t 

+ l[£,.),Z_LU,1 - Y(W&«"-W.S) J'l+4i.U.IS(W&1.-l,a);,)J'/1. (ZO) 

Stable modes are obtained if l1 is real, or the right side of 

(20) positive. Squaring this criterion does not introduce spurious solu­

tions if S< (J" as it should be. The rellUlt may be expressed in terms 

of a threshold value ~) of r above which the instability occurs: 

I 

1'". o (Zl) 

This expression gives simple thresholds for the two-stream in­

stability below transition and for the negative-mass instability above 

transition. It also illustrates that the two are just different aspects of 

one instability. Above transition where Ga)( W) <0, we may take 

cr =0 to obtain 

(ZZ) 

which yields a real threshold. This may be written as 

WI~ ~ Z1T' e. R N t<vF' (Z3) 

for stability. This is the usual longitudinal space charge limit on the 

energy spread of the beam. 3 

Below the transition energy, taking c:r= 0 yields that the energy 

spread which stabilizes a unimodal (single peak) distribution is negative 

so that such a beam is always stable. However, for a bimodal distri­

bution (Zl) indicates that the two-stream instability can arise from a 

very shallow depression in the velocity distribution fe vi) if the depres­
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sion is sufficiently narrow. For a very narrow depression, the growth 

rate is 

(Z4) 

which is very small compared to the characteristic frequency l..)~J of 

the system. Although mathematically Wlstable, a very narrow depres­

sion can cause no difficulties within times for which the entire theory 

may be regarded as a good approximation to the physical system. Fur­

ther discussion of the two-stream instability will be found in a later 

discussion on interpretation of some recent experiments. 

Stationary States. There are stationary beam distributions other 

than the uniform one. Of these, two especially interesting ones are the 

square-hump state and the triangular-hump state, so named for the form 

of the azimuthal density. The densities are given by 

f:>Q «e(ep4-</{)-®(qJ-~)., and ~TRI c( (fj)(f'.{-I4Jt)·(()a-I(()J)/Zcf{. 

Here) (B) is the unit step function, being zero for negative argument 

and unity for positive; and <R is a constant. We will analyze these, 

assuming the beam is above transition energy. 

Both of the se may be stationary for the potential shape given, 

but only in the limit of zero range of interaction where the kernel width 

is made very small. The field then is proportional to the cP gradient 

of the density, the potential kernel being a delta function. The Fourier 

coefficients are now equal for all harmonics. For kernels of finite 

range it is clear physically that stationary distributions similar to tbe 
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two mentioned should exist. the difference being a smoothing of the dis­

continuities and rounding of corners. The zero range kernel allows 

very simple analysis with which we proceed. taking the potential kernel 

to be 1(", S( CP) • 

The square-hump potential.describe~by Hereward. 13 has the 

distribution tPl W.. ep) -::. er a constant. in the region ,wi ~ W1. and 

I ()I <: <PI.. where the reference angle 9 ': 0 is chosen at the center 

for convenience. See Fig. 3(a). The distribution is zen-o elsewhere. 

The potential then is ecr t< Wz. for I <P' <: ~~, and zero elsewhere. 

The Hamiltonian may be written 

H= - S W& + ~1f e. R <r 1(" Wt ® (4'. - 14"L 

A particle at «9 in (-~) ~) and W> 0 remams at W and moves in 

the -1' direction at. the rate W until it reaches the point - ~ where 

it suffers a discontinuous velocity chaJlle AW given by 

-;! Wl. + 41Te R uK'u W-z. = - £ (W+AW\I.. 

If , Awf> w • the particle is trapped; if the inequality is in the other 

direction. it is not; and if equality holds. it is on the aeparatrix or line 

separating the trapped and untrapped regions. The separatrix then is 

given by 

-f W"l ..... ... 7Te R (f' I<u '\h -: 0 ) 

or W = 12· e R ~ 1<"" !'f L 

• 

This has a more famUiar form if I<u is replaced by 2-rf 1<&JF. Then 

the separatrix falls at 



Fig. 3.� Stationary synchrotron phase space distributions: (a) Square 

bunch above transition. (b) Square bole below transition. 

(c) Triangular density bunch above transition.(Tbe p~'\se 

density is not uniform here.) 
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(25) 

and if this value W is Wz. ~ the state is self-consistent and stationary. 

Except for the factor {2' , the right side is just the stable energy 

spread gi....~ll by (2.3) for the uniform beam. The bunched state should 

then be stable against longitudinal instabilities, as well as stationary. 

A perturbation in phase density near the center of the bunch sees no 

effects of the ends and oscillatory motion should result. 

If the e~ergy spread is held fixed and the phase density 0- is 

decreased throughout the bunch from the value implied by (2.5)~ the 

fields at the ends are no longer large enough to hold the bunch together. 

The streaming motion reduces the fields further, and the system quick­

ly leaves the bunched configuration. Because the energy spread is 

greater than that critical for the uniform beam~ it seems probable that 

the system will approach the uniform state after sufficient time. The 

opposite perturbation, where the phase density is increased from the 

stationary value, will tend to leave the beam bunched. If the field 

kernel is much narrower than the bunch, small filaments of filled phase 

space will be ejected. The streaming spreads these out in the azimuth­

al direction~ and the fields are reduced. The main bunch may then ap­

proach the stationary bunched configuration, since this is a negative 

feedback. From numerical calculations~ it appears that the bunch does 

not even lose the streamers, if c:r was initially not too far from the 

stationary value. 
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We can apply the inversion symmetry result to the square-hump 

state and conclude that the unphysical state where all phase space is 

filled uniformly except for a square hole of the proper sprE:ad in W # 

is also a stationary state if below transition. 

Actually# the entire phase space need not lje filled to obtain a 

stationary and stable square hole distribution. With the same type argu­

ment as that used for the square hump# it is easy to show that the state 

shown in Fig. 3(b) is stable and stationary. The phase density is con­

stant in the shaded region of the diagram. Using the parameters shown 

in the figure, the state is stationary if 

Z IAI z. WZWI. :rv~" , (26) 

When the first is satisfied# the triangle inequality shows that the second 

can be satisfied# and a stationary state actually exists. There is really 

a two-parameter continuous set of these states. Each such state could 

be susceptible to two-stream instabilities. The equation giving as a 

function of S~ W&/W'J the critical state which separates the stable 

from the unstable ones# obtains from (21) and (26) in the for~ 

This has two real roots l:: 0 and t:. 1, which give trivial examples 

where there is no hole in the middle of the distribution or there is a 

hole but no distribution. The other two roots are imaginary so that a 

critical state fails to exist. An example "'" =3, W,:: 4-, and W.. =5, 

yields the stationary state requirement e>7(~eRo-l(&JF = 9/4-, 



-22­

while two-stream stability requires that this number be less than )5/2) 

so that all such stationary states are stable against two-stream insta­

bilities. 

We can obtain a very general criterion for testing distributions 

to see if they are stationary. Constructing ~'Uch states however is a 

more difficult question and does not appear to admit of a general pre­

scription. 

Thus, it is well known that a distribution function depending on 

the canonical coordinate X and momentum p of a system only through 

a dependence upon the Hamiltonian H( t.,y>, is a stationary distribution. 

We may show this as a special case of a formalism that yields the eigen­

functions of the operator 

'V • ~ f/::? ~)(. ~X 

which by the Vlasov equation gives the difference between c:J fNdt 

and C)~/9f:, as t:.1P • The canonical transformation to coordinates 

p::. H{x)p) and Q: L. ()(JP), where l(X,p) =t is assumed to 

be a solution to the Hamiltonian equations fulfilling the correct bound­

ary conditions, yields a new Hamiltonian K (G, p) = P, so that in 

these variables ~::!a. The operator now has eigenfunctions 
.

1p,. (~Q) for which z., 71',,:: i Alfl , the l being included because 

Z is anti-Hermitian in the appropriate region and its eigenvalues are 

correspondingly imaginary. The general eigenfunction is 
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where'; is an arbitrary function� of its argument. Returning to the 

original coordinates X and p ,� we obtain 

~ f eiArzfLHex.p)] et.p[i~1:(X)p)] = = iA f e.i~r. 

Stationary states are those for which ~ "'O.J wh.ich is just the result 

quoted. 

The Fourier integral theorem guarantees that the tP" form a 

complete set in the phase space (P, Q). These eigenfunctions will 

then span the space of functions of X and p • Thus for a harmonic 

Hrt,z
oscillator, f may be taken as and ~ as n1lro, so 

that in polar coordinates A and cP in the phase space, the ~ . be­

.come Ar) e.!ll''9 • These functions satisfy the correct periodicity 

conditions if 1t' is integral, and span the space of. functions defined 

on the planes (X/p> or (A,f). A similar result holds for the free 

particle Hamiltonian. 

The theorem just made plausible can be useful because it tells 

what expansion process must be used to obtain decoupled equations when 

a solution is desired to the Vlasov equation linearized about some sta­

tionary state. For a free particle system with a periodic boundary con­

i71'f
dition on the variable tJl the theorem shows that e times an 

arbitrary function of momentum is the general form of the eigenfunction 

which should be used. If the ep period of the system is L1lj then 71.' 

must be integral, and we find a fairly fundamental reason for the useful­
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ness of Fourier expansion in the uniform beam calculation, and the use­

lessness of the same expansion in analyzing the square-hump state ata­

billty. 

A third type of stationary state is that calculated by Nielsen! to 

explain the existence of apparently stable buncnes of particles above 

transition which are trapped on triangle-shaped potential humps. The 

essence of the calculation is that states which are stationary and have 

this potential must have phase trajectories which are formed of parabo­

lae joined in a nonamooth fashion at the azimuthal center of the bunch. 

The effect of giving the kernel a range here is to round off the corners 

of the potential and the phase curves. Figure 3(c) shows a region 

bounded by such a phase trajectory. Using the theorem on the l VI) tp) 

dependence of stationary distribution functions, one may show that the 

..Tt HY&
dependence ':!' d: is self-consistent with the required potential 

form. 

Nonlinear Motion. The theory of nonlinear effects is very lim­

ited, but at least one argument may be made. It concerns the effect of 

strong interactions on a uniform beam above transition. It is quite neb-

ulcus and is an attempt to understand the results of digital calculations 

to be described later. The essence of the results was that if tP 
is taken to be the constant cr within the region bounded initially by 

the curves "'~ (1') :: ± W" (ep) ± (W + ~~ ep), and if the narrow::L 

portion (ep: :tfT) of the region contracts at all in the first stages of the 
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system evolution, then the beam is pinched off alm.ost completely at 

the narrow part, and a bunched beam results. The final result is strik­

ingly close to the square-hump state described earlier. 

In order to use this re suIt and partially rationalize it we must 

mow something about the time behavior of the density, at least at the 

initial time t: O. Integration of the Vlasov equation over W yields 

the usual continuity equation 

(Z7) 

Using the continuity equation and the Vlasov equation to evalu­

ate fc-J ~ fl tP/at z yields 

!i' f(~t) = ~I jrJw W'-(W) -q>(WJ~t)-21re~[f(~)J~Wl.>(W)r]~Z8) 

which corresponds to the heat flow equations of magnetohydrodynamics. 

We evaluate this at zero time for the distribution given, assuming a 

zero range potential kernel as before, and taking wi w) to be - VI 

(above transition); 

where (" is 8'1'f Ie R l(u F. and Kut= is the Fourier transform of the 

potential kernel. Here primes represent <P derivatives. The function 

Wa(tp) is assumed to be positive in the region -To' ~ 4' ~ 7T • 

At a local minimum point ~ in the curve Vt/T= Wa(q» , we 

have that () ~ I() t is zero and 
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(30) 

~ +where W"8 is positive. The local minimum in the curve W (¢) and 

the local maximum in ""-t'l') will then tend to become less pronounced 

if W8 ::? 2 ('() at ~ • We will leave this result in the form 

minimum ( W81 rG') ~ Z) for reduction of fields, (31) 

which is seen to reduce to the stability criterion for the uniform beam 

(23) when <5 is small. 

The critical point is that the reaction of the narrow part of the 

boundary to the field if (31) is not fulfilled,is a decrease in the energy 

spread which drives the system even farther from satisfying (31). Es­

sentially this is a feedback mechanism and if (31) is not true, it may be 

expected that the beam will always be pinched off. 

It is natural to wonder if a useful result obtains from a similar 

calculation at a value cf' where Wa is a maximum. There Wa" is 

negative and a potentially unstable situation exists if maximum ~;. ~ 2. 

There is no feedback mechanism here, and the criterion does not seem 

to be of such general importance as (31). Thus, equation (31) determines 

whether or not beam blUlching will occur, while the latter result gives 

only a little information as to how the bunching will occur when it does. 

If immediate bunching does not occur, the perturbation travels a­

long the boundary. Because the Hystem is periodic, the disturbance re­

turns to a given azimuth repeatedly, and after doing this a number of 
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times, could conceivably interact with itself strongly enough to yield a 

potentially unstable situation. However, this motion is too complex to 

follow with any of the digital calculations made, and analytical studies 

have not given any information concerning such an instability. 

Given sufficient energy spread, the perturbation will cause little 

change in the distribution. This will be made more exact in the section 

on the computer results. 

The requirement (31) has been obtained for a very special case 

corresponding to some digital calculations made. Very similar results 

are obtained when ar/ata 
is analyzed for other perturbations of the 

uniform beam state. Thus if 

'to = a- (1- 45 CDS 719) • few), 
the beam will tend to pinch off unless 

where 

<w') :a fw' few) dw / f fcw) clw. 
u few) is one when 'W I"W , and zero elsewhere, the result may be 

stated as: The minimum of W/r(f' must be greater than three for sta­

bility. The result for uniform phase density with boundary perturba­

tions is the same except that the number is two rather than three. 

An interesting restatement of these calculations is that unless 

the IItemperature" ~ <'t,r., is greater than a multiple of order one of 

the potential energy rf at all points within the one-dimensional "gas", 
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a "condensation" or beam bunching will occur. The multiple depends 

upon the detailed nature of the distribution and the perturbation. but 

dimensional analysis fixes the form of the critical energy spread to 

that given. 

Resume of Physical Experiments 

The experiments of Barton and Nielsen1 at the Cosmotron 

yielded the following behavior: 1. In a coasting beam with low energy 

spread. high frequency modulations develop rapidly. 2. These decay 

or coalesce after their initial growth, to yield lower frequency modula­

tions. 3. Similar space charge bunching can occur when the RF accel­

erating fields are on. 4. These space charge bunches are highly stable 

in the coasting beam but may not be completely stable when the RF is 

on. 5. The bunches give characteristic triangular peaks in the azimuth­

al density, and contain appreciable amounts of charge. 6. Frequently. 

the stationary final state toward which a coasting beam tends. gives a 

uniform azimuthal density with triangular notches in it. 

Recently, instabilities below transition energy have been noted 

in the MURA 50 Mev electron FFAG synchrotron. 6 Recalling that a 

unimodal energy distribution cannot give such instabilities. and noting 

that the injection devices were previously thought to give such a distribu­

tion, we include this as another phenomenon needing understanding. 

Similar phenomena have been noted in other machines. 14.15,16 



n. COMPUTER EXPERIMENTS 

An mM 704 digital computer was used to test which of the 

results of the physical experiments could be attributed to the longitudi­

nal reaction of the particle beam to its own Coulomb forces. 

In a broad sense ~ three numerical techniques have been used 

to seek solutions to the Vlasov equation (lZ) which satisfy given hlitial 

conditions. The nonpropagating field approximation is usually made. 

The first method described here was not used in the present study; it is 

however ~ the most straightforward approach and a brief discussion of 

it seems worthwhile. 

Mesh Solution of the Vlasov Equation 

The numerical integration of (IZ) by replacing the derivatives of 

the distribution function by difference operations on the values of it 

given on a mesh in the (W )4» plane has been investigated by Sessler~ 17 

by Nielsen and Sessler, 18 and by Christian. 19 At the risk of oversim­

plification, it may be said that these results have not been too auccess­

ful. Because the equation involves two independent variables 'tV and 'P 

as well as time ~ care must be taken to assure that in the limit of arbi­

trarily fine mesh~ the solutions to the difference equation used converge 

to solutions of the dJfferential equation. This convergence does not 

-29­
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appear automatically and highly sophisticated differencing schemes 

have been used to obtain it. These processes cause the calculation to 

require large amounts of computer time because the solutions exhibit 

such complex behavior that convergence becomes very slow at just 

those times where the system is most interesting. 

An explicit differencing scheme computes the value of the distri­

bution function at time t+At for a given mesh point, from the values 

at nearby mesh points at time t . As a function of the time step ~t, 

and the size of the mesh, the solution generated by an explicit scheme 

converges to a solution of the differential equation only if the limits 

6t-.o and mesh size ~ 0 are taken properly. This places a re­

quirement on the relative values of these parameters, and this is often 

too restrictive to make the method useful. There are however, numer­

ical algorithms which do not have such restrictions. 20 

Among the unrestricted schemes is the implicit solution of the 

difference systems wherein the values of 1r at the mesh points at time 

increased by one step are written implicitly, that is as a function of one 

another and of the previous values, and the resultant matrix inverted. 

Another is an iterated explicit scheme. From TIt on the mesh, 

a simple estimate of the change ~f· t"tH.t -flIt is computed. 

An approximation to "llt+a is now known. From it may be calculat­

ed a different estimate of 4# . The average of the old and new 

estimates will now give a better approximation to i"/t+At . The re­
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computation of the estimates is continued until the desired acclu"acy 

in f It+4t is obtained. The iteration scheme is reversible in time 

to within any accuracy asked. Since such a reversible calculation 

generally yields a spurious periodic behavior during very long calcula­

tions because of the discrete representation of the distribution function 

and because this periodic nature is unphysical, various schemes have 

been used to introduce an irreversible mixing of the phase space. 

An interesting difficulty arises in that a distribution function on 

a mesh is necessarily of finite extent in the Wdirection, and must then 

be zero outside a given region. Numerical derivatives calculated near 

the boundary of the region then tend to extend farther than the boundary 

and as a result, after one time step, the distribution function is sur­

rounded by a thin region in which the value is negative and unphysical. 

The more accurate the difference system used, the smaller and farther 

away does this region become but it appears impossible to eliminate it 

completely without some arbitrary procedure such as throwing away 

negative values of j1 and thus causing charge conservation to fail. A 

somewhat related problem is that the W spread of a distribution in­

creases by at least one mesh width on each time step. This is a sort 

of conduction process, the distribution attempting to smooth itself out 

at each step. The difficulty lies in the finite storage space available 

in a computer. Once again, a cutoff procedure must be introduced. 
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The following two sections discuss methods which were used to 

try to avoid the difficulties mentioned. 

Following the Motion of Particles 

An integration of the equations of motion was performed numer­

ically (see Appendix II) for each of a large number of particles. The 

=rWj)
.(

: e(~.t, J/1t)} 
(32) 

where subscript j indexes the particle,s, superscript J the number of 

discrete time steps performed so far, and subscript 1I'l indexes the 

L 1 
field values at equidistant points in f . The values ~ and Wi give 

the position of the j.u. particle in the synchrotron phase space after the 

£-11. step. 

The first attempt used the simplest possible method of calcula­

tion, that of finding a histogram representing the density ,('((), t) as 

f""t: flnA4') J. At), on a sufficiently fine mesh to allow the field 

to be calculated accurately. The immediate result was that the number 

of particles required was prohibitively large. 

If an insufficient number of particles was used, the statistical 

variations in the density were large. These occurred at a wavelength 

of the order of the width At/> of the histogram channels, and because 
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the growth rate of instabilities at least in the linear region goes rough­

ly as h/ltt. i +I,&', where" is the harmonic number ami " is relative­

~ large, the growth of· the statistical fiuctuations is much faster than 

that of low hax-monics which were to be studied, and the development of 

the latter was quickly obscured. 

However, regarcU.ng each of the (~.WJ) not as the position of a 

particle, but as the center of a macroparticle or distribution of parti­

cles whose shape is not allowed to change, allows the kernel to be 

smoothed out from the exponential form given in equation (11) to a form 

such as shown in Fig. 4. This has the immediate effect of reducing the 

fields caused by disturbances whose wavelength is less than the kernel 

width. 

The growth of the short wavelength statistical fiuctuations may 

thus be reduced by having a kernel whose half width is several times 

the channel width ~t/J • Structure of the distribution with wavelength 

shorter than this is washed out :in the calculation of the field and is not 

well represented in the macroparticle interpretation, so that the macro­

particle can be given a fhed azimuthal spread equal. to At; • Con­

tribution to the i iL density channel, 1. e., to the value fj , by a 

macroparticle is now made :In proportion to the amount of its azimuthal 

width which lies between the edges of the channel. The channels now 

contain nonintegral "counts", so that the coarse nature of the discrete 

representation is reduced. The statistical fiuctuations at high harmonic 



Fig. 4.� Typical kernel K(9) obtained by convoluting the exponential 

field kernel with a Gaussian particle distribution of similar 

range. 
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are then further suppressed, without substantial change in the fields 

at low harmonic, and the latter may be studied without being obscured 

by the former. 

In reasonable amounts of computer time it was found possible 

to follow of order 2.000- 5000 macroparticles (bJereafter called just par­

ticles) using a representation allowing 12.8 channels to provide the field 

throughout the range -1£ /: f ~ n. With linear interpolation for find­

ing the field between the tabulated values, the field calculation allows 

harmonics from the first to about the twentieth to be well represented. 

A potential kernel with a hali width at half maximum of about seven 

times the channel width allows an adequate representation of the kernel 

shape and provides good suppression of harmonics higher than about 

the thirtieth. With such a kernel and field, the statistical fluctuations 

in the density values were small enough given roughly 2.000 particles, 

to allow the first through twentieth harmonics to be studied with rela­

tively little interference. The threshold for growth of statistical 

"hash" was never too far away and lack of care in choosing the initial 

distribution was observed to push the system across the threshold. 

Thus interference from the hash occurred if for example, the initial 

diet ribution was a series of horizontal rows of particles at different 

values W, and the particle spacings in ~ of the various rows were in 

phase. This distribution is quite unrealistic and quick growth of the 

hash resulted. 
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The first integration scheme used to step the particles through 

time was the straightforward linear algorithm 

to 1+1 = tO,l ~ VI J. At
1) I) , 

(33)W/fl =Wj1 + C. ( ~.I1'~ JAt). txt. 

This has the interesting property that the stepping of 'Pj from t=ld. 

to t-:( l+r)At.l followed by the stepping of Wj using the new value of 

qJj, may be regarded as a canonical transformation since the generating 

functions 

T/= L W·.t~•.t:,: ('vI,I)"h.t 
j J J J ' 

~.1 = Z Wj ~+, ~.~,., - U (~I"~ lAtJAt, 
(34) 

J 
in turn yield the transformations 

'fj R_-, f{I~1 and 

tfj .ft'-=J 1,.-1..-, and 
(35) 

and therefore this approximation has in common with the true solution 

of the diiferential equations (32), the property of preserving local densi­

ties in phase space. The coarseness of the representation however, 

does not allow this property to be ascertained from the computer runs. 

A pragmatic approach to the question of required fineness of the 

time step I1t was used, starting with a value clearly too large and 

halving it until doing so had no observable effect on the nature of the mo­

tion. A similar process was used to ascertain the effectiveness of using 

only 128 channels to represent the field and of using of the order of 2000 

particles. 
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A comprehensive testing of the growth rates and critical energy 

spreads predicted by the linear theory was carried out. For thia pur­

pose, initially pure harmonic perturbations were made on & uniforln 

beam. For example, a phase density ofthe form ~ [1 -to fCt>S(h~~~(W) 

was used as an initial distribution for a m~~~n~1"getic ( Af ~ /iW -;; 0 ) 

beam. The values of the azimuthal density at 4'::. 0 were then tabulated 

as a function of time, and the hyperbolic cosines C' of the ratios of 

these values to the initial value fir (7rt- ) -were computed. The lin­

ear theory 2 predicts the initial growth of such a system to have the 

form Ae4f (ro t)+ B eAf l:-rot) • The initial d1Btribution used herf: 

requires the initially stationary linear combination to be tak~n becaude 

the continui~y equation (27) shows that for states symmetric in W, the 

value df lat is zero when £.0 (W) is taken as :f W • The hyperbolic 

cosine of 'SCt(>,t)! ~(~O) should vary as tr(t) where r(t) is r: 
in the limit of very small perturbation. Because even small perturba­

tions grow exponentially, the region of nonlinear motion is entered 

quickly. However, the extrapolation of the derivative of trlt) to zero 

time does give r:. Since equal times elapsed between the observations 
1 I.+-' 1 

of the C) the first differences C. -c', are a good representation of 

the derivative if At is sufficiently small. On extrapolation of the dif­

ferences to zero time, the value 10 is obtained. 

In order to provide comparison with the theory it was necessary 

• ~R 
to know the Fourier amplitudes of the kernel used. The field ~... at 
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azimuth ~.d¢ was obtained from the density f...J 
at time t 6t by the 

prescription 

c 1 = ~ 0' /eft' ~) " ••' • KWI (36) 

where the values K.... are 6¢· I( l ')f( A(/J) , a. tabulation of the values 

of the field kernel. In view of the linear ur.:erpolation used to find the 

field between the mesh points and the spreading described, of the effects 

of one particle over one channel, the kernel used may be considered to 

be that piecewise linear function connecting the tabulated values 1<"" • 

Its Fourier amplitude at harmonic 1l then is 

which is so written to indicate that the spreading of a particle is equiv­

alent to the process of "sigma-smoothing" often introduced in applica­

tions of Fourier transformations to reduce fluctuations caused by cutting 

off the series after a finite set of terms. Zl The factor in brackets is 

the smoothing factor. 

This series was evaluated for representative kernels and for 

various harmonics in the usable range O~ k. ~ZO and the numbers 

were put into (ZO) after making the reduction Ca'. ': S : 0 and (,,).. ': 0 , 

CT:: 0- , with "a tr held fixed at N/4TT • The resulting expression 

is the growth rate 

(38) 
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These results and the growth rate measurements were found to be in 

accord to within about 5", both in absolute magnitude and in depend­

ence upoil the harmonic number. The harmonics tested were the first, 

second, fourth, eilhth, and sixteenth. The discrepancy 5'- wa. in 

accord with the estimated accuracy of the extrapolation of -rl t) to 

zero time, which was done graphica.ll.y. 

Further comparisons were made by varying the size f of the 

perturbation from 0.01 to 0.25. Again to within the accuracy of the 

extrapolation, the results were the same, and were in accord with 

theory. 

Since it is difficult to provide a smooth density variation in a 

monoenergetic string of a finite and small number of partides, the 

initial modulation was provided by varying the interparticle spacing. 

Figure 5 shows the field kernel used for the ueater part of the 

calculations made, and its Fourier amplitude as calculated from equa­

tion (37). Checks were made to assure that the computer program 

gave the proper field for a density varying as ~;1l nfP. The field in 

this case is proportional to the 1'1 +l. Fourier amplitude of the kernel. 

The results differed negligibly for n less than 16 and by less than 101­

for harmonics up to the thirty-second. The discrepancy was in the form 

of reduction of the high harmonic fields. 

Figures 6 and 7 show representative behavior of a monoenergetic 

beam used in growth rate comparisons, and the corresponding curve fyt). 
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calculated as described. The last extends in time past the time at 

which the wave in the string breaks over on itself. It is this breaking 

time at which an analogous computation usmg a mesh approach has dH­

ficulty hl converghlg. 

A limited exploration of other field kernels was made, again 

with results in accord with theory. Thus, kernels with different shapes 

but the same width and kernels of similar but smoother appearance and 

doubled and quadrupled width were used. Because the analytical growth 

rates and stability limits are always expressed here in terms of the 

Fourier coefficients of the kernel, its actual form is nat important, and 

the one shown in Fig. 5 was used throughout most of the exploratory 

calculations. 

There are of course limitations on the states which m~ be ana­

lyzed with this type of calculation. The most important use is for the 

analysis of beams with small energy spread. Attempthlg to represent 

a large energy spread or structured energy spectrum is not possible 

under the conditions cited because as we have seen, an adequate repre­

sentation of the field (that is, of the f dependence of the distribution) 

requires of order of 128 values to be given. Now the general result of 

an instability is a twisting in the phase space of the distribution so that 

if a detailed W dependence is desired in the initial beam, it must be 

represented to the same accuracy as the 'P dependence. A calculation 

using good statistics then would require more time and more computer 



Fig. 5.	 (a) Typical kernel Iqf)used in digital computations. The 

density histogram channel width is 6~. (b) Relative 

Fourier coefficients K", of K • 
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Fig. 7.	 Nonlinear growth of a sinusoidal perturbation of a mono­

energetic beam above transition. The values C.I =iPttll..t6'l. 

and the first differences or A[trlt»).fAt are graphed as 

functions of t:1.A:l: • The system was given an initial 

25'0 perturbation (~=azs) at the first harmonic. 
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space than was available. The conclusion then is that the particle follow­

ing approach is most applicable to stable distributions ~ or to l.D1stable 

ones having an \Ulstructured energy- dependence. For other states a dif­

ferent type of calculation is required. One such is described in the 

latter half of this section. 

Stability of Clusters above Transit:lcn Energy. An extensive 

search was made for evidence that the statistical fiuctuations in the cal­

culated field or interaction of the clusters among themselves could 

cause destabilization of particle clusters. 

For this purpose~ an energy spread was simulated by using an 

initial distribution having rows of particles on each of 15 equidistant 

lines at constant values W. In each row~ the particle spacing varied 

smoothly in <p so that the initial azimuthal density was 

f(f'J -c: lit [i+ ~,~f+ ~t ~.n<p]. 

The modulation c, was usually taken as 250/0. This served to allow 

several different clusters to be observed at once because it caused the 

he1ght~ width~ and separation of the density peaks to be different among 

the h... peaks formed when the energy width failed to stabilize the sys­

tem against the field of the perturbation at harmonic h~ • 

The actual values h" which were used were 5 and 10~ while fa 

was varied SO that the high harmonic field ranged from much less than 

to much greater than that at the first harmonic. The energy spread 

used was always sufficient to ensure strong instability of the first har­
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monic if left alone, but was varied from much less than, to just greater 

than that required to stabilize the higher harmonics. The ratios of sta­

bilizing energy spreads of first to fifth and tenth harmonic pe~bations 

for the usual kernel are 

Ws (51 /"h(1) 0.«)' and W~ (10) /.h (f) : O. Sf. • 1& 

The result in all cases, except when the energy spread washed 

out the high harmonic growth and only the first harmonic gre'tf. was 

that the higher harmonic grew quickly until a saturation value of energy 

spread was reached. and remained there for as long as the system was 

watched. Figure 8 shows a sample azimuthal density histogram from 

a run where the value hI was five. The behavior is similar to the re­

sults for all the variations tried. It is seen that the beam has formed 

five major clusters at the azimuthal positions of the maxima of the 

initial perturbation. A sixth maximum may be seen near the azimuth 

f=t71 . This has a rather strange history: The initial growth of the 

fifth harmonic was sufficiently quick to deplete the number of particles 

in the azimuthal vicinity of the five growing bunches. This depleted 

region extends one kernel width on eith.er side of the bunches. Since 

the centers of the bunches were azimuthally separated by three to five 

times this width, this left small auxiliary peaks in the density between 

the. five large peaks. These are also unstable and they grew to satura­

tion energy spread. The resuIt of the fifth harmonic was a smaller 

amount of the tenth. Of the five small humps. four were absorbed 



Fig. 8.	 Sample histogram obtained for the azimuthal density. This 

shows the bunching which occurs in the particle-following 

numerical calculations when the energy spread is too small 

to stabilize the initially uniform distribution. The perturba­

tion was 1%at the fifth harmonic. 
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eveIltualq by the large peaks nearby, but the fifth was sufficiently far 

from the peaks to be able to exist independently. This behavior was 

observed to a degree· in all the runs attempted at hT. > 1, including one 

where the phase of the first harmonic perturbation was shifted by rr 

to be sure that no spurious effect was generated by an incorrect method 

of making the system periodic in··q> • In the last case, the sixth hump 

appeared at 0 rather than :t11 • The absorption of the small 

humps by the larger clusters is reminiscent of the coalescing of 

bunches observed at the Cosmotron. 1 

In several of these calculations where the energy spread was 

initially small and the resulting clusters tightly bound, it was observed 

that an awdliary cluster could revolve around a main one as a distinct 

object, rather than just being absorbed. In no such case did a small 

cluster make more than two such revolutions before losing its identity. 

Such behavior was also observed in the experiments. 

A run at twice the energy spread used in Fig. 8 was stable 

toward the fifth harmonic perturbation. With all other parameters un­

changed, the result was that the first harmonic grew and formed a very 

definitely bunched beam in just one-eighth of the time at which Fig. 8 

was observed. Because the configuration displayed in Fig. 8 had en­

dured for over 700/0 of the time elapsed without detectably organized 

variation, further computation was regarded as uninformative, and it 

was discontinued. At this time, approximately ten million particle 
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steps had been made l at the expense of about sixteen hours of computer 

time. The similar runs with variations of energy spread and relative 

excitation of the perturbations showed this same reluctance to change 

once the bunching had taken place and were also discontinued. 

The shape of the density peaks which obtained in this series of 

calculation are at least consistent with the experimental triangles
l 

but 

are not sufficiently well determined to allow a flat statement that the 

triangles have been shown to be the result of the azimuthal motion 

alone. The analogous calculation for lower harmonics would Yield more 

definite information on this point l but a sufficiently fine representation 

of the energy dependence of the distribution function was not possible 

with the limited storage available in the ordinary digital computer. A 

rough estimate indicates that approximately fifty thousand particles 

would be required to obtain reasonably good statistics. 

Limiting Energy Spreads. Because the final energy spreads re­

sulting from the space charge instability can be a determining factor 

for the amount of current captured in an acceleration bucket l it is im­

portant to have some idea how great the growth is in the event of insta­

bility. 

A search through all the calculations made showed that in no 

case did the final energy spread attained in an unstable configuration 

exceed three times the stabilizing value given by (23). The worst case 

of course was that where the initial energy spread was zero. The re­
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sulting state for zero energy spread is a sharply bunched beam, with 

the bunch width equal to the kernel width. 

Instabilities in the presence of appreciable initial energy spread 

cause final energy spreads to be more nearly just that required for sta­

bilizing the system; an initial energy spread of half the stable value 

yields a final spread of roughly twice stable, and an initial 900/0 of stable 

energy spread gave a final value of 1300/0. It appears that ~he product 

of the initial and final energy spreads W. and Wt in case of purely 

sinusoidal perturbations gives the square of the stable energy spread 

We. for the given current density, to an accuracy of about 250/0, if the 

initial value is not too far from stabilizing. Figure 9 shows a graph of 

as a function of ""\) I We. • 

Space Charge Clusters in RF Buckets. We have quoted the re­

sult that the radio-frequency accelerating fields in an accelerator are 

well represented by adding the term 

-Ws + V s ,'" f 
to the field in the motion equation 

Two methods often discussed for turning on the RF field are the 

"adiabatic" (slow) and the "sudden" turn-on programs. Adiabatic has 

been found to mean that the change from V=O to the full value 'K 

should take at least one-half the synchrotron oscillation period (period 

of oscillation of a particle around the synchronous point vb en it is very 



Fig. 9.	 Relation of initial (Wo) and final (WF) energy spreads to the 

critical energy spread (We) for a uniform beam. The final 

value gives the maximum energy spread of the bunches which 

result from instabilities when W. <. We. 
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close to synchronous). 

Several runs were made for beams above transition, using the 

sudden turn-on. When the energy spread was so adjusted to make the 

phase area occupied by the beam about a tenth the area of the bucket 

and enough particles were injected to make the beam Wlstable toward 

a relatively high harmonic perturbation (fifth or tenth) the result was 

that immediate f~r.p1ation of the stable space charge clusters occurred, 

and that these stable bunches revolved on phase orbits in the RF bucket 

roughly as single particles did. The bunches appeared to have a tend­

ency to be destabilized by the coherent action of the RF term, so that 

the particles "leaked" out of the bunches and tended to spread out 

throughout the bucket. 

This behavior is quite similar in nature to that observed in the 

• 
absorption of small cluste~~ by large ones. The value Ws used was 

too small to allow any loss of the particles from the bucket because of 

the space charge field to be observed. 

The effect of a more adiabatic time program for turning on the 

RF field was obtained by giving the voltage V a linear time dependence 

with V::'O at zero time,and V taking the same value as in the previ­

ous r\Ul after a time equal to one synchrotron oscillation period at the 

full voltage. The voltage was then held constant. 

With the slow turn-on, the instabilities had more time to devel­

op before the question of capture into the bucket arose. In general the 
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increased energy spread caused by the instability reduced the total num­

ber of particles captured. The existence of circulating space charge 

bunches in the bucket was found in this case also. 

Following the Motion of Boundaries 

Nielsen and SesslerZ suggest that most contemplated injection 

schemes cause a distribution in the phase space which is nearly con­

stant inside a bounded region~ and zero elsewhere. From this assump­

tion~ the linear calculation of perturbations on the uniform state yields 

the stability criterion (Z3) for a beam above transition. Even in the 

linear approximation however ~ following the motion of a perturbed sys­

tem is difficult because the equations for the boundaries can usually be 

written only in parametric form. Thus in the limit of no interaction at 

all the boundary whose initial form is Wa:: W (f - E (0$( J" tfJ)] 

takes the form W6:: W [t-€. (l)~(h'fJ-Wat)J for later times. This 

gives Wrs only implicit1y~ while an explicit form must be mown to cal­

culate a density. Turning on the interaction does not help the situation~ 

but Fourier methods allow solution in series form, in the linear approxi­

mation. In the nonlinear limit~ the Fourier series do not provide a con­

venient SOlution. 

Numerical solutions however may be obtained easily~ although 

these are limited to following the motion only for a short time. 

The essence of the calculation is that if the motion of the region 

boundary is found~ then that of the system as a whole is uniquely deter­
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mined. Movement of particles inside the boundary is unimportant here 

because the Vlasov equation says the phase density will remain constant 

wherever its gradients dtp let> and 9?fflew are zero and no explicit 

time dependence exists. For this system, the only gradients occur at 

the boundary. Computing the azimuthal density then becomes trivial, 

being simply the calculation of an area. 

A computer program (see Appendix m) was written to follow the 

system. The phase boundary was represented by giving a large number 

of points on it and following their phase motion. The azimuthal density 

and field were represented as before, by lZ8 channel histograms. The 

motion of the boundary point (tPj J Wi) is then determined by equations 

(3Z), which were integrated using algorithm (33). 

Two topologically distinct types of fUled regions (beams) in the 

phase space were studied. These are shown in Fig. 10. The upper 

region represents a perturbed uniform beam, the middle one a bunched 

beam, and the lower one a hybrid case with topological properties of 

the middle one. 

In the program used, the boundary was assumed to be recti­

linear between the points representing it. If the initial state is an un­

perturbed uniform beam, the motion is represented exactly for all time 

except for round-off error which should cause no trouble \mtn a rela­

tively large time. Any other state was approximated. Difficulties a­

rise from this because the boundaries were stretched and distorted by 



Fig. 10.	 The topology of phase boundaries in synchrotron phase 

space. The upper region is periodic in ~. The lower 

ones differ topologically from the upper one. and need not 

be periodic. The periodic nature of the space is accentuated 

by drawing it on a cylinder. 
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the motion of the system. For a finite number of points representing 

the boundary, a very definite upper limit was then placed on the time 

for which the calculation is valid. After this time the points on the 

boundary were so far apart that a straight line is not a good approxi­

mation to the boundary, and as it happened, the polygon connecting the 

points usually became multiply connected. This was easy to detect be­

cause its result was that one of the regions then contributed a density 

twice too large, or the right magnitude but wrong sign. Figure 11 

shows just such a breakdown. 

The azimuthal density was calculated using the polygonal formu­

la 

A -: ~ ~ (Xj+1 - Xj)·l Yj4-1 + Yi)
J 

for finding the area enclosed by the simply connected polygon whose 

vertices are (Xj, y;). The sum requires the points to be taken in turn 

as they are passed in circumnavigating the polygon in the clockwise 

direction in the eX,Y)plane. The area within the phase boundary and 

witWn the semi-infinite strip was 

multiplied by the particle density (J'"' and taken as the azimuthal density 

of", in the same region of <9 • 

We note that one advantage of the boundary solution over the par­

ticle solution is loosely that the proximity of initially adjacent point 

pairs (Wj)~) and (W'i""J ~+/) is used in the calculation, so that more in­

formation is carried by the two numbers. Because the numbers C9j 



Fig. 11.	 A sample of one difficulty inherent with calculating 

boundary motion numerically by following the motion of 

points on it. The region in the center should have re­

mained simply connected. 
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and Wj are kept in consecutive locations in the core storage of the 

computer, the subscript value j is implied by the locations of the num­

bers, and need not be stored separately. The major advantage however 

is that the representation has a continuous nature and no problems a­

rise from poor statistics. The disadvantage is that already mentioned: 

In general, a boundary becomes arbitrarily complicated in infinite time, 

and an infinite number of points must be used to represent it. This dif­

ficulty could be alleviated by a more elaborate scheme for the area cal­

culation, but would not be completely solved. This failure at long times 

was accepted and the method used to investigate behavior on a smaller 

scale. 

The normalization was checked as before by analyzing growth 

rates of perturbations on a uniform beam. With a finite energy spread 

(average) of ZW and a perturbation of harmonic h , these are given 

by equation (38). The same analysis scheme was used as in testing the 

particle program, viz. extrapolation to zero time. The results were 

accurate, again to within the error estimated for the extrapolation, 

roughly 50/0. 

The type of perturbation available in this calculation is neces­

sarily limited to variation of the form of the boundary. The dividing 

line between stability and instability under a perturbation of a boundary 

is not at all well defined. 
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Figure lZ ShoWB the configuration in the (W,?) space taken by 

the boundaries initially given by Wj: ( tp) = + W ( 1- £ cos <P) t 

after the elapse of time approximately IJW£. The five pairs of line. 

represent a boundary at five successive times in this neighborhood. 

The upper wave front is moving toward the left. For this run, no inter­

action at all was included. It is seen that the distribution, just by its 

streaming motion, becomes radically dmerent from the orig;lna1 one in 

the region W( 1- 6-) S-lwl ~ W( I +f} • The three diagonal straight 

lines are spurious, and represent failure by oversJgb.t to raise the pen 

on the digital plotter. The points connected by these lines are those 

which were initially at 'P=0 • 

Beams above Transition Energy. Turning on a small interaction 

Yields behavior similar to the zero field case, except that the region of 

"included air, " the thin streams of unfilled phase space going into the 

filled region, penetrates farther toward the center of the band. There 

appears to be some limiting case where the streamer crosses the 

w- 0 line. In this symmetrical initial load, the upper and lower 

streamers will then eventually wind around one another. If a bunching 

of the beam can occur because of this, it cannot be seen before the ap­

proximation breaks down. Figures 13 and 14 show a weak field run and 

a run which has the streamers crossing the axis. In the latter case, 

the field strength was vA thin 100/0 of the critical. value for immediate 

bunching given by equation (31). In the former it was roughly 50% of 



Fig. 12.	 Boundary motion when no fields are present. The initial 

boundaries were W(+,) =± W( 1 + E '-D.S ~) • The phase 

diagram shows them after 5, 6, 7, 8, and 9 equal time 

intervals. The wave front on the upper set of curves is 

moving to the left; that on the lower, to the right. 





Fig. 13.	 Boundary motion, as in Fig. 12 except that a very small 

interaction is present. The interaction is that of a beam 

above transition energy. The time intervals here are 

smaller than those in Fig. 12, but the elapsed time is 

comparable. 



•
 



Fig. 14.	 Boundary motion. as in Fig. 12 and Fig. 13. except that 

the interaction is larger. The system is above transition 

energy. The field here is nearly large enough to cause 

immediate bunching of the beam. The elapsed time is 

comparable to that in the previous two figures. 
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this value. 

In the following sections on the uniform beam6 the value W was 

taken as 1.0, while t:rre.RN was '417f t and the parameter Ko was varied 

to change the field. This nwrber is a multiplicative factor for the en­

tire kernel whose functional form was fixed throughout this section at 

the form shown in Fig. 4. Since the entire problem seales6 the value 

iller and the value k'o suffice to determine all the parameters of the 

system when it is known that the critical value of 1(0 is given by 

K: :: 0.189 (1- E), 

where ~W ':of: is the amplitude of the perturbation. The perturbations 

used were 2510 variations, that is 6 E--=o.ZS for which KoC :tJ.M5. The 

values f{. used for the runs in Fig. 13 and 14 were 0.0625 and 0.125. 

A run which shows the behavior under the bunching phenomenon 

is shown in Fig. 15. The value 1(0 here was 0.1875. 

It was from observation of these pictures that the criterion for 

immediate beam bunching was noted. Another run, using 1(0 =o. Z5 

is shown in Fig. 16. 

Because the resultant states in Fig. 15 and 16 seemed reminis­

cent of the square-b.ump state described except that ends were rounded 

off in an azimuthal distance of approximately the half width of the ker­

ne16 .some test runs having the nature of a perturbed and rounded square 

distribution were tried. The Casin! Oval 

ry(X)] a :: {0(4..,. .... X1.)''' - t _xz. 



Fig. 15.	 BOWldary motion above transition, in the presence of 

interaction large enough to cause beam bunching. All 

parameters are identical to those of Fig. lZ-14, except 

that a multiplicative factor in the interaction is larger. 





Fig. 16.	 Boundary motion as in Fig. 15. except that the interaction 

is stronger. Three boundaries are shown. indicating the 

motion during equal time intervals. 
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was chosen as a tractable if vague approximation to these final state 

bunches. The rounded corners of this oval do not have the correct 

functional dependence for the stationary state, and this constitutes an 

additional perturbation. Figures 17 and 18 show such a run. In these, 

graphs of the field are superimposed on the plots of the boundary. The 

field increases with time and perturbations travel counterclockwise a­

round the boundary. The second figure shows three successive config­

urations of the system at a time much late~ than that of the first. Later 

pictures were not judged presentable because of pen troubles on the 

digital plotter, but showed that the perturbation travels around the end 

of the distribution with no ill effects. That is, it does not become any 

larger, nor does any other part of the boundary become substantially 

different. The strong nonisochronism of this state caused the small 

cusp discernible in these pictures to spoil the approximation shortly 

after the latter picture and long time behavior could not be studied. An 

analogous computation with the particle following program gave the 

same results for a much longer time. The perturbations travel around 

the boundary with little discernible decay and no apparent tendency to 

eject particles from the bunches. 

Beams below Transition. One of the more interesting results 

of the boundary program obtained when a mispunched input card changed 

the sign of the field kernel. This is equivalent to calculating the motion 



Fig. 17.	 Boundary motion approximating further evolution of the 

large cluster formed in Fig. 16. Curve 1 is the initial form. 

and 2 and 3 follow at equal time intervals. The interaction 

field at the corresponding times is superimposed. The field 

increases with time. 





Fig. 18.	 Continuation of Fig. 17, showing the boundary after 11, 

12, and 13 time intervals. The lines are broken to aid 

distinguishing them. 
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of a beam below transition, in view of equations (32). The distribution 

proved to be unstable in a certain sense. Shortly after this, beam 

bunching phenomena below the transition energy were observed in the 

MURA 50 Mev electron test model, and similarity to results in other 

machines was noticed. 6 Some further investigations therefore were 

made on the computer. 

Rowe6 has noted that the two-stream instability (cf. equation 

(20» might cause this type of instability. As we have seen here, such 

an instability can occur with only a very small depression on the velocity 

distribution and analysis is complicated by an overabundance of mechan­

isms. As we have seen, a perturbation in the boundary of a distribution 

l:itreams around, in the absence of interaction, until a two-stream dis­

tribution obtains. After the wave crest in Fig. 1Z has overtaken the 

slower portions of the boundary, a two-stream situation exists. Suf­

ficiently here means by the width of the field kernel, which is very 

small as we have seen. 

We may generalize this result and say that with no interaction, 

the streaming motion acting on a boundary of the form vi -= W(1+-6. CDS4», 

first causes the boundary to attain a vertical tangency at time 1/ W€., 

and that thereafter a two-stream mode exists. At this time, a particle 

at W has traveled an azimuthal distance '/e . Thus a perturba­

tion of 16,,/0 yields a two-stream mode after the wave crest moves by 

a cpr: Z1T in the rotating coordinate system. Using the numbers 
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this same effect increases the width of the gap which will develop to 

form the two streams, so that the instability is less likely or will take 

longer to develop. 

However, another mechanism for instability exists, as may be 

seen in Fig. ZO and Zl. It is seen that for a strong perturbation (E is 

Z5'o here) the interaction of a boundary perturbation with itseU tends to 

increase the energy spread as should be clear, but also causes a very 

definite wave to appear on the boundary. It is noted that this occurs be­

fore the beam can be claimed to be in a bimodal configuration. The 

time at which these waves have definitely appeared is just that time 

taken by the fastest particle to lap one with the average energy, and this 

is the same as the time calculated in the previous paragraph, and there­

fore for the 250/0 modulation this nonlinear instability can also occur 

after roughly the observed interval. The perturbation required for this 

seems to be larger thantbat thought to exist, but we repeat that there 

are few experimental observations upon which to base any firm conclu­

sions. 

To assure that this wave development is not dependent upon some 

approximation in the nwnerical computation, various parameters were 

changed. It is recalled that the field kernel of Fig. 4 was used for most 

of the calculations and that this shape was taken to account for the width 

of the macroparticles in the particle program. Since most of the pres­

ent results do not depend upon the shape but upon the Fourier ampli­



Fig. 20. Boundary motion with interaction as in a beam below 

transition, showing nonlinear effects and development 

of a wave. The upper boundary was initially 

WCC9) ::. W ((+o.25c.os ~), and the lower was 

W(<p) =- W • 
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Fig. ZZ.	 Development of the wave structure below transition when 

the lower boundary is moved far enough away to have neg­

ligible reaction to the modulation on the upper one. The 

boundaries here were initially at 'II = we(~O.Z5cosfJJ,and at 

W=-5W. 
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6 ~ -+ .,
quoted by Rowe, viz., ow./rvs:: 4.0-/0 and '--'.s ~ Z~O·'O cps, 

for the frequency spread bfA and frequency (stationary frame) ~s , 

as being reasonable estimates for the injection process used in the 

MURA 50 Mev electron accelerator, we obtain the result that in the 

time required by thP. fastest particle (angular frequency l&J.s .... a~ 

to circle the machine twenty times, the two-atream mode appears, 

given a modulation of only 80/0 of the total energy spread of the beam. 

Z2AccorcUng to Rowe, this is a fairly reasonable number of circuits, 

and instabilities have been observed ZO to ZOO particle circuits after in­

jection begins. It is thought that a reasonable picture of the injection 

process used gives a phase density roughly constant in the shaded re­

gion shown in Fig. 19 and zero elsewhere. The scheme is multiturn in­

jection with betatron acceleration giving an average energy gain per 

turn of order 100 eVe This energy should correspond to the height of 

the steps in the diagram. After 20 turns the step is roughly 50/0 of the 

total energy width and we see that all the numbers are roughly consist­

ent. We have a mechanism for obtaining a two-stream mode :in roug~ 

the time for which experiment yields an instability. The calculation 

here has really been to zeroth order in the field strength, but we can 

argue heuristically that the first-order effects cancel. Thus, under the 

influence of space charge this step in the bo\D1dary being a nonuniformity, 

will tend to have its height increased, and therefore will tend to stream 

faster, and the two-stream mode will appear sooner. On the other hand, 



--- ----- ---------------------

Fig. 19.	 Conjectured phase distribution at injection in the MURA 

50 Mev electron accelerator. The particle density is 

regarded as uniform within the shaded region. and zero 

elsewhere. 



w 

Figure 19 
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this same effect increases the width of the gap which will develop to 

form the two streams, so that the instability is less likely or will take 

longer to develop. 

However, another mechanism for instability exists, as may be 

seen in Fig. 20 and 21. It is seen that for a strong perturbation (E is 

25% here) the interaction of a boundary perturbation with itself tends to 

increase the energy spread as should be clear, but also causes a very 

definite wave to appear on the boundary. It is noted that this occurs be­

fore the beam can be claimed to be in a bimodal configuration. The 

time at which these waves have definitely appeared is just that time 

taken by the fastest particle to lap one with the average energy, and this 

is the same as the time calculated in the previous paragraph, and there­

fore for the 250/0 modulation this nonlinear instability can also occur 

after roughly the observed interval. The perturbation required for this 

seems to be larger than that thought to exist, but we repeat that there 

are few experimental observations upon which to base any firm conclu­

sions. 

To assure that this wave development is not dependent upon some 

approxirn.ation in the numerical computation, various parameters were 

changed. It is recalled that the field kernel of Fig. 4 was used for most 

of the calculations and that this shape was taken to account for the width 

of the macropartic1es in the particle program. Since most of the pres­

ent results do not depend upon the shape but upon the Fourier ampli­



Fig. 20. Boundary motion with interaction as in a beam below 

transition, showing nonlinear effects and development 

of a wave. The upper boundary was initially 

W(~) =- W (f+D.Z5cos ~), and the lower was 

W(Cf)= - W • 
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Fig. 21.	 Further development of the system in Fig. ZOe The 

curve labeled 1 is double, showing the motion during 

1/16 the time interval between curves 1 and Z. 
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tudes of the kernel, the shape is normally not critical. Using the more 

proper exponential kernel by taking K", proportional to Z:"', except cut­

off after the seventh term, gives a kernel with the same range as the 

usual one I but higher harmonics contribute proportionately more. The 

results were similar, and growth occurred again, with the same wave­

length to within 10%, the accuracy of the measurement. A run doubling 

the kernel width appeared to double the wavelength of the waves, again 

to within the 10% measurement accuracy. The ~avelength is roughly 

equal to the kernel width. The measurements suggest that the wave­

length increases somewhat with amplitude, for large values. However, 

the change was less than the error quoted. It was found that the same 

waves develop when the lower boundary is not excited initially, when it 

is made farther away by increasing the energy spread by a factor five, 

and when it is not allowed to react to fields caused by the waves on the 

upper boundary. (Charge is not conserved in the last.) It is thought 

that this instability is a proper behavior of the mathematical model in 

the nonlinear region below transition. 

The term instability as used here. is subject to the objection of 

being vague. It is not clear that a growth rate can be defined for it. 

The growth occurs sufficiently close to the "saturation" point where 

streaming tends to eliminate further growth (see Fig. lZ) so that expo­

nential behavior is a poor fit to the form of the growth. 



Fig. 22.	 Development of the wave structure below transition when 

the lower boundary is moved far enough away to have neg­

ligible reaction to the modulation on the upper one. The 

boundaries here were initially at oN:: W( {.f-O.Z5(05~))and at 

W=-5W. 
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We have then two mechanisms by which an instability can occur 

below transition, using only the longitudinal interaction of the beam. 

There are many others possible for obtaining a multimodal distribution 

and especially in view of the instability of the distribution with a very 

narrow depression~ it is not surprising that beam modulations develop 

below transition. 

Atte mpts to differentiate or further understand the two mechan­

isms mentioned by using the computer programs available have proved 

unsuccessful because of the inherent limitation of the programs: One 

cannot follow a system for long times, and the other cannot represent 

fine grained structure in the distribution function. 

The simplest two- stream system for which the computations 

were attempted was one in which an initially chopped-off beam with a 

reasonable energy spread was allowed to shear by streaming until many 

streams were formed. Figures 23 and 24 show such a system initially 

and after two revolutions in the moving coordinate system. The result 

of the interaction is that the bands tend to remain well separated deE:'pite 

the shearing, and no evidence of any exponential growth is seen. The 

elapsed time at the second picture is roughly twice that calculated for 

two-stream instability to occur by assuming no interaction until the in­

stability is ready to begin. Restated, the bands of filled phase space 

remain separated about twice as far as they should under the streaming 

motion alone and this is sufficient to stabilize the distribution for some 



Fig. 23.	 Phase space boundary enclosing a region filled with 

particles. This is the initial distribution used in seek­

ing two-stream effects below transition. 
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Fig. 24.	 Evolved form of the boundary in Fig. Z3. The inter­

action has increased the energy spread enough to 

stabilize the system toward two- stream instability. 
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time. Again the approximation began to fail after the last picture, and 

the run was not continued. Similar runs were carried out with greater 

and smaller field strengths (by factors two) with the same result. In 

each case, the separation of the streams remained greater than the 

critical value, and roughly twice that given by a calculation assuming 

no interaction. It is possible that this type of initial system is always 

self-stabilizing and that two-stream instabilities cannot occur as a re­

sult of the shearing of bunched beam, unless the gap in the azimuthal 

spread is very small. 



CONCLUSIONS 

Computer studies have indicated that azimuthal modulations of 

the current densities in the Cosmotron and the MURA 50 Mev electron 

accelerator may be understood qualitatively. The theory given by 

Nielsen, Sessler, and SymonZ appears to provide phenomena corre­

sponding to most of the gross features of the experimental observa­

tions. The theory predicts these phenomena, despite failure to include 

details of the transverse motion of the beam or to do a more careful 

analysis of the fields. The extension to the nonlinear region appears 

to be the only modification required to obtain such results. 

The phenomena noted both in the computer experiments and 

those on the accelerators include the tendency of a uniform beam 

above transition energy to assume a stably bunched configuration 

when the energy spread is too small to stabilize the uniform state. 

Also found are interactions of such clusters as entities, both with one 

another, and with the RF accelerating fields. Both types of experi­

ments indicate that insufficiently tightly bound clusters may coalesce 

to form larger clusters in which the original ones lose their identities. 

More detailed correspondence between the two types of experi­

ments was not obtained because of time limitations at the amount of 
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detail which could be analyzed numerically. Thus~ the shapes of the 

stable bunches were consistent with those seen in the accelerator ex­

periments~ but to claim them to be the same would be unjustifiable. 

The bunching of uniform beams below transition has been ob­

served to occur through at least two mechanisms. the two-stream in­

stability and the growth of large perturbations. The accelerator experi­

ments have not yet been made in sufficient detail to obtain an accurate 

picture of the beam profUe (say r(cp) vs. ~ )~ and determination of 

which, if either, of the two mechanisms is responsible for the modula­

tions is not yet possible. 

A symmetry principle has been demonstrated showing that par­

ticle clusters above transition energy~ and particle deficiencies below 

behave in the same fashion. 

In private communication. C. E. Nielsen haa suggested that 

this result can be combined with the nonlinear behavior noted here, of 

a small energy spread beam above transition. This shows the configu­

ration taken after lonlt_tinles. when a two-stream instability occurs 

below transition. The modulations observed at the MORA 50 Mev 

electron accelerator could be regarded as the result of the formation 

of a stable hole in an otherwise uniform distribution in the synchrotron 

space. The experiments also show that the density modulations are 

themselves amplitude modulated at a very low frequency; that is, a 
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beating phenomenon occurs. Two stable holes in an otherwise uniform 

distribution would exhibit just such behavior if they were centered at 

slightly different energies. 

It has been seen that the motion of a one-dimensional many­

body system may be studied with the current digital computers when 

analytical approaches prove to be too difficult. 
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APPENDIX I. AN APPROXlMATION TO THE RELATIVlSTIC FIELD 

We proceed with a solution to equation (5) in the approximation 

that we are discussing situations where the azimuthal dependence of 

the field is at a harmonic sufficiently high to allow the dependence of 

K'{ upon 1t to be neglected. 

The periodicity requirement in f proves to be an unnecessary 

complication here, so we will synthesize a periodic solution from solu­

tions to 

(AI) 

where a particular transverse mode is chosen with kJ lR.t = K..." and 

- 00 ~ X.c: 1)::} • The boundary condition is now that the solution j (X.J t) 

should be bounded for large X • This is the equation governing propa­

gation of the electric field in a rectangular waveguide excited in a trans­

verse electric mode. 

The Green's function 6cX,t) for the system is given by the well-

known formal expressionZ3 

GlXfi) :: 4tr f ~-M-O,)t) ~ (DJO) lV>.-I, (AZ) 

where 1fJ>. and lU). are the eigenfunctions and eigenvalues of the oper­

ator (Y 

(A3) 
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Suitably normalized forms for these are 

(A4) 

Then 

(AS) 

A contour in the i:. plane which passes between the two poles at 

a. J '2'1-;tt:.±It:.o=-f 7 l.UC-K, 

results on making the replacement 

(A6) 

if E i:-; real and positive. This contour yields a Green's function sym­

metric in X I the appropriate symmetry here. The result of the 

integration is then 

where p is - ic.o. Taking a contour to the right of all singularities in 

the W plane in order to obtain a Green's function which satisfies the 

principle of causalitYI this integral becomes a Laplace transformation 

inversion l which is found in the more comprehensive tables. 24 The re­

sult l using the unit step function e ex») which is zero for negative argu­

ment and unity for positive argument is: 

• (AS) 

Here J; is the first-order Bessel function of the first kind l and € may 
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now be set equal to zero. 

For a complete solution we must add to this a general solution 

to the homogeneous equation where fc. K,t) is taken to be identically 

zero. Fourier and Laplace transformations yield the complementary 

solution 

cex,t) : t 1~(X-C.t,o)-t j (X-tc.tJO)-+
 

ct
 
+ f dx' c·' ~, ,ex;t") It.· ..x-x' • I (K/c¥."-x''I. ')+ (AS) 

-c.t c:t t4'=0 

+Kct ( dX/~(X-~O).:h (Kic.'-..""':"':'f.':--X'--,&')/Ic.'i'-x'i"' 1(ii)(c.i-,xl).
-~t 

The complete solution then is 

d' 
~ ( X,t) ~ Ccx,t) +znlc~t'I elK' fcr-x;H'J]; (IfIc.'/""-X''''). (AID) 

o -c;t' 

One interesting consequence of the term in K in the equation is 

shown by taking the simple case 

.jO',o) = SOO and l. ~(r,t)'t=o:: f(~/t)=O, (All) 

where cS<X) is the Dirac delta function. The solution becomes 

The first two terms are propagation of the initial disturbance as in the 

ordinary one-dimensional wave equation. while the third may be re­

garded as a wake following the disturbance. 

Solution to the periodic problem may be obtained by replacing X 

by (CP'" zmrr) R, and summing over ?It.. in equation (AID). It 



-66­

is to be understood that each term is to be included only when the square 

roots in it are real and only if (ep -+z11Z1f)R L c.t • The 11l II, 
term represents the effects of a disturbance at t:p=o and. t.O on tbe 

field at CP and t , after the disturbance has traveled 1111' times around 

the toroid. H 11l is positive, the direction of travel is the f direction, 

The modes found by Neil in which r"\j is negative, do not 

if negative, the-9 direction. The display of the result does not seem 

warranted here. 

35 ~ 

satisfy the conditions under which (AU is a good representation of the 

wave equation. These modes have transverse field dependences which 

make invalid the assumption that the eigenvalues 1(; are independent 

of wave number k. The integration yielding (A7) is then incorrect. 



APPENDIX n. THE PARTICLE FULlDWING PROGRAM (MU P5I) 

The philosophy of this calculation was described in the body of 

this paper. A few of the deta1ls are mentiDned here and the actual code 

is included. 

A listing of the program is attached. It is 111 the form of one 

main control program and numerous subrcnd:1Des. '!'helle subproaramB 

are written in FortranZ5 language or in the SApZ6 language for the mM­

704. "l'bIrre is some slight mbdng of SAP instructions and literala mto 

the Fortran parts where this saved a reasonable amOlDlt of indirection 

in accomplishing what was required. 

The most often repeated part of the program, subroutine 0 PUS 3 

was written for Fortran until it was noticed that usin, the SAP language 

(essentially the actual machine language) allowed a reduction in operat­

ing time of roug~ ZOO/o. This is the part of the program which is re­

peated for each particle at each integration step. The reductions con­

sisted primarily of omission of superfluous operations included by the 

Fortran assembler. An estimated 10" further reduction in time could 

be made by revising some of the conventions used throughout the pro­

gram, e. g., carrying the azimuth in units such that width of a density 

channel is unity would allow some multiplications to be left out. 
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The system admits up to 10, 000 particles but less than half this 

number were used normally. To carry 2500 particles through one time 

step require s roughly 15 seconds on an ffiM 704 with add time of 241' s 

and multiply time of ZO~s. The time required for writing the output 

data on a tape is roughly 45 seconds for eAch complete set. 

Extra subroutines required for operatkm as written are MURCD2, 

MUSAVE, MUSIN4/COS4, MUPLOT, and MURAN6. 2'1 All but the last 

are described in Appendix m. MURAN6 computes a digital computer­

type psuedo-random integer modulo 2 to some power using the argument 

given it as the modulus. 

Two types of particles are admitted: normal particles and. test 

particles, of which the latter does not contribute to the fields. The mo­

tions of the two types of particles are computed in the same fashion, and 

the test particles serve only to allow a small sample to be looked at in 

detail. Their coordinates can be included with the output at specifiable 

intervals. 

The main program initializes the memory, determines the form 

of the input and calls various subroutines. The two input forms are 

card input using subroutines BEGIN and INPT3, and tape input using 

subroutine TAPES. 

Subroutine BEGIN reads input card data, computes useful num­

bers for the rest of the program, and provides output which includes 

listing of the input parameters. 
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Subroutine INPT3 allows the initial distribution to be specified 

with just a few control parameters. Two types of input are possible. 

The first computes a function fcwJtP) and depencUng on the value off 

decides how many particles to place in a AW by Aep rectangle 

centered at (W) tI'). The second enters the particles along a line 

w: (w) .... (A. + AI <W» Cos ( n.tP-+tP,), 
with azimuthal spacing 

A¢= f <A¢>-' -tAzs;" lh.. 4' ... ~} -# Al ~/11(hs4'+ep.)!-~ 

Using the second form~ the distributions can approx~ate those used in 

the boundary program. 

Subroutine WORPRO controls the output sequence and contains 

sense switch options which allow some indication of the progress of a 

run to be printed on the on-line printer~ allow discontinuing of a run~ 

or allow the subroutine SAVE to store the statuBof the machine on a 

. tape for continuing later. The output options here are the printing or 

plotting of the azimuthal density ~ printing of the field~ printing of test 

particle coordinates~ or calling of the subroutines TPPR~ PLRXY. or 

TAPES. 

Subroutine TPPR is an attempt to allow study of the phase space 

orbits of the test particles. It creates an image of a blank output page~ 

and thereafter when cal1ed~ enters letters into this image~ regarding 

the page as a part of the lW) tJJ plane and putting the letters in the 

positions corresponding to the locations of test particles. Each of 44 
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test particles may be given a distinct symbol A, B, C, ••• , Z, 1, 2, 

S, ••• , 9, -, ), <, =, , , ., • , 1, or +. The symbol * ill reserved 

for indicating that at different times, different particles entered the 

aame region. The idea was that by connecting all the A'. on the page, 

the trajectory of particle A could be seen, with similar possibilities for 

the other 43 particles. In practice it became difficult to control the 

scales and not too much information was obtained from these pictures. 

One of the better examples is included here as Fig. Z5. 

Subroutine PLRXY proved more useful. This treats an output 

page as the (W,'P) plane between 'tim'" and Willen. The banks of parti­

cle coordinates are scanned and a two-dimensional histogram is formed 

giving the number of particles in the 6w by &9 region centered at 

( W} <P) • When these numbers are printed in the proper order, the 

page may be regarded as a "plot" of the distribution function. An ex­

ample of this is reproduced in Fig. Z6. Where no numbers occur, no 

particles were found. The resolution is limited to a 60 by 40 channel 

histogram. The scale factor is automatically adjusted if any points fall 

outside the nominal range (W""n, WItfIU) given. 

Subroutine PRINT provides diagnostic print out for the computer 

operator if any difficulties occur during the manipulation of tapes :in sub­

routine TAPES. 

Subroutine INFELD calculates the fields present, in preparation 

for the first integration. Thereafter they are calculated by subroutine 



Fig. 25.� Sample phase trajectories of test particles, calculated 

with the particle-following program. The motion is in the 

counterclockwise direction, and represents tbe motion 

under tbe influence of a fixed frequency RF field. 



F-Sl RUN laOj, T~ST  PART. AT TIME 1.1631728E OC, STEP 17, YMAX, Y~IN=  1.2500000£:-02, -1.250000CE-02 
a c '" c 0 0 c 0 c av G 

60 2 
59 H2 3 
S8 111 H2 3 
57 11 2 3 
56 11 H 2 3 
5'j *1 H 2 3 
54 G* H 3 
53 H 
52 - H2 13 
51 ­G 1 H 13 
50 C ~ H* I It 
49 G * 13 It
4a G C H- I It 
47 G1(; H R 13 It 
1t6 lUlU G Q H R 1 If 
ItS II FF l CIQ I 3 It•
44 zz HI H R I It 
1t3 HIP GIQ 13 It•
42 FFI P c: I 3 4 
It I F IP G Cl Ii R I 4Wt�itO F P Q R 44 
39 F P G ~ H R I 44 
38 4 U V W x y y zp IQ 2R 13 
H y F P G HR S 
36 U y F P I S
j5 X Y P C R S
j4 U V W Y F P G H I S 
H U x y F Q R I S
j2 U V x y 0 p S 
31 U W Y 0 ¢ t: S .so J u A V B C X C y £--0- F P G H R I S J 
29 U W y C 

• 
Q S

28 U X Y 0 P R S
27 U A V \oj 0 0 p S 
26 U X 0 0 Cl . R S
25 U A V B C X C P 
24 U A W X D 0 S 
23 U C X C 0• V8
22 T KA VL W~ . XN 00 P C R S 
2 I TT A V B W C x C 
20 TT V X C 
19 T A V B "W C XN 0 
)6 T K A W X Nce 
11 T I<A - MC X NCO 
16 T A V B W NOO N 
15 T K A * WMC N 0 N 
14 T A V 8 W C NN*NNNN 
13 T I<tI V B w"C 
12 T A *8 W C 
11 T KA - C10 T A W C-~ 9 KA B H C� 

8 KA LB� -1 8 * Figure 256 K B -c
'j K L B MfoIC 
Ii K l tit' 
1 I( I f, .".� 
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OPUS 3. of which INFELD is a copy with the integration steps omitted. 

It is here that a potential user would first have trouble with the normal­

ization. During the evolution of the program, it was noted that a multi­

plication per particle per time step could be saved (multiplication and 

division are usually the determining factors for the operating speed of 

a program) if the size ~t} of the time step was incorporated into the 

unit system. Thus (33) may be written 

Xf+1 : Xjl. ~ yj/, 
y/+I : y/t + elZ1TXjJ.-t" l/}:L). (Af.Y'/Z1f, 

where Xj is <9;/ZlT and 'Ii is Wi tJt/ZTr . Another multiplidl.tion was 

saved by takinglAt>!'Z1T' to be an integral power of 2. This caused no 

trouble until it was found that the time step had to be adjusted occasion­

ally to keep the integration accurate. To save rewriting the entire pro­

gram this adjustment was made by doubling or halving all the values r,. 
when necessary. Because the Yj rather than the ~ are the numbers 

listed in the output. this expanding and contracting coordinate system is 

somewhat inconvenient, but since adequate notice is provided when the 

scale changes, it can be tolerated. The output graphs are so adjusted 

that the points plotted will be in the same position on the page, whatever 

the current scale factor. 

Subroutine OPUS 3 does the actual integration of the motion equa­

tions for all the particles. and recomputes the fields after each such 

step. It also tests and corrects the scale factor to assure accurate 
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integration. 

Included in the listing is some patching required for the mM 704 

Fortran input-output subroutine ClOH);5Th.is is required by subroutine . 

PLRXY to prevent the distribution function plots from being filled out 

with zeros, which make them harder to interpret. With this patch, no 

zero integers are ever printed, the proper space being left blank instead. 

Subroutine SWITCH tests all six sense switches on the operating 

console and informs the calling program of the configuration in them. 

This simplifies testing of the switch settings. 

Subroutine TAPES provides for storing on tape just enough of 

the data used in a run to allow the run to be continued from that point at 

a later time. It also allows such a tape to be interpreted properly and 

this rerunning to be carried out, with revised control parameters, if 

desired. A fairly complicated format is used to be sure the proper tape 

is used for this. 

The program is sufficiently general to make definition of all the 

parameters a lengthy process. This will be done in the form of a MURA 

report, and only a few important ones mentioned here to allow the code 

to be decipherable. 

For the most part, integer-type parameters are stored as mem­

bers of an array IG(I) where I~ Z~ fZe • Floating point parameters 

are stored in the array Z(I) for I~ 1~ 1oz+ • These are common to all 

the subprograms. The numbers X" and If'' are called X(N) and yeN). 



Fig. Z6.� Sample phase density of particles, calculated with the 

particle-following program. The single integers repre­

sent the number of particles found in the corresponding re­

gion in the (W,~) phase space. The run shows one stage 

of the evolution of a band of particles initially spread 

uniformly in a region -W. ~ w ~ w. and -""!:~~1T, 

under the influence of a fixed frequency RF field. 



F-51, RUN 1603 RHCIX,YI AT TIME 1.2005935E-Ol. NO. PARTICLES= 2526 STEP= 9 
YfoIAX, 

JII 
YMIN= 

1 2 
~. 2500000E-02, 

.5 4 5 6 7 
-1.25000COE-02, NO. 
8 9 10 11 12 13 14 

ABOVE, BELOW= 
15 16 17 18 19 

0, 
20 21 

0 
22 23 2k 25 26 27 20 29 30 31 32 32 34 35 ~6 37 38 39 40 
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29 
28 1 
27 
26 
25 
211 
23 
22 
21 
20 
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16 
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14 
lJ 
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11 
10 
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1 
C 
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The field and density are named mnemonically. The arrays IP and 

BANK are the locations of the printer page images used in the sub­

routines PLRXY and TPPR. 

The equivalence statement of subroutine WORPRO provides a 

good dictionary of mnemonical variable names. For clarification. 

INDX is the total number of particles and NBOX is the number of 

channels in the field and density histograms. (This is an integral 

power of 2.) The field kernel is stored in locations Z(101) through 

Z(132). 

For further details, the MURA report* must be consulted. 

*MURA reports are available upon request from the Office of Technical 

Services. U. S. Department of Commerce. Washington 25. D. C. 



·-74­c� F 51 ~AIN IV 
CQ~~CN IGtZtfIELCtBBS,H~O,Xty,CCCtJP,BANK 

CI~ENSIONIG(128),ICI024),FIELO(1024),RHOCIOZ4),XIIOOOO),YI10000) 
CI~ENSJGN BANKCIC2C), IPC6CO), GCl) 
E~UlvALENCE (IG(21,!NCX),(IG(21),NBOX),(G(IJ,Z(SOl)J 

SENSE lIGI-:T C� 
Z (19) :: o.� 
Z(6) = 1.� 
Z(25) : 1.� 
I(Z7) :: 1.� 
Z(9CI :: 1.� 

1� If (SENSE SWITCH 3) 40,101 
101� CAll to-lJRCC2IG)� 

IG(l) = GIl)� 
IG (2) = G(2)� 
NEWCl : G(3)� 
CALL TAPES (+1)� 

9� SENSE lIG~T 3� 
SENSE LIGHT 4� 
REwINC 3� 
If (NEhCr) 901, 811, 901� 

901� IC(3l) = NEwer * 512� 
NRE =NEWCT-IG(32)� 
IG(32)=NEwOT� 
Z(B2)=SCRTF(6.2831e53*(2.0**(-IG(32»))J� 
8=SCRTF(2.0**(-NRE )� 
CC Ie l=l,lNCx� 

10� '(I)=Y(I)*B 
CC 12 1=1,5� 

12 1(1+139)=1(1+139)*8� 
811 IG(69) = NE~CT
 

CC 82 1=1,128� 
82 G(l)=IG(1)� 
40 CALL BEGIN� 

CALL WCRPHO� 
GC TC 1� 
ENC(C,l,l,l,O)� 

C� F-51 BEGIN IV 
SUBRCUTINE BEGIN 
COM~GN IG,I,FIELC,BBB,RHO,X,Y,CCC,IP,BANK 

CI~ENSIONIG(l28),l(1024),FIELD(1024),RHO(10Z4),X(lOOOO),VllOOOO) 
CI~E~SI0N BANKII02C),IP(600), G(l), RF(I) 
ECUIVAlENCE (LN2NBX, IGI3C»,lcT, Z(8Z», (ENBOX, Z(81), (LNTAU, 

1IG(3U),ILNBX02, IG(32», IGAMMA, 1(80», (IGIU, 10), ((G(Z), INC 
lX), (lllO), TIME), (IGI33), NKERN), (Z(8011,G(l), flG(ZU,NBCX) 
3 ,(ZI85U,RF)� 

500 fORMAT(Al, 9HF 51 RUN I6,2H 2A6,15H BANK AT TIME = 1PE15.7)� 
501 FCRMATI16,4El5.7)� 
502 FCRMATI13HOSPACE C~ARGE,A6)
 

503 FCR~AT(1216)
 

504 FCR~~T(16HORACIO FRECUENCY,A6)� 
505 FCR~AT(16,llf6.0)
 

506 FCRMATlA6,11H TRANSITIONl� 



509� FeRMAT (9t11F 51 Rl;N 16)
510 FORfoIAT (lfiZ)

seN AlF ON 
SCFF ALF OFF 
SBOVE ALF OABOVE 
SBleh JlF OBElOW 
SBlNJC ALF 
seBBI AlF I 
S~TGR AlF NTEGER 
SCATT ALF CATA 
seNE AlF 1 

11� CAll ~URCD2 (G) 
CAll f'URCC2 (Z)� 

18 COZOI=I,128� 
20 IGII)=G(I)*l.OOOOCI� 

PRINT S09, IC� 
PRINT 510� 
IFlSENSE lIGHT 3) ~2,50
 

50� IG (2) = 0� 
SENSE liGHT 3� 
Z(81)=2.0**IGl30)� 
IG(21)=ll81)+B� 
Z(82')=SQRTF(6.2831853*(2.0**l-IG(32»)� 
CALL INPT3� 
IG (4) = a� 
TIME = O.� 
IG(38) :: 0� 
IGl311=lG(32)� 
IG(30) = IG(30) * 512� 
IG(31) = IG(31) *512� 
CO 51 l=l,NBOX� 

51� RFII)=O. 
IF(IG(34» 54,52,52� 

52 CO 53 I = 1, NBOX� 
53 RFII) = GAMMA + SIN4FlFLOATF(I-I) IENBOXI� 
54 CALL INFELD� 
62 NI=IG(19J� 

BBB=INCX 
IFlSENSE LIG~T 3) 60,55� 

55 IF (IGllS» 60,63,60� 
60 CO 611 = 1, 1020� 
61 BANK (I) = BLNK� 
63� WRITE CUTPUT TAPE 9, 500, ON~,ID,8881,NTGR,TIME
 

WRITE OUTPUT TAPE 9,� 
1503,IK,IG(K),IG(K+l),IG(K+2),IG(K+3),IG(K+4),IG(K+S),IG(K+6),IG(K+ 
27),IG(K+8),IG(K+9),IGIK+I0),K=1,77,11)� 

WORe :: ON� 
IF (IGI23)) 66,61,~7
 

66� WORD:: OFF 
61� WRITE CUTPUT TAPE 9, 502, WORD� 

liIIDRO = OFF� 
IF (IG134tJ 69, 6fl, 68� 

68 ~ORO = ON� 
69 WRITE OUTPut TAPE 9, 504, WORD� 

WORD� = BOVE 
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10 
IF(Z(84» 10,80,80 
WORD = BLOW 

10 WORD = BLOW 
80 WRITE OUTPUT TAPE 9, 5C6, wORD 

CAll NA~E 

WHITE CUTPUT TAPE 9,500,BOVE,ID,8LNK,DATT,TIME 
WRITE CUTPUT TAPE 9, 

1501,lK,Z(K),ZlK+ll,I(Kt2),ZlK+3),K=1,NZ,4) 
~ETURN 

END lOtl,I,I,O) 

C F-51 {HPT3 IV 
SUBROUTINE INPT3 
CO~~CN IG,Z,FIELC,8BB,RHO,X,Y,CCC,lP 

CIMENSIONIG(1281,Z(1024),FIELO(1024),RHOII024),XIIOOOOl,YCIOOOO) 
EQUIVALENCE (IG(21,INDX), (Z(24),Y30 ),lJC23),OY3), Il(45),lOTAl) 

1, (Z(46),OOUlTN), (IG(3),NTEST), «(G(4),III), (IG(S),JJJ), (IGI6), 
2NVAL), (ZI41),PHASE), (Z(48),HA~MON), (Z(7),TRIGF) 

NTEsT=Z(150)+H 
YE=Y3(]-OY3 
INO=INCX+1 
ISWTC=l(S)+h 
IF (Z(6)-1.0) 1,2,2 

1 Z(6)=1.0 

e 
Z(61 
Z(6) 

= l(6) 

.: l(6) 

+ .01 
* 3114COCOCOCC 

lRANC=Z (6)+H 
15 IF (NTEST) 30,30,19 
19 I~=INC+NTEST-l 

CC 20 I=INC,IM 
X(I)=l(2*1+149) 

20 Y(I)=Z(2*1+150) 
INO=I"tl 

30 IFCTRIGF) 300,31,300 
31 CX3=1./l(21) 

NVAL=Z(29)+1i 
J3X=ZI2lJtH 
K3Y=Z(22)+H 
B=Z(26)+0.5*Z(25)/Z(21) 
C=Z(28)+0.5*Z(21)*Z(23) 
CRANX=CX3Il(6) 
CRANY=l(23J/Z(6J 
A=O.5*CX3 
C=0.5*(y] 
DC 70 K=I,K3Y 
YE=YE+CY3 
W't'=Z(27)*YE+C 
WY2=ftY*WY 
XS=-CX3 

40 CO 10 J=1,J3X 
XS=XStCX3 
EX=Z(25)eXStB 
EX2=EX*EX 

50 F=Z(30) + Zl]l)*EX + l(32)*EX2 t Z(33)*COS4F(Ze35)* EX + 1(36» + 



55 

60 

61 
62 

63 

64 
6401 
65 

66 
6601 

67 

6701 
6102 
68 

69 
10 

300 

400 
410 

460 

500 

520 
560 

570 
600 
}OOO 

Ilt4l)* WV + Z(42)*ftY2 + Z(43)*WV*WV2 
IF(Z(S» 55,60,60 
NO=F 
GO TC 64 
CO 63 I=l,NVAL 
IF fF-Z(3*(+298)63,61,61 
IF tF-Z(3 e l+300»62,62,63 
t-4C=Z(3*1+299)+H 
GC Te 64 
CONTINUE 
GO TC 10 
IF(NC) 70,70,6401 
IF(Z(9»65,66,66 
ceX3=CX3/FLOATF(NC) 
XN=-.S-OCX3+XS 
GC Te 6601 
XN=A+XS-.5 
NC=NC+INC-I 
VN=VE+( 
CG 69 I=INO,NO 
IFlISWTO) 6701,67,61 
XN=ORANX*FLOATFtXRANFtLRANO»+XS-.5 
YN=ORANY*FLOATFeXRANF(LRANO»+VE 
IF(Zt9» 6702,6S,68 
XN=XN+ODX3 
XfI)=XN� 
Ytl)=YN� 
INO=IN[+l� 
CONTINUE� 
GO TO 1000� 
J3X=HJTAl+H� 
K3V=Z(22)+H� 
OX=O.O� 
CO 6COK=l,K3V� 
VE=YE+CY3� 
xs=o.o 
CO 6COJ=},J3X 

+ Z(44)* WV2eWV2 

CENO~=TOTAL+ODULTN*SIN4F(HARMON.XS+PHASE) 
1+Z(50).SIN4F(l(52).XS~lt51» 

IF (CENOM) 500,460,500 
PAUSE 77177 
GO TO 410 
XS=XS+1./CENOM 
IF ([SWIO) 520,560,560 
CX=-FLCATF(XRANFtlRANO»/tZt6)eOENOM) 
XtlNC)=XS+OX 
YtINC)=YE-tZt31)+YE*Zt3S»*COS4F(Zt39).XtINO)+Zt40» 
IF(ABSF(Y(INC»-Z(30)+l(31)*COS4F(ZC32)*XCINO)+Z(33») 
INO=INC+l 
CONTINUE 
IHOX=IND-l 
RETURN 
ENO (0,1,1,1,0) 

-17 .� 

570,570,600� 

C f-Sl WCRPRO IV 



SUBROUTINE WORPRO� 
CO~~CH IG,l,FIELCiBBB,RhO,X,Y,CCC,IP,BANI<� 

CIMENSIONIG(128),Z(1024),FIElOCI024J,RHOCI024),XCI0COO),V(lOOOO)�
DIMENSION BANK(102C}. IPC600J� 
EQUIVALENCE (IGCl),IO), (IGf2),INOX),(IGfl6),NOl t .H.~!4)1.II!J.I q~
 

llS),JJJ), (IG(16),ISWT16), CIG(20),NPLRXY), (IGl21J,NBOX), lIG(2SJ 
2,NPRR), CIG(26),NPLR), CIG(27),NPLXY), eIG(28),NPRXV), (IGe29),NTC 
3TALJ,fIG(3SJ,NTOCC),fIGf58),NFIRS), (IGe38),N~NJ, CIG(39),M~MJ, e 
4ZelO),TIME), (Z(81),ENBOX), fIG(41),NP1),fIG(43),NP3),(Sfl),Ze76) 
5,eIG(44),NP4},CIGe4 5),NPS),eIG(S7),NLAS),(IG(46),NP6),eIG(SO),NOU~ 
6P),(IG(42J,NP2},(IG(52),~BMl),(IG(53J,NRHOl},(IG(54).,NRHOl. 
7,(IGC55),NFEELO),CIGC56),NFELOl}� 

CIMENSION S( 1)� 

500 FORMA� 
1 TlAl,9HF 51 RLNt6 s 2H ,ZA6,lsH BANK AT TIME -lPE15.7,21H Ne� 
2. OF PARTICLES =OPF6.0,6H AFTER17,8H STEPS) 

501 FURMAT C16,F13.8,E1S. 7,F13.8,E15. 7,F13.....!.8....~~S. 7,FJ.3.• 8,EJ.S~ 1)�
503 FCR~ATCI6,8ElS.1)
 

505 FOR~ATeI6,lOF12.6)
 

507 FORMATeIOH*F 51 RLNI6,13H RHOeX) AT T=lPElS.7,16H HOR, VER SCALE:� 
lOP4F11.5,6H AFTERll,8H STEPS)� 

508 FORMAT 171H SWITC~ 6 IS UP. TO ABANDON RUN RAISE THE OTHER FIVE� 
1 ANC PUS~ START. }� 

509 FORMATCZ1HORUN ABANCONEO VIA SWITCH 6)� 
512 FORMATC17hOTApE CUMP 10 =18, 9H STEP =[8,13H F 51 TAPE A6)� 
513 FORMAT(24HOSAVE C~LLEO BEFORE STEPJ5,22HMOUNT ERASABLE TAPE 1./S2H� 

1 REMCVE ANV F 51 TAPES. PROCESS TAPE 9. SAVE TApE 1./67H TO RESTOR 
2E REPLACE ALL TAPES SET SWITCHES el DOWN) CLEAR LOAD TAPE)� 

514 FOR~AT (9HIF 51 RlJNI8,31H RESUMED FROM SAVE. TAPE ~]'_ STEPllP_.� 
515 FORMAT (1HZ)� 

SCNE ALF 1 
SBLHI< ALF 
SESTP ALF PA 
SRTtL ALF RTICLE 
SRO~ ALF RHO 
SFlC AlF FIELD 
SF51T AlF F51TAP 

ZER = 0 
I (145 )=l ( 140)� 
Z( 146 )=Z.l 14 1 )� 
lCl41)=zeI43)� 
ZCl48 )=Z (144)� 
NRHO=((NBOX-IJ/IO)*10� 
NRHCl=NRHO+l� 
NFEELD=(CNBOX-l)/8)*a� 
NFElCl= NFEELO+l� 
Sll)aENBOX+2.0� 
S(2)=I.� 
IF (SENSE LIGHT 4) 5,10� 

5� NC=NNN� 
BBB=INCX� 
GO Te 15� 

10 CC; 11 1=1,5� 
11 IGCI+40) a 32760� 
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Np6 :: 0 
NO=O 

15 CC89NNN=NO,NTOTAL,~rOCO 

co 16 1=1,6 
16 IGlI+40)=IGrl+40)+1 

IF lNCU~P) 1000, 18, 7COC 
1000 IF lNDUMP-NP6) 70C1, 7001, 18 
1001� NP6 :: C 

CAll TAPESl-l) 
CAll TAPES (0) 

1003 ~RITE CUTPUT TAPE 9, 512, IGll), NNN,IG(11) 
18 IF INPLR) 1800, 2101, 1800 
1800 IFrNPLR-NJJ2) 1801, l801, 2101 
1801 NP2 :: 0 

S (3) = A~AXrRHO, NBOX) 
S (3) :: ~AXIFlS(3), IIB7» 

2001 CC 21 I=l,NBGX 
AYE:I 

21� CAll PLOT 19, AYE, R~OfI)' S, 1,0) 
CAllPlCTI9,IER,ZER,S,I,I) 
~RITE CUTPUT TAPE 9, 507, 10, TIME, IS(I),I=1,4),NNN 

2101 IF INPRR) 2102, 30, 21C2 
2102 IFlNPRR-NP() 2103, 2103, 30 
2103 ~Pl = 0 

~RITE OUTPUT TAPE Q,50C,ONE,IC,� 
IF INR~C) 23, 25, 23� 

23 ~RITE CUTPUT TAPE 9, 505, lK,RHOIK), RHOlK+l), RHOlK+2), RHOlK+3) 
1, RHOlK+4), RHOlK+5), RHOIK+6), RHOlK+7), RHOIK+8), RHOIK+9), 
2 K=l,NR~O,lO) 

25 ~RITE CUTPUT TAPE~,5C5,NRHOl,IRHOIK),K=NRH01,NBOX) 

IFlIG(23» 30, 26, 26 
26 "RITE CUTPUT TAPE 9,500,IER,IO, 

IF INFEElO) 2601, 27, 2601 
2601 "RITE OUTPUT TAPE9,SC3,IK,FIELOrK),FIELOrK+l),FIElOIK+2),FIElOIK+3 

1),FIElCrK+4),FIElCIK+S),FIElOIK+6),FIElOCK+1),K=1,NFEElO,S) 
21 WRITECUTPUTTAPE9,5C3,NFELOl,IFIELOIK),K=NFElDI,NBOX) 
30 If lNPLRXY) 31, 4C, 31 
31 IF lNPlRXY-NP3) 32, 32, 40 
32 NP3 :: 0 

WRITECUTpUTTAPE9,5CO,IER,IC, ESTP,RTCL,TIME,BBB,NNN 
WRITE CUTPUT TAPE 9, 501, IK, XIK), VCK), XCK+l) , YCK+l) , XCK+2) ,V 

11K+2l, XIK+3), YIK+3), K=NFIRS,NlAS,4) 
40 IF INPlXY) 41, 50, 41 
41 IF INPlXY-NP4) 42, 42, 50 
42 NP4 :: 0 

CALL TPPR rTIME, ~NN, NP4) 
50 IFCNPLRXY) 51, 60, 51 
51 IF CNPlRXT - NP5) 52, 52, 60 
52 NP5 : 0 

CALL PlRXY CTIME, NNN) 
60 IF rSENSE SWITCH 1) 61,6001 
6001 CALL 8ELl 

REWINC 2� 
SENSE LIGHT 0� 
PRINT 513,NNN� 
PRINT 515� 
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wRITE CUTPUT TAPE 9,513 
CALL SAVE 
WRITE CUTPUT TAPE 9,514,IC,NNN 
PRINT 514,IO,NNN 
PRINT 515 

61 IFISENSE SWITCH 4) 6102,6101 
6101 PRINT SOO,IER,ID,8LNK,BLNK,TIME,BBB,NNN 
6102 
62 

IF (SENSE SWITCh 6) 70,62 
PRINT 508 
CAll SELL 
PRINT 515 
CALL SwiTCH (NUTS) 
If (NUTS) 70, 65, 70 

65 PRINT 509 
PRINT 515 
wRITe CUTPUTTAPES,509 
GC TC 90 

70 IF(N~N-NTOTAL) 80,89,89 
80 CALL GPUS 3 
89 CCNTINLE 
90 IF (NPLXY) 100, ICC, 91 
91 CALL TPPR(TIME,NNN,NTOCO) 
100� 1(140)=Z(14S) 

Z(14l)=lfl46) 
ICl43)=l(147) 
ICl44)=l(148) 

llC� RETURN 
Er-;C (0,1,1,1,0) 
PRINT 515 

C F-51 TPPR 11 DORY 
SlBRCUTINE TPPR (T, N, ISw TCH) 
CC~~CN IG,Z,FIElC,seB,RHU,X,Y,CCC,IP 

I,BANK 
CI~ENSIONIG(128),l(1024),FIELO(1024),RHO(1024),X(10000),Y(lOOOO) 

CIMENSION BANK (17,60), ~(l), All) 
1, [P( 10,60) 

ECUIVAlENCE (IG(4),III),IIG(S),JJJ),CZ(143),YMAX),(lC144),YMIN) 
I,lIGllJ,IO) 

SPluS AlF ++++++ 
SSLSH AlF 1111/1 
SPERC ALF •••••• 
SCOLR AlF $SSSSS 
SCO~A ALF """ 
SECUL AlF ====== 
SlPRN ALF «((((1 

SRPRN ALF »»» 
S~INS AlF -----­
SNINE ALF 999999 
SEIGT AlF 888888 
SSEVN AlF 777777 
SSIX ALF 666666 
SFIVE ALF 555555 
SFOLR AlF 444444 



STHRE 
STWC 
seNE 
SZZ 
SYV 
SXX 
S_W 
S\lV 
SLU 
STT 
SSS 
SRR 
SC=Q 
spp 
seo 
SNN 
Sfi'~ 

Sll 
SKK 
SJJ 
SII 
Sf-'H 
SGG 
SFF 
SEE 
seD 
sec 
SSB 
SA 
seLNK 
SSTAR 
SpotARK 
5"6 
S~5 
Spot4 
S,.,3 
S"2 
S'" 

500 

501 

30 

34 

35 
50 

51 

52 

Alf 333333 -81­
AlF 222222 
AlF 111111 
AlF IlZIZl 
AlF VYVVVY 
AlF XXXXXX 
AlF ftwwkWW 
AlF VVVVVV 
AlF LUlJUUU 
AlF T1TTT1 
AlF SSSSSS 
AlF RRRRRR 
AlF CCCQQCl 
AlF PPPPPP 
AlF (OCOOO 
AlF I\NNNNN 
AlF fi'potfi'potMpot 
AlF llllll 
AlF KKKKKK 
AlF JJJJJJ 
AlF IIIlII 
AlF t"H,..HHH 
AlF GGGGGG 
AlF FFFFFF 
AlF EEEEEE 
AlF cereDO 
Alf eeecce 
AlF BBBBBB 
AlF AAAAAA 
ALF 
AlF •••••• 
AlF C 
OCT 00COOOOOOO77 
OCT 000000007700 
eeT 000000770000 
eCT 00007700COOO 
CCT 007700000000 
eCT 770000000000 
FORMAT (9H3F-5l RUNI6,20H, TEST PART. 

l~, Y,.,AX, yMIN=E15.7,2H, E15.1122A5) 
FCR~AT (lH·,I2,3'" l1A6) 

AT TIMElPEl5.1,6H, STEPI5,13 

Tl=ypotAX-YMIN 
IF (T 1) 30,150,30 
FACTQR=59.0/Tl 
BIAS=l.-FACTQR.YMIN 
IF (JJJ-44) 35,35,34 
IX=44 
GO TC 50 
I X=JJJ 
to 90 1=111, IX 
IY=Y(J).FAeTOR+BIAS 
IF (IY-60) 52,52,51 
~OV=NOV+l 

GC TC 90 
IF (IV) 53,53,54 
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53� r.UN=NUN+l� 

CO TC 90� 
54� IX6=fXfI)+1.).102.� 

IX=IX6/6+1� 
IDX=IX6+1-IX*6� 
IF (IX-ll) 56,56,55� 

55 IX=JX-17� 
56 K=IX+17*IY-11� 

S C'\L "((OX) 
S SlW '1 
S 5lW T5 
S COM 
S SUI T4 
S C,\l 8lNK 
S M\5 15 
5 CAL A ( I) 
S AN5 Tl 
510 CAL 8ANK(K) 
SANS 14 
5 ,\NA fl/(IOX) 
5 TlE*82 
S 5LW 12 
5 CLA T2 
S CAS T5 
S TRA*76 
S TRA*82 
576 CAS T1 
5 TRA*79 
S TRA*qO 
579 CAL STAR 
S A~A "(lCX) 
S TRA*84 
S82 CAL Tl 
584 eRA 14 
5 SlW BANKIK) 
S DED,IK) 
S CEC,(ICX) 

90 CCNTINUE 
IF(ISW TCH) 100,15C,100 

100 IF(SENSE SWITCH 5)110, 120 
llC WRITE CUTPUT TAPE 9, 

1500,IC,T,N,YMAX,V"IN,(BLNK,~ARK,l=1,11) 

COllI 1=1,60 
K=61-1 

111 WRITE CUTPUT TAPEq, 
1501,K,IBANK(J,K),J=1,17) 

GC Te 150 
120 PRINT 

1500,ID,T,N,YMAX,Y"IN,(BlNK,~ARK,l=1,11) 
C0121 1=1,60� 
1<=61-1� 

121 PRINT� 
15Cl.K~(B'\NK(J,K),J=1,11) 

150� RETURN� 
END (0,1,1.1,0)� 
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c F-51 PLRXY III DOR' 
SUBROUTINE PLRXY (T,N) 
eO~~ON IG,l,FIEle,BB8.RHO,X,Y,eCC,IP 

0IHENSIONIGI12B),ZllC24},FIElOII024),RHOII024),XflOOOO.,VIlOooo) 
500 FORMAT IIOH3F-51, RUN16, 11H RHOCX,Y) AT TIME 1PE15.7, 16H. NO. PI 

lRTlClES= 16, 10H STEP:I61 12H YMAX, 'fMIN-iPEI5.1,2H, El-5·~1·, .. - .. 
219H, NO. ABOVE, BElOW=14,2H, 14/121H J/I· 1 2 3 4 5 6 1 
38 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 21 28 29 ~ 
40 31 32 33 34 35 36 37 38 39 40 ) 

CIMENSION IPflO,60), IU(1),R~(lt, [MIl) 
EQUIYAlENCEIIG(2),INCX)� 

503 FOR~AT flH.,14,I5,3913)� 
SI600 eeT 001130000000 
SIUIt eeT 000000000001 
SIU3 OCT 000000001000 
SlU2 OCT 000001000000 
SIU eCT 001000000000 
S.,4 eeT 000000000777 
5"3 eeT 000000711000 
S.,2 eeT 000117000000 
SRM eCT 117000000000 
SIHIt eCT 717771777000 
sun eeT 177777000117 
SIM2 eCT 717000777171 
51H CCT 000717777177 

YMAX=Z(140) 
VMINalllltll 
IF (l(l4Z» 9, 5, 9 

5� y.,AX = A"AXCV, INeX)� 
Y"IN = AMIN IY, INCX)� 
IF (V.,AX-Z (140» 1, 1, 6� 

6 Y~AX = Z(140)� 
1 IF (YMIN - Z(141» 8, 9, 9� 
B YMIN = Zll41)� 
9 TE"Pl=YMAX-YMlN� 

IFITEMPl) 10,71,10 
10� FACTOR=59.0/TEMPl� 

BIAS=I.-FACTOR*YMIN� 
00 20 1 = 1, 600� 

20� I P (I) = 0 
NOV = 0 
NUN = 0 
CC 50 K=l,INCX� 

24 J=YIK)-fACTOR+8IAS� 
IF IJ) 25,25,26� 

25 NUN=NUN+l� 
Ge tc 50� 

26 IF (J-60) 28,28,27� 
21 NOV=NOV+l� 

GO Te 50 
28� IT4-(XCK)+1.)·40.� 

1=1+IT4/4� 
l=lT4-4·1+5� 
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Yf4IN. NOV, NUN 

OORY 

TAPE. REPLACE IT A� 

29 
30 

535 
S 
S 
S 
S 
S40 
S 
S 
S 
S 
50 

s 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S60 

10 
11 

C 

SREAD 
ShRIT 

100 

102 

200 
201 

IF(I-ll) 30,29,29 
1-1-10 
f4.l0-J+I-10 
CAL IPUO 
SUI TE"P 1 
ACl lUll) 
ANA RM fl) 
SLW IPIM) 
CAL TE"PI 
ANA IfI'(l) 
DRS IP(M) 
CEO, If.. 
CED,(l) 
CONTINUE 
WRITEOUTPUTTAPE9, 
CC 10 K=I,60 
l=61-K 
CO 60 ~=1,10 
CAL IPIM,l) 
SlW TE"PI 
ANA RM (U 
ARS 9 
SlW IGflt*M+77) 
CAL TE.,Pl 
ANA RM(2) 
SlW IG(4*M+78) 
CAL TEflAPl 
A~A RM(3) 
AlS 9 
SlW IGC4eM+79) 
CAL TEMPI 
ANA RMCIt) 
AlS 18 
SlW IGC4eM+80) 
I-l-30 
WRITE OUTPUT TAPE 
RETuRN 
END (0,1,1,1,0) 

F 51 PRINT 

500, IG(l', T, INOX, N. YMAX, 

9,� 503, I, lIGlJ). J-81.120' 

SuBROUTINE PRINT lNTAPE,N) 
AlF REAOIN 
ALf WRIIIN 

NT = NTAPE 
~ = N 
GO TO (100. 
PRiNT 102, 
GO TO 1000 
FORMAT 15H 

200. 300. 400, 500. 600) • M 
NT 

TAPEI3.59~ IS NOT A CANONICAL F 51 
INC PUSH START.) 

WORD:a REAQ 
PRINT 202, WORD, NT 
GO TC 1000 
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202 FORMAT (1SH TAPE ERROk WHILE AIt,6HG TAP~I}-!~.1~ __ .!,!.u~!!. START TO RE 

2RY.) 
300 WORD: WRIT 

GO TC 201 
400 PRINT 402, NT 

GC TC 1000 
402 FORMAT (22H THE F 51 TApE ON UNITI3,44H IS FULL. MOUNT AN ERASABI 

4E ANt PUSH STARt •• 
500 PRINT 502, NT 

GC TC 1000 
502 FORMAT (19H THE R~N REQUESTED IS NOT ON THE INPUT TAPE. YOU MIGHi 

5 TRY ANOTHER INPUT TAPE.) 
600 PRINT 602 

GO TC 1000 
602 FORMAT (65H YOU CIC NOT REPLACE THE TAPE AS REQUESTED. 00 SO AND 

6PUSH START)� 
1000 PRINT 1002� 
1002 FOR~AT (1HZ)� 

PAUSE 10101 
~ETURN 
END (0, 1, 1, 1, 0) 

REM F 51 INFELC S (SAP ASSEMBLER LANGUAGE) 
FUL PROGRAM CARD 
Pl.ZE 0,0,4 
eCT CHECK SUM 
PZE LAST+l"S 
PZE 0 
BCC IINFELO 
PZE START ...---_ - _.' -. .- ---­.. ~_. ~ 

REM� 
REl PROGRAM� 
REf4� 
ORe 0� 

IFILl Bee l( FIL )� 
(SH'!) Bec .. ----- .�
(lOH) Q Bee 1llOtiJ

1lSTH) 
0 

~ .. ­

(LEv) BCC l(LEV)� 
S HTR a� 

HTR 0 
HTR 0 

START SXC S,1 
~ -.- . - - --­

SXC 5+1,2 
SXC S+2,4 

20A CLA IG-2 
21A STC 51A 

CLA NBOX 
STO 498 ..... . _......_ .. ---- ... --- ­

~ 

STC liB 
STO 758 
LXC NBOX,2 

25A STZ Rtf0+1,2 
TIX 25A,2,1 

26A 
21A 

LXO 
CLA 

INOX,2 
X+1,2 

-­ -­ .­ _.­



28A 
29A 
30A 
31A 
32A 

41A 

4~8 

51A 
52A 

53A 

6382 

61A 
618 

68A 

108 
lOA 

718 
13A 

148 
758 
18A 

UF'A 
FAC 
CHS 
FAO 
STO 
TPl 
tIe 
FAO 
5TO 
log 
FMP 
FAO 
stc 
UFA 
STO 
FAD 
CHS 
FAO 
S10 
ClA 
ANA 
AlS 
POX 
AOO 
POX 
TIX 
TXl 
ClA 
FSB 
FAD 
STO 
CLA 
FAD 
STO 
TIX 
RE~ 

LXD 
SXO 
ClA 
STO 
LXO 
SXO 
CLA 
ADO 
POX 
TIX 
CLA 
sue 
ADO 
POX 
TIX 
CLA 
FSB 
STO 
109 

td ---_..._-­ -8'~... _- ...._~--_. -. 

6) 

X+l.2 
X+l.2 
32A 
32A 

... - ._.-. .._'. - .. -
ONE 
X+l.2 
X+l,2 
ENBOX 
ONE 
FNO 

_w_ ,..____ .. __ 

6) 
TEMP 
6 ) 

FNO 
OEl 

.0_-.­__--­ . - ._ ..._....... -._­

TE"'P 
7) 
18 
0,4 
2 » 
0.1 

. '_.-'--" ._ . . -. -- -_.. 

.+1,1,-­
6382,2, •• 
Rt-O+l,4 
eEL 
ONE 
RHO+l,4 

.. -_.- .­ _. 

Rt-O+l.l 
eEL 
RHO+l,l 
21A,2,1 

NBOX,l 
1,1 
RF+l,l 
FIELD+l,l 
32530,2 NKERN 
J,2 
I 
J 
0,"
·+1,4, •• 
1 
J 
NBOX 
5,1 
.+1,1, •• 
R"'0+1,4 
Rf10+1,1 
TEMP 
Z-99,2 



808 

818 

90A 

918 
92A 

93A 
94A 
9SA 
96A 
97A 

98A 

99A 

9901 
IOOA 

lOlA 

103A 

2) 
Ft1AG 

FMP 
LXO 
FAD 
STO 
TIX 
Tlx 
RE" 
lxC 
CLA 
SSP 
LOQ 
LRS 
TLQ 
TRA 
TIX 
TRA 
CLA 
FOH 
STC:: 
Tlx 
LXA 
CLA 
fCH 
STC 
TIX 
CLA 
SSP 
ADD 
STO 
CLA 
FDH 
STQ 
CLA 
ACD 
STO 
CAL 
XIT 
ETfot 
CAL 
SLW 
CAL 
NTR 
ETM 
NTR 
NTR 
LT~ 

CAL 
XIT 
TRA 
REfIC 
LXV 
LXC 
LXD 
TRA 
OCT 
OCT 

TEMP 
1,1 
FIELO+l,l 
FIELC+I,1 
108,2,1 
678,1,1 

- ­ ~  .. _.... 

-87­-_.... _--­

INDX,1 
32345 YLHHT 

----- - ---­ - -

V+I,2 
0 
e+2 
90A 
818,2,1 
l03A 
V+1,1 
TWO 
V.1,1 
90A,1,1 
lle8,l 
l-138,1 
TWO 

_....... ----­ . ­

. - ....­ ._. ' .. 

-_._... 

-

_.-. 

.. 

_._- ....­ .. ­ -

l-138,1 
92A,1,1 
LNTAU 

FNAG 
LNTAU 
DT 
TWO 
OT 
2) 
IG-13 
IG-13 
•
(LEV) 

. ,­ _.­ ' ...­ ._...-_.._. 

_._-_.. - . 

(tOtOO 
1 
(5TH) 
8)fK,0,9 

IG-37 
IG-13 

•
(FIL) 
808 .. _­ .. . _. .._._.•. _. -­

S,1 
5+1,2 
5+2,1t 
1,4 
+000001000000 
+002000000000 

_. ._-- .•. _._.-.. -
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+20 iifoo()Ooooo-' 
+202400000000 
+23300000000C 
+000000077771 
718J NUMBER8, 
lC 25HOT 
1 
1 
1 
1 
1 
LAST 
32562 
32561 
32542 
32532 
32434 
32354 
32353 
31410 
30385 
29361 
19361 
Z-8SC 
002100000000 
100000000000 
0 

F 51 OPUS IV� 
PROGRAM CARD� 

,,6 

-8~ 

lH STEPINGE ATEP CHAIME ST 
fORMAT (READ UP) 

(SAP ASSEMBLER LANGUAGE). _ -_._­.. 

--"'C'Ne -­
T'-lO 
6) 
lJ 

81fK 

J 
eEL 
F~O 

lAST 
TEMP 

IG 
INCX feu 
NBCX eQU 

lNTAU EQU 
Z EQU 

ENecx EQU 
CT EQU 

FIELD EQU 
RHO EQU 

-1JCt 
OCT 
OCT 
OCT 
BCC 
BCD 
aSS 
BSS 
ass 
ass 
BSS 
SYN 
EQU 

X EQU� 
Y EQU� 

RF� 
XIT� 
NTR� 

(F I L) 
(STH) 
(10tdO 
(lEV) 
S 

SYN 
(J PC 
CpC 
END 

REM 
FUl 
fli'ZE 
OCT 
PZE 
PZE 
BCD 
PZE 
BCD 
PZE 
REf4 
REl 
ORG 
OEF 
REM 
REM 
REM 
Bce 
Bce 
Bce 
Bce 
HTR 
HTR 
HTR 

CHECK SUM 
LAST., S 
0 
lCPUS3 
START 
lNAME 
NAME 

0 ....- .. 

CATA,13 
" 

F 51 oPUS IV 

UFIU 
l(STH) 
lCIOH)O 
lIlEV I 
0 
0 
0 

START sxo S,l
sxO 5+1,2 



lOA 

llA 

12A 
12A I 

13A 

14A 

18A 
19A 
20A 
21A 

228 
23A 

25A 

26A 

27A 

28A 
29A 

30A 
31A 
le4A 

5XC 
~OP 

Nap 
TOV 
CLA 
5fC 
CLA 
STO 
CLA 
TZE 
TPL 
CLA 
STO 
'-LA 
STC 
STi 
STZ 
CLA 
STC 
CLA 
STO 
STc 
STC 
LXC 
sxc 
CLA 
FAt 
STO 
LXC 
STZ 
TIX 
LXD 
REM 
CLA 
fSB 
STO 
UFA 
FAD 
CIoiS 
FAD 
STC 
TPL 
TIE 
FAC 
STC 
LDe 
FFo1P 
FAD 
STC 
UFA 
STO 
FAD 
CHS 
FAC 
STO 
CLA 

5+2,4 

-+1 
5) 
Lec" 
5)+1 
LCC) 
IFIELD 
IBA 
IBA 
5)+2 
LeC4 
5 )+) 

LCC3 
TEr-P 
FEILC 
IG-2 
51A 
NBOX 
498 
liB 
75B 
NTOCC,l 
C)200,i 
TlFo1E 
CT 
TIME 
NfCX,2 
R"O+1,2 
25A,2,1 
[NOX,2 

X+l,2 
Y+l,2 
U+l 
6 ) 
6) 

1)+ 1 
X+l,2 
4leA 
44A 
ONE 
X+I,2 
X+l,2 
ENBOX 
3)+1 
FHO 
6) 
Ff\OO 
6) 

FNC 
OEL 
FNOO 

-89­
.. _._---_

". 

..� 



ANA 6)+1 
-90­- _..­ ..... _-­

~LS 18 
POX 0,4 

47A ADD 11 
POX 0,1 

498 TIX ·+1,1,·· 
51A tXL 54A,2,·* 
52A ClA RHO+l,4 

FSB eEL 
FAt 3)+1 
STC Rt1C+l,4 

53A CLA RhO+l,1 
FAD DEL 
STC Rf-10+1,1 

54A TRA LCCit 
55A CLA FIELD+l,4 

FSB FIElt+l,l 
5TO 1 )+1 
LIJQ 1)+1 
FMP DEL 
CHS 
FAD FIELD+l,it 
STC FEILD 

56A CLA FEILD 
FAD GAM.,A 
FSB TEMP 
lRS 0 

57A SSP 
58A SUB LNTAlJ 
60A lLS 0 
61A fAC Y+l,2 
t:.2A STC Y+l,2 

REM 
6382 TIX 27A,2,1 
t:6A TRA lOC] 
67A LXD N·BDX, 1 

REM 
618 sxc 1 , 1 

6aA ClA RF+l,l 
STC FIElt+l,l 
LXI: NKf:RN,2 

lOB SXO J,2 
lOA ClA I 

ACD J 
POX 0,4 

71B TIX *.1,4,** 
13A CLA I 

SUB J 
AOD NeoX 

148 POX 5,1 
158 TIX *+1,1,** 
78A CLA Rt-iO+l,4 

FSB Rt-O+l,1 
STO U+l 
lOO l-99,2 
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fMP U+l 
LXC 1,1 
FAD fIELD+I,1 
STO fIELD+l,1 
TIX 708,2,1 
RE~ 

TIX 618,1,1 
79A LXC C)2CO,l 

TIX 228,1,1 
REf" 

SOB LXC I~CX,7 

eLA YLIP4IT 
SSP 

elB Lce Y+l,2 
LRS 0 
TLC *+2 
TRA 90A 
TIX 81B,2,1 
TRA lC3A 

90A CLA Y+I,1 
FOP 3)+2 
STC Y+l,1 
fIX 'lCA,I,l 

91B LXA 148,1 
92A eLA l-138,1 

FCP )+2 
STC l-138,1 
TIX 92A,I,1 

93A CLA LNTAU 
94A SSP 
CJ5A ACe FNAG 
96A STO LNTAU 
91A CLA cr 

FCP )+2 
STC cr 

98A CLA 2 ) 
Ace IG-13 
STO IG-13 
CLA IG-37 
Ace 11 
STC TEMP 

99A CAL * 
XIT 
£:T", 

(LEV) 

CAL (IG~)O 

SLW 1 
CAL (5TH) 

9901 NTR 8)FK,O,9 
lCOA ETM 

NTR TE~P 

NTR IG-13 
NTR 32353 CELTAT 
NTR 32532 LNTAL 
NTR 32532 .. 
LTM 

101 A CAL * 



103~ 

f\AME 

5 ) 

2 ) 

3 ) 

8)FK 

e)Fl 
~NAfiE 

ADATE 
1) 

CAl A 
I ... F 
eHE 

FNAG 
IX 

IRF 
INCX 

IG 

-9Z~ 
XIr (fll) 
TRA 8CB 
lXD 5,1 
LXC S+I,2 
lxe 5+2,4 
TRA 1,4 
RE~ 

CAL * PRINT SUBROUTINE NAME + DATE� 
XIT (lEV)� 
ET~
 

CAL (10 ... )0 
SLW 1 
CAL (Snd 
NTR 8)fl,0,9 
ElM 
NTR ANA~E 

NTR ACATE 
LTP' 
CAL •� 
XIT (fIL)� 
TRA 1,4 
REM 
TRA 55A 
TRA 67A 
lRA 56A 
lRA 79A 
TRA 33A 
TRA 44A 
eCT +00000100000C 
GCT +00200000000C 
eCT +200400000000 
eCT +20140000000C 
eCT +202400000000 
OCT +23300000000C 
CCT +000000071777 
eCT +OOOOOOOOOOOC 
OCT +00000100000C 
OCT +~OOOOOOOOOOC 

Bce 916) 4H OR =013, LNTA~5.7,8HDT :EI14,5H H Ne. EPI4,5 
Bce 4TER STVED AFCT HAL* ••••* 
Bee 1(28H*. FORMAT (READ UP) 
Bce 4A6) 4H OF us A6,ScS OP 
BCC l(ll~OU FORMAT (READ UP) 
ece IIV S ASSEMBLY NAMt 
Bce lC52862 
BSS 10 
PZE 0 
SYN 3) 
SYN 3)+1 
SYN 2) 
SYN 2)+1 
ECU 29361 
ECU 32529 
1:0U 32561 
EOU 32562 

11 
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IFIELC EClU 32540 
GA,.,.A ECU 32355 
FIELt EeU 31410 
ENfCX EClU 32354 

.OT ECU 32353 
BBB ECU 30386 

l~2"'BX fClU 32533 
lNTAU ECU 32532 

NBCX EClU 32542 
NK.fRN ECU 32530 
,..Tcee fCU 32528 

R~C Eeu 30385 
TIME ECU 32425 

X EClU 29361 
YLI"'IT Eeu 32345 

Y EClU 19361 
Z EClU 32434 

RF SYN Z-850 
XIT ope 002100000000 
t\TR OP~ 100000000000 
LAST SYN OATA+30 

EN~ 0 

R£:~ PATCH (SAP ASSEMBLER LANGUAGE) OeRY 
REM PATCh FOR Ie ... FOR USE WITH F 51 SUBRoutINE =PLRXY= 
REL PRECLUCES USE OF OCTAL INPUT FEATURE OF IOH)I 
GRG 609 CAUSES ZERO INTEGER TO PRINT AS BLANK 
HPR 3,3 STOP BECAUSE OCTAL INPUT CALLED 
TRA ··+800 PUSh START TO IGNORE DATA 
ARS 18 PATCH TO TEST INTEGER FOR ZERO 
TNl ··+169 NOT ZERO CONTiNUE . 
TXI •• +182,4,-2 lERO--FOOL FORTRAN 
R£:'" 
CRG 168 
TRA ··+609 GO TO PATC,", 
ENe 0 

REM I~TEKROGATE SENSE SWITCHES--FORTRAN SUBROUTINE 
RE~ ALLOnS SIMPLIFIEV USE OF THE FULL 64 
RE~ PCSSIBlE SETTINGS. CALLING SEClUENCE IS 
RE~ CALL SWITCH (INTGER) 
REfoI INTG~R IS REPLACEC BY AN INTEGER AS FOLLOWS 
RE~ INTGER(CEC) (OCT) SwITCH SETTINGS 
REfoi 0 0 UUULUU 
Rl'" 1 1 UUUUUO 
RE'" 2 2 ULJUUOU 
RE'" 3 3 UUUUOD 
REP. 8 1C UUOLUU 
RE'" 32 40 CUUUUU 
REP. 63 11 000000 
FUL PRCGRAfoi CARD 
flCIE , ,4 
PlE 0 
PIE sWIT+16 





SLN 1 - 95.,.·'_a • ______ .. 

TRA 2,4 
_0 SLT 1 
Xl TXI A2,O,-­ OFF 

SLN 1 ON 
eST 2 
eST 2 

Al RTe 2 
Cpy LIMBe 
TRA --1 
TRA A4 
ETT 
TRA A5 

X2 TXI AI,,-­
A2 REW 2 

SLN 1 
RTB 2 
Cpy LIMBe 

X4 TXl -+3,0,-­
TRA A3 
TRA A3 
CLA LIMBO 
SUB COCEWD 
TNl A3 
Cpy ll~BC 

TRA A3 
TRA -+2 
TRA A3 
RTB 2 
Cpy IG-16 

A3 
TRA 
REW 

Al 
2 

..... ...'-_... - . 

TSX BELl,4 
TSX PRINT,4 
PZE ,,2 
PZE , , l' 
lee 
HPR 

• .... 1 
2 

TQP A3.5 
REW 2 
wTB 2 
CPy CCOEkO 
WTB 2 
Cpy TAPEl 
WEF 2 
REW 2 

A3.5 SLT 1 
NOP 
TRA AC 

_4 eST 2 
BST 2 
RTB 2 
Cpy LIMBO 
TKA ·-1 
TKA A3 
ICO 



. . - . . --., . .-96-. 
RTT 
NOP 
TRA BACK 

AS� TSX BElL,1t 
TSX PRINT,4 
PlE , ,2 -_ ...- ..~-, ' .._- ~~ .~-- .. -_., .-._.._-----­
PZE ,,4 

- . 

TSX C3.5,2 
TRA TAPOS 

CCOEW() Bce IF51TAP 
LI "'Be PZE� 
IG ECU 32562� 
TAPIN REW IN� 

RTT 
NI� Nap 1� 

RTB IN� 
Cpy lI~BO
 

TRA *.. 3� .. . _.- ..... _~.-.. 
TRA B2� 
TRA B2� 
CLA LI~BG
 

SUB CCOEwO� 
TNl 82� 
Cpy LlfoleG� 
TRA B2� 
TRA *+2� 
TRA B2� 
RTB IN� 
Cpy NAME� 

BO� RTT - ....__..._.. 
NI28� NCP 128� 

RTB IN� 
CPY CIO� 
TRA e+3� 
TRA 80� 
ETT� 
TRA B3� 
CLA CIO� 
SUB IC� 
TNl BO� 
Cpy CSTEP� 

NI024� NQP 1024 
NIe20� NOP 1020� 

CLA CSTEP� 
SUB STEP� 
TNZ BO� 
LXA NI2S,l�
Cpy IG+l,l� 
TIX ·-1,1,1� 
LXA NI024,1�
Cpy l+1.1� 
TIX e-l,l,l� 
LXA Nit!� 
CLA NBOX� 
STO *+3� 
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CPV FIELD+l,l 
TXI *+1,1,1 
TXL *-2,1,·· 
LXA NI,1 
CLA INCX 
STC *+4 
CPV 
Cpy 

X+l,l 
V+i,l 

TXI *+1,1,1 
TXL 
lXA 

*-],1,*· 
N1020,l 

CPV BANK+l,l 
TIX *-1,1,1 
RTT 
TRA Bl 
TRA BACK 

Bl BST IN TAPE ERROR 
BST I iii 
BST IN 
TSX BELL,4 
TSX PRINT,4 
PZE 
PIE 

"IN
,,3 

TRA BO 
B2 TSX B£:LL,4 IMPROPER TAPE 

TSX PRINT,4 
PIE IN 
PZE , , 1 
TRA lAPIN 

83 TSX BELL,4 NOT fOUND 
lSX PRINT,4 
MIE NAME 
PIE ,,5 
TRA lAPIN 

IN EQU 3 
NA~E PIE 
CIC PIE 
CSTEP PIE 
Ie SYN IG 
STEP SYN IG-l 
l Eeu 32434 
eANK Eeu 8160 
t-.BCX SYN IG-2C 
FIELD eeu 31410 
INCX SVN lG-1 
BANK Eeu 

TAPCUT WTB 2 
CPY IG 
CPV IG-37 
ETT 
TRA C3 
LXA Nl2S,l 
CPV IG+l,l 
ETT 
TRA C3 
TIX *-3,1,1 



--

LXA 
Cpy 
Ell 
fRA 
TIX 
LXA 
(l.A 
SlO 
Cpy 
EfT 
TRA 
TXI 
TXL 
lXA 
CLA 
STC 
CPY 
Cpy 
EIT 
TRA 
TXI 
TXL 
lXA 
CPY 
ETT 
TRA 
fIX 
WEF 
BST 
BST 
RTB 
CPY 
TRA 
TRA 
100 
RTT 
TRA 
CLA 
STC 
CLA 
STO 
CLA 
STC 
TRA 

C2 BST 
~EF 

BST 
TRA 

C3 eST 
WEF 
REW 
TSX 
TSX 
PIE 
PIE 

-98-' _....... ... -........_- _...__..... -_. ----­
N1021t, i 
l+l,l 

C3 
*-3,1,1 
NI,1 . -_.. .. ­ 0 •• _ - _••__ .•• _ •• 0._· __ 

NBOX 
*"5 
FIELD+l,1 

C3 
*+1,1,1 
*-4,1,** 
NI,1 
INex 
*+6 
X+l,l 
Y+I,1 . - .. _... _.. ._.. 

C3 
.+1,1,1 
*-5,1,.* 
NI024,1 
BANK+l,l 

C3 
*-3,1,1 
2 
2 
2 
2 
LI~eo 

*-1 
C2 

C2 
CIO 
16-6L 
CSTEP 
IG-61 
NAME 
IG-17 
BACK 
2 
2 
2 
TAPOUT 
2 
2 
2 
BELL,4 
PRINT,4
,,2 
,,4 



TSX 
TRA 

C3.5� REW 
RTB 
Cpy 
TRA 
TRA 
TRA 
CLA 
SUB 
TNZ 
Cpy 
TRA 
TRA 
RTB 
Cpy 
TRA 
TRA 
TRA 
CLA 
SUB 
TNZ 
TSX 
PZE 
PIE 
TRA 

C4 REw 
WTB 
cpy 
WTB 
CLA 
ACO 
STO 
Cpy 
TRA 

BACK LX[) 
LXD 
LXD 
TRA 

BELL WPR 
SPR 
SPR 
TRA 
ENe 

C3.5,2 
TAPOUT 

-99-.~ . ._... _....... _~ -_... ~. -

2 
2 
LIMBO 
-+3 
Cit .. - .. _.-
Cit 
LIMBO 
CCCEWC 
Cit 
LI~BO 

C4 ..._...•_.... 

C4 
2 
LIMBO 
-+3 
Cit 
Cit 
LIfI180 

_..... -­
NAME 
Cit 
BEll,4 
,,2
,,6 
C3.5 
2 
2 
CCCEWD 
2 
NAfo!E 
PZEI 

. ..-_.' " 
. _ . ....__ .__ . 

NAME 
NAME 
1,2 
XI,I 
X2,2 _. _.. - . 

X3,3 
2,4 

5 
10 
1,4 
0 



APPENDIX III: BOUNDARY TRAJECTORY SPACE CHARGE PROGRAM 

Attached is a listing of the program. which is broken into 13 sub­

programs. of which the first is the main control program. The first 11 

subprograms are coded in the Fortran language. except that the one 

named PLOT has a few symbolic machine language instructions. The 

last two are coded in the symbolic machine language and would require 

rewriting for use on a machine other than the IBM 704. The Fortran 

language part of the code is nominally compatible with the assemblers 

for machines other than the ffiM 704. but the compatibility has not been 

tested. 

The program requires 14 seconds to step ZOOO particles once 

and recompute the field. Roughly one minute was required to record 

on tape. the output sequence which consists of roughly 400 numbers and 

four 8-1/z" by 11" graphs. The nominal add time of the mM 704 is 

24)'$ and the multiply time is 204;US. 

The subroutines MURCD2,28 MU SAVE. Z9 MU SIN4/COS4. 30 

MU PLDT1. 31 MU HPLOT. 31 MU SYMBOL31 and MU LPlDT31 are 

required. The first of these reads data from cards into core locations 

specified on the cards and is used for all input data for the program. 

The second. a generalized version of the subroutine SAVER included 

-100­
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here, saves the status of the COIIlputer on a tape if sense switch 1 is off, 

allowing a run to be temporarily discontinued. The third computes the 

sine or cosine of 211 times the argument given it, and last four routines 

convert their input numbers into output data on tape 9 in the form of in­

32crements to be plotted on a Calcomp digital plotter. Such a tape may 

be interpreted on an mM 4Kl401 computer with attached plotter using 

MU X25. 33 

The reason for the obscure linkage between the present program 

and the plotting subroutines is one of compatibWty. If subroutine PLDT 

is replaced by MU PLDT, 34 the output is in the form of graphs simu­

lated by printing asterisks on printer paper by the 1401 computer. No 

digital plotter is then required, but the information density of the out­

put is reduced. 

Points or "particles" on the boundaries and "test particles" are 

carried in the calculations. The difference is that the test particles do 

not contribute to the azimuthal density 1(')or to the field e(CP), and 

are included only to allow a small sample of the bo\Dldary to be regarded 

in detail. The test particle coorcUnates at each output time may option­

ally be printed out. They are also used to control the size of the time 

step to assure accurate integration of the motion equations. 

The main program initializes the data banks, reads the control 

parameters, controls the sequence of use of the subroutines and per­

forms a few calculations. AlJ sense switch options occur here. These 
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allow manual control of the program.. and are normally all off. Sense 

switch 1 (551) must be off. If SS2 is turned on.. the program is inter­

rupted and SAVE is called. If SS3 is on.. the number of integration 

steps completed is printed on-line as is the total charge in the distribu­

tion. If 556 is on.. new control parameters are read through the on­

line card reader. At the termination of the calculation.. the main pro­

gram calls SAVER which stops the machine. 

Subroutine INPUT specifies the initial distribution of boundary 

particles and test particles from data read from cards. It has two 

optional forms. The first provides boundaries either of the form 

W(~) = A+B, ~os ( h. CP+(3.) + B~ c.os (hI 4'+~») or in the form of 

a single closed curve whose shape is that of an oval of Casini. The 

second gives a boundary in the form of a rectangle in the phase space. 

The number of complete boundaries is variable but less than 11 and 

the constant value of the distribution function within each closed curve 

may have different values. The number of particles must be less than 

10001 and of test particles less than 1001 but greater than 1­

Subroutine DENSTY calculates f{tp) at 128 points in the region 

-1T~ e.y~ 11 • 1;'he boundary is taken to be rectilinear between adja­

cent points. Periodicity is forced, and the first and last points on a 

boundary are taken to be adjacent and connected by the boundary. The 

two types of boundaries used are indicated in Fig. 10. One type is 

closed on itself in the region -zrrn ~ f ~ Z1T?2., where 1t is a 
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finite integer, and the other is periodic. The region bounded by a 

single curve of the second type extends from the line W=O to the line 

W· Wrs (<9) which may be multivalued. These boundaries must then 

occur in pairs, each having the same value of the distribution function. 

Subroutine FIELDS computes a kernel from the control param­

eters, specifies a field bias of the form -~ + V 5 i 11 P f corre­

sponding to a radio-frequency acceleration term, and convolutes the 

density with the kernel to obtain the net field. 

Subroutine STEP integrates the motion equations through one 

time step for either type of particle. In retrospect, it is seen that five 

multiplications per particle per time step could have been saved by car­

rying f in units of 2 tr/tZIJ rather than Z. tT • This would be a saving 

of roughly 10'0 in over-all operating time. 

Subroutine PLOTSS forms graphs of P(CJ') versus <P, and plots 

the curve formed by the test particles in the phase space, checking first 

to see that no points fall outside the range of the graph. If this overflow 

occurs, the scales are increased accordingly. The graph of ecCP) 

versus q:> may also be made and the boundary curves formed by the 

particles may be plotted. 

Subroutine INPRIN writes the control parameters and the density 

and field values as output records on tape 9. These are interspersed 

among the plotting records. 
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Subroutine WTEST checks to see that the largest movement m 

cP during one integration step lies between specified limits. 

Subroutine PLOT forms the plotter output. placing five graphs 

on one 7-1/2." by 11" area. These five graphs represent the values of 

one of the output functions at five instants in the evolution of the system. 

The graphs are labelled with the function name. the run number. and 

the integration step number of the first graph included. In general. the 

known behavior of the system allows them to be distinguished. It should 

be noted that the subroutine HPLOT causes the next output statement en­

countered to give written information on the graphs rather than output 

for the printer. 

The function subprogram AMAX/AMIN finds the maximum/mini­

mun of a specified array of numbers. more efficiently and easily than 

Fortran coding allows. 

Subroutine SAVER records the status of the computer on tape 1 

at the end of a run. If sufficiently interesting. the r1.Ul may be continued 

from this point by reloading it from the tape. The format of the tape is: 

two records for ordinary SAVE records .. 2.'Tl records containing 11 

SAVER records from n runs and an end of file marker. The program 

does its own bookkeeping except that an end of file must not be the first 

record on a tape to be converted to a SAVER tape. Access to the on tJ; 

run m~ be o'¥ained by reading 2 n + 1 records and loading from the 

tape. 
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The usual SHARE disclaimer should be appended here: the pro­

gram has been extensively tested and was found to operate properly on 

the MURA computer system early in 1962. No other guarantee is justi­

fiable, since these machines are being continually modified by the 

manufacturer. 



C 

10 

50 

55 

57 
60 

200 
2020 

Z10 

380 
400 
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BOUNDARY TRAJECTORY SPACE CHARGE PROGRAM CHURA F51.5) DORY 
DIMENSION OATA(lOO)i DILDO), SIGMACIO), NUMBERClO), PHII(lOOO), WT 

0(1000), PHI(lOOOO), W(lOOOO), Plll8), E(l28) 
COMMON DATA, NBANDS, SIGMA, NUMBER, PHIT, WI, PHI, W, P, E, NCOUNT 

C, INDEX, NOEX, NPLOTS~ NCOUNT, A 
EQUIVALENCE (DATA,O), CO(7),TIME) 

E,10(31,DT) 
DIMENSION DUMMY (20) 

A=O. 
INDEX=l 
NOEX=1 
NCOUNT=O 
NPLOTS=O 
0(18)=1. 
O(19)=1.E+35 
0IZO)=-0(19) 
0(Z3)=0. 
0(Z4)=0. 
0(46)=Z. 
0(50)=1. 
CALL MURCOZ (DATA) 
0(Z1)=0. 
NBANoS=DATA(4) 
NLINES=DIS) 
NPLO=0145J 
NLAST=0(46) 
IF (A) 60,50,60 
SENSE LIGHT a 
CALL INPUT (W, PHI, INDEX, SIGMA, NUMBER, NBANOS, D, 10000) 
CALL INPUT (WT, PHIT, NOEX, DUMMY, DUMMY~NLINES~ 0, iooof 
J NDEX= INDEX-l 
NDEX=NOEX-l 
DO 55 l=l,NDEX 
PHITII)=(PHITII)+Z.O)-INTF(IPHITC!)+Z.O» 
DO 51 l=l,INOEX 
PHIIIJ=(PHI(I)+2.0)-INTf(IPHICI)+z.6~f"-· 
CALL DENSTY 
CALL FIELDS 
CALL I NPRIN I 1 ) 
CALL PlOTSS 
IFINCOUNT-NLAST)2020,450,450
CALl"WTEST 
DO 210 1=1,128 
E(I)=EII)-DT 
CALL STEP (WT, PHIT, NDEX, OT/6.2831853, E) 
CAll STEP CW, PHI, INDEx, OT/6.2831853, E) 
CALL OENSTY 
CAll FIELDS 
TIME=TIME+OT 
NCOUNT=NCOUNT+1 
NPLOTS=NPlOTS+l 
If(SENSE SWITCH 3) 380,4~0 

PRINT 501, NCOUNT , 0(44) 
IF CSENSE SWITCH 2)410,420 



4Z0 
430 

437 
438 
440 
450 

4bO 

501 
502 

C 

47 

50 

60 
b5 

70 

90 
100 
110 
200 

OC21.=I~. 
CALL PLOTSS 
CALL SAVE 
O(21)=0. 
CALL INPRINC 1) 
IFCNPLOTS-NPLO) 440,430,430 
NPlOTS=O 
tALL INPRINCU 
IF CO(b)) 431,438,437 
WRITE OUTPUT TAPE 9, 502, 
CALL PLOTSS 
IFlSENSE SWITCH b) 460,200 
NUMBERC3Z452)=DCZ) 
O(21)=I. 
CALL PLOTSS 
CALL SAVER 
O(21)=0. 
NUMBERC3245Z):NUMBERC32452)� 
PAUSE 50505� 
A=l.� 
GO TO 10� 
FORMAT C5H STEPIIO, IPE15.1)� 
FORMAT CIH I1/CIH lPlOE13.5))� 
END CO,I,I,I,O)� 

INPUT� 

NCOUNT, CPHITCI),� 

-107­
---" .. -.-_._._-_.__._-­

WTCI), l-l,NDEX) 

DORY� 
SUBROUTINE INPUT CW, PHI, INDEX, SIGMA, NUMBER, NBANOS, 0, MAX)� 
DIMENSION WCl), PHI(1), SIGMACl), NUMBER(l), ECl), o(1)� 
DIMENSION PRCZO)� 
WFCNOF (X )=PR (4)-PR (5 )*COS4F (PR (6)+P.R C7) .Xl_� 

W-PRI81*COS4FCPR(9)+PRCIO)*X)
CASINIFeX)=U*SQRTFC(SQRTFCALPHA4+CCC(X-XO)/V)*.Z))) +CSQRTFCAlPHA 

F4+(CCCX-XO)/V).*2»»)-1.-C(CCX-XOI/V)*·2») 

Nl=XHINOfCNBANDS,10)� 
IF (DC22)) ~~Ol~7,200
 

DO 100 N=I,Nl� 
CALL MURCD2 CPR)� 
NPTS=PReZI� 
NUMBERCN)=NPTS� 
SIGHACNJ=PRCl)*OClS)�
X=-l./fLOATFCNPTS)�
DX=-X .� 
DO 90 1=I,NPTS� 
x=x+ox� 
WU=WFCNOFCX)� 
IFeINOEx-HAX) 10,70,90� 
PHICINOEX)=X�
WCINDEX)=WU� 
INOEX=lNOEX+l� 
CONTINUE� 
CONTINUE� 
RETURN� 
00 260 J=l,Nl� 
CALL MURCDZ CPR'� 



"-t:fPT ~ PR (2 )� 
NPTL:aNPT-l� 
NPT2=NPT+NPT� 
NPTS=NPT2+NPT2� 
IF(INOEX+NPTS-MAX) 201,201,260� 

201� SIGHA(J)=PR(l)*O(lO)� 
NUMBER(J)=NPTS� 

202� XO=PR,()� 
XO=XO� 
ALPHA4=(PRCll)**4)/4.� 
U=PRCIZ)� 
V=PR(13)� 
XMAX=V*SQRTF(1.+PRCll).*2)� 
OX=XMAX/fLOATfCNPT)� 
X=XO� 

230� WCINDEXJ=CASINIFCX)� 
PHI(INOEX):XO� 
N=INDEX+NPT2� 
W(N)=-WCINOEX)� 
PHICN)=XO� 
N:INDEX+NPT� 
MOEX=INOEX� 
WCNa:o� 
PHI(N)=XO+XMAX� 
N=N+NPT2� 
WCN)=O� 
PHICN)=XO-XMAX� 

240� DO 250 M=l,NPTL� 
X=X+OX� 
N=MDEX+H� 
F=CASINIFCX)� 

243� W(N)=f� 
PHlCN)=X� 
N=MDEX+NPT2-M� 
WCN)=-F� 
PHI(N)=X� 
N=MDEX+NPT2+M� 
W(N)=-F� 
PHI(N)=XO+XO-X� 
N=MOEX+NPTS-M� 
WCN)=f� 
PHICN)=XO+XO-X�

250 cONtiNUE" .� 
253 INDEX=INDEX+NPTS� 
260 CONT INUE .� 

RETURN� 
END (0,1,1,1,0)� 

C� INPUT ALTERNATE VERSION 
C� INPUT BOUNDARIES ARE RECTILINEAR 

SUBROUTINE INPUT IW, PHI, INDEX, SIGMA, NUMBER, NBANDS. 
DIMENSION WeI), PHIIl), SIGMA(1), NUMBER(l),"EClt, 0(1. 
DIMENSION PR(20) 
WFCNti~(X)=~R(4t-PR(5)*caS4FCPR(b)~PRC11*~1--" 

DORY 

D. MAX) 



i 
W-PR(8)*COS4F(PRC9.+PR(lO.·X~ 

Nl=XMINOFfNBANDS,lO)� 
IF (0(22') 200,47,200� 

47� 00 100 N=l.Nl 
CALL MURe02 CPR) 
NPTS=PR(2. 

50� NUM8EtU N)=NPTS 
SIGMA(N):PR(1)*O(18) 

60 X=-l./FLOATFfNPTS) 
65 DX=-X 

DO 90 l=l,NPTS� 
X=X+DX� 
WU=WFCNOF(X)� 
IF(INOEX-MAX) 70,70,90� 

70� PHI(INOEX)=X 
W(INDEX)=wU 
INoEX=INOEX+l 

90 CONTINUE 
100 CONTINUE 
110 RETURN 
200 00 260 J :: 1, Nl 

CALL HURC02(PR) 
NPT :: PR(Z) 
NPT2 :: NPT+NPT 
NPTS = NPT2+NPT2 
IF (INDEX+NPTS-MAX) 201, 201, 260 

201� SIGHAeJ) :: PR(l)*orlB) 
NUMBER (J) :: NPTS 
XO :: PRe)~ 

XO :: XO 
XE :: PR(l2) 
VT :: PR(l)) 
PERIM :: X~-XO+VT 

NHFTOP :: (XE-XOJ I PERIM • FLOATF(NPT-l) 
NHFSIO = NPT-NHFTop-l 
OX = (XE-XO) I FLOATf(NHFTOP) 
OV :: VT I FLOATF(NHFSIO. 
X = XO 
V = VT 

230� W( INDEX) :: VT 
PHI (INDEX) = XO 
N = INOEX+NPT2 
WeN) = -VT 
PHI (N) = xo 
N :: INDEX+NPT 
MDEX = INDEX 
WIN)� = 0 •
PHlfN) :: XE� 
N :: N+NPT2� 
WIN)� = 0 • 
PHlfN) = XO+XO-XE� 
DO 250 M = 1,NHFTOP� 
X :: X+ox� 
N :: HOEX+M� 
WeN) = v� 
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PHI CNI :: X� 
N a MDEX+NPT2-M� 
WCNI := -Y� 
PHICNI :: X� 
N a MOEX+NPT2+M� 
WCN) := -y� 
PHICNI = XO+XD-X� 
N = MOEX+NPTS-M� 
WCNI :: Y� 
PHICNI = XD+XD-X 

250� CONTINUE� 
X :: XE� 
Y = YT+DY 
00 252 M = 1,NHFSID 
Y = Y-DY 
N = MDEX+M+NHFTOP 
WCN)� = Y 
PHI (N) = X __� .._ ..._--­
N :: MDEX+NPT2-M-NHFTOP� 
WCNI = -Y� 
PHI(N) :: X� 
N :: MDEX+NPT2+M+NHFTOP� 
WCN) = -y� 
PHICN) = XO+XO-X� 
N = MOEX+NPTS-M-NHFTOP 
WCNI� = Y 
PHI IN) = XD+XD-X� 

252 CONTINUE� 
253 INOEX=INDEX+NPTS� 
260 CONTINUE� 

RETURN� 
END (0,1,1,1,0)� 

C DENSTY DORY 
.~UeRDUTI~E DENSTY ..._.. _. .__ _ _._. __. _. _._ . 

DIMENSION DATA(100), Del00l, SIGMAIIOI, NUMBERCIO), PHI1IIOOOI, Wl 
DCI000), PHICIOOOO), W(10000), peI28), E(128) 

COMMON DATA, NeANDS, SIGMA, NUMBER, PHiT, wi. PHI, w, P, E, NCOUNT 
C, INDEX, NDEX 

EQUIVALENCE (DATA,D), CD(1).TIMEI 
E • (0 I 3 ) , DT ) . 

DIMENSION PT(256) 

SENSE LIGHT 1� 
DO 10 N=1,256� 

10� PTCN)=O.� 
NORG=O� 
DO 340 N=l,NBANDS� 
NPB=NUMBERCNI� 
SIG=51GMACN,*3.1415926� 

100 DO 330 Ka1,NP8� 
110 Kl::K+l+NORG� 

IF CK-NPB' 130.120,120�
120� Kl=l+NORG -- _. 



130 

145 

150 
160 

170 

180 

200 

210 

220 

240 

250 

260 

270 

300 
330 
340 

350 

C 

KK=K+NORG 
PHI I-PHI CKK) 
PHI2=PHICKl) 
DElPHI=PHI2-PHIl 
IF CABSfCOElPHI)-.5) 180,150,150 
IF CDELPHI) 160,160,110 
~HI2=PHI2+1. 

GO TO 145 
~HI1-PHIl+1. 

GO TO 145 
Nl=PHI1"128.+1. 
N2=PHI2·128.+1. 
IF CNi-N2) 
NMIN=N1 
NMAX=N2 
PHINT=PHII 
PHIFIN=PH12 
WINT=WCKK) 
WfIN=WCK1) 
GO TO 220 
NMIN=N2 
NMAX=Nl 
PHINT=PHI2 
PHIFIN=PHII 
WINT=W CK U 
WfIN=WCKK) 

200,300,210� 

SLOPE=CWINT-WFIN)/CPHINT-PHIFINJ 
XNITAL=PHINT 
YNITAL=WINT 
EX=CfLOATfCNMIN-l»·.0078125 
00 270NN=NMJN,NMAX 
EX=EX+.0078125 
IF CPHIfIN-EX) 250,260,260 
AREA=SIG • CPHIfIN-XNITAL) • CWfIN+YNITAL) 
GO TO 210 
YFINAL=WINT+CEX-PHINTJ-SLUPE 
AREA=SIG .. (EX-XNITAL) - IYfINAL+YNITAL) .. 
YNITAL=YflNAL 
XNIT AL=EX 
PTCNN)=PTCNN)+AREA 
GO TO 330 
PTCNl)=PTINl)+SIG"OELPHI*CWIKKJ+WCKl» 
CONTINUE 
NORG=HORG+NP8 
OC44-)=0. 
DO 350 1<.=1,128 
PCK)=PTCK)+PTCK+128) 
O(44)=D(44J+PCK) 
RETURN 
END CO, I, I, 1,0) 

FIELDS 
SUBROUTINE FIELDS 

-111;� 

.. SIGNfCl.,DELPHI) 

SIGNFC1.,DElPHI) 

DORY� 

DIMENSION DATACIOO), OClOO), SIGMACIO), NUMBERUO),- PHITCIOOO), WT 
DC1000., PHI(10000), WCIOOOO), P(128), E(128) 
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COMMON DATA, NBANDS, SIGMA, NUMBER' PHIT, WT, PHI, W, P, E, NCOUNT 
C, INDEX, NDEX 

EQUIVALENCE CDATA,O), (Oel),TIME),lDC24),NK) 
E,CD(3),DT) 

DIMENSION RF(128) 
DIMENSION CERISO) 

IF INK) 40,10,40 
10 DO IS 1=1,128 
15 Rfll)=O. 

00 20 1=1,30 
CERel)=De50)*Oel+50) 
NK=I-l 
IF (CERlI) 20,30,20 

20 CONTINUE 
30 IF 10(48») 33,40,33 
33 DO 35 1=1,128 
35 RFel)=OC49)-SIN4FClFLOATFCI)-.5)/128.)*OC47) 
40 DO 100 1=1,128 
50 Eel)=H.FeI) 

00 100 J=l,NK 
11= I +J 
IF CII-128) 70,70,60 

60 I 1=I 1- 12 8 
70 I2=I-J 

IF eI2) 80,80,90 
80 12=12+128 
90 13= 11 

14=12 
100 ECI)=ECI)+CEReJ)*(PCI3)-PCI4)J 

IF (SENSE LIGHT 1) 110,110 
110 RETURN 

END lO,I,I,ltO) 

C STEP DORY 
SUBROUTINE STEP CW, PHI, INDEX, DT, E) 
DIMENSION W(l), PHICI), SIGMA(1), NUMBERCl), E(1) 

DO 330 I=l,INDEX 
PHIF=PHICI)-OT*WCI) 
PHIBAR=PHIF+PHIel) 

240 IF (PHI8AR) 250,260,260 
250 PHIBAR=PHIBAR+2. 

GO TO 240 
260 IF CPHIBAR-2.) 2B5,210,270 
210 PHIBAR=PHIBAR-2. 

GO TO 260 
285 IF CPHIF) 290,295,295 
290 PHIF=PHIF+l. 

GO TO 285 
295 IF CPHlf-l.) 305,300,300 
300 PHIF=PHIF-l. 

GO TO 295 
305 PHICl)=PHIF 
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ENO=64.*PHIBAR+.5� I· 

._-- DEL=END-INTF (END) 
NO=ENO 

310 IF CNOI 315,315,320 
315 NO=NO+128 
320 N01=NO+l 

IFINOI-128) 326,326,323 
323 N01=NOl-128 
326 FIELo=EINO)-(E(NO)-EIN01»*oEL 
330� W(I)=WII)+FIELo� 

RETURN� 
END (0,1,1,1,01� 

C� PLOT SS 
SUBROUTINE PLOTSS 
DIMENSION oATA(lOO), 

0(1000), PHl(100001, 
COMMON DATA, NBANoS, 

C, INDEX, NoEX 
EQUIVALENCE 10ATA,O), 

E,eo(31,OT) 
DIMENSION S14) 

NSTEP=NCOUNT 
S(2)=0. 

25� BIG=AHAXCP,128) 
SMALL=AMINCP,128) 
S(1)=129. 
S(3)=MAXlFeBIG,O(14) 
S(4)=HINIFCSMAlL,oCI5)) 
DO 30 N=1,128 
EN=N 

30� CALL PLOT C9, EN, PIN), S, 
CAll PLOTI9,0,O,S,l,1' 
WRITE OUTPUT TAPE 9, 503, 

5� BIG=AMAX(WT,NDEX) 
SHALL=AMINCWT,NOEX) 
SIl)=I. 
S(3)=MAXIFCBIG,0110») 
S(4)=MINIFISMALL,0111» 
DO 10 N=l,NoEX 
EX=PHITCN)

10� CALL PLOT C9, EX, WT(N), 
CALL PLOT 19, 0, 0, S, 1, 
WRITE OUTPUT TAPE 9, 501, 
IF CO(9») 35,15,35 

35� BIG=AMAXIE,126) 
SMALL=AMINIE,lZ8) 
SCl)=129.
S(3)=MAXIFCBIG,0(16)) 
S(4)=MINIFCSHAlL,DCI7)) 
00 40 N=I,128 
EN=N 

DORy 

0(1001, SIGMA(lOI, NUMBER(lO), PHITCIOOOI, WT 
W(lOOOO), P(1281, E(12S. 

SIGMA, NUMBER, PH~T, WT, PH~, W, P, ~, ~COU~T 

IO(1),TIMEI� 

I, 0)� 

NSTEP, TIME, ISII), 1=1,4), 81G, SMALL� 

S, 1,� 0) 
1)
NSTEP, TIME, ISCI), 1=1,4), BIG, SMALL 

40 CALL PLOT (9, EN, ECN), S, 1, 0) 
CAll PLOTI9,0,O,S,1,1) 
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WRITE OUTPUT TAPE 9, 504, NSTEP, TIME, CSCI), 1=1,4), BIG, SMALL 
15 IFIDCa') 16,45,16 
16 8IG=AMAXCW,INOEX) 

SMAll=AMINIW,INDEX)� 
SIU=1.� 
SI3 )=MAX IF ( BIG, °(12) )� 
S(4)=MINIFISMAll,0(13»� 
00 20 N=l,INOEX� 
EX=PHICN)� 

20� CAll PLOT C9, EX, WIN), S, 1, 0)� 
CAll PlOT(9,O,O,S,l,l)� 
WRITE OUTPUT TAPE 9, 502, NST~P, TIME, (Stl), 1=1,4), BIG, SMAll� 

45 RETURN� 
501 FORHAT C3lH-TEST PAR TIC l E$- STEP TIME SCALEI6,7FI0.5)� 
502 FORMAT 131H-aNDY PARTICLES-STEP TIME SCAlEI6,7FlO.5)� 
503 FORMAT (3lH­ DENSITY STEP TIME SCALEI6,7FIO.5)� 
504 FORMAT 13lH- fIt:lO STEP TIME SCAlEI6,lFI0.5)� 

END 10,1,1,1,0) 

C� INPRIN DORY 
SUBROUTINE INPRINIISH) 
DIMENSION DATAl 100), 0(100), SIGMACIO), NUMBERCI0), PHIT(1000), WT 

0(1000), PHIIIOOOO), wtlOOOO), PI12S), E112B) 
'COMMON DATA, NBANOS, SIGMA, NUMBER, PHIT,' WT, PHI, W, P, E,' NCOUNT 
C, INDEX, NOEX 

EQUIVALENCE 10ATA,0), 10(1),TIME)� 
E,10(3),Or), 10IZ3),JAKE)� 

WRITE OUTPUT TAPE 9, 501, ISH, JAKE, NCOUNT 
IF IJAKE) 20,10,20 

10 JAKE=DIZ) 
PRINT 501, ISH, JAKE, NCOUNT 

20 WRITE OUTPUT TAPE 9, 505, TIME,NCOUNT,NBANDS,INDEX,NDEX,ISIGMACI), 
11=1,10),INUMBERCI),J=1,10J� 

WRITE OUTPUT TAPE 9, 502, IDATAII), 1-1,100)� 
WRITE OUTPUT TAPE 9, 503, CPli), 1=i,i28)� 
WRITE OUTPUT TAPE 9, 504, IEII), 1=1,12S)� 
RETURN� 

501 FORMATCI1,29H80UNOARY SPACE CHARGE PROGRAM,20X21101111)� 
502 FORMAT CSHOOATA/llH IPI0E13.5JJ� 
503 FORMAT tSHOOENSITY/CIH IPI0E13.5»� 
504 FORMAT CbHOFIELD/(lH IPIOc13.5»� 
505 FORMATI30H TIME STEP NBANDS NBNORY NTESTFIO.S,4110/16H SIGMA, NO.1� 

18ANO/IH IPI0EI3.S/I0Il3J� 
END CO,l,l,l,OI� 

C� WTEST DORY 
SUBROUTINt: WTEST 
DIMENSION DATAII00l, DILDO), SIGMACIOI, NUMBERIIOI, PHITCIOOOI, WT 

0(1000), PHIIIOOOO), WtlOOOO), PII2S), EII2S) 
COMMON DATA, N8ANOS, SIGMA, NUMBER, PHIT, WT, PHI, W, P, E, NCOUNT 

C, INDEX. NDEX� 
EQUIVALENCE IDATA,D), (O(7),TIME)� 
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BIGEST=AHAXCWT,NDEX) 
10 IF CBIGEST-D(19)/DT) 50,50,20 
20 DT=OT/2. 
30 IF CBIGEST-D(19)/DT) 40,40,20 
40 RETURN 
50 If CBIGEST-O(20l/0T) 60,60,40 
60 DT=oT_2. 
70 GO TO 50 

END CO,l,1,1,1) 

c PLOT LINKAGE fOR BSCP AND THIRTY INCH PLOTTER , DORY 
SUBROUTINE PLOT CNTAPE, EX, WY, S, NO, IND) 
DIMENSION S(4), BANK(200), SW(4), ORG(4), LABL(1) 
COMMON DATA, NBANOS, SIGMA, NUMBER, PHIT, WT, PHI, .W, P , E, NC DUN T 

C, INDEX, NOEX, NPLOTS, NCOUNT, A, BANK 
DIMENSION OATACIOO), DlIOO), SIGMA(10), NUMBER(10), PH IT. (lOOp!! ..~T __ 

OllOOO), PHI(10000), W(lOOOO), p(12a), ~Ci~~) 
EQUIVALENCE (OATA,O), (Dl7),TIME), lO(3),OT) 

SLOCP DEC 10441 
SLOCE DEC 1031) 
SLOCT DEC 31441 
SLOCW DEC 20441 
SMASK OCT 77711 
SL4 ALf W.PtH 
SL3 ALf E-PHI 
SL2 ALF WT-PHI 
SLABL ALf P-PHI 

N=N 
IFCN)5,5,60 

S5 CLA _57 
S ANA MASK 
S ALS 18 
S STO IWY 

IF(0(2U) 9,9,6 
6 If (DC21)-1.5) 7,1,220 
7 D(21)=2. 

M=O 
If CNP) 200,200,140 

9 N=l 
If(IWY-LOCP) 10,40,10 

10 N=2 
IFCIWY-lOCT) 20,40,20 

20 N=3 
IfcIWY-lOCE) 30.40,30 

30 N=4 
IFCIWY-LOCW) 200,40,200 

40 IF (HP) 50,50,60 
50 ORG( 1) =0. 

ORG(2)=1.5 
ORGC)=1.5 
ORG(4)=1.5 
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NORUN=O(2) 
M=2 
IF (0(9)) 52,54,52 

52 ORG(3)=15. 
M=H+l 

54 IF (0(8» 56,58,56 
56 ORG(4)=ORG(4)+7.5 

S51 CLA WY 
M=M+l 

58 CALL PLOTS (BANK(200), 200, 11.) 
60 IF (INO) 70,10,120 
10 IF (SWCN» 80,80,110 
80 EXHAX=HAXIF(S(l), S(2») 

EXMIN=MINIF(SC1), S(2» 
WYMAX=MAXIFCS(3), $(4») 
WYMIN=MINIF(S(3), S(4) 
If(N-l) 81,83,87 

83 NP=NP+l 
NDUHHY=NO 
NOUHHY=NTAPE 

81 NPEN=3 
IF DIVIDE CHECK 90,90 

90 AX=lO./CEXMAX-EXHIN) 
, BX=.5-AX*E:XMIN 

AY=6.5/(WYHAX-WYMIN) 
BY=-AY *WYH I N 
IF DIVIDE CHECK 200,100 

100 SW(N)=l. 
IF (Np-lJ 110,102,110 

102 CALL PLOTl (.5, ORG(N), 3, -1) 
CALL PlOTl C.5, ORG(N)+6.5, 2, -1) 

110 X=AX*EX+BX 
Y=AY*WY+BY 
X=HINIFCX,10.5) 
X=HAXIF(X,.5) 
Y=HINIF(Y,6.5) 
Y=ORG(N)+MAXIFCY,O.) 
IF (ABSF(XLAST-X)-2.5) 113,112,112 

112 NPEN=3 
113 CALL PLOTI (X, Y, NPeN, -1) 

NPEN=2 
XLAST=X 
GO TO 220 

120 SW(NI=O. 
IF (NP-l) 121,123,127 

123 CALL PlOTl (10.5, ORGeN), 3, -1) 
CALL PloTl (.5, ORG(N), 2, -1) 
HALf=.5 
CALL HPLOi (HALF, ORG(N)-.25, .01) 
WRITE OUTPUT TAPE 9, 501, NORUN, NCOUNT, lABLCN) 

127 If (NP-5) 2GO,130,130 
130 M=M-l 

If (HI 140,140,200 
140 NP=O 

CALL ~LOtl (11.~0,3,IJ 
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200 N=O 
220 RETURN 
501 FORHATC8HBSCP RUNI6,5H PlOT[6,4XA6) 

END (0,1,1,1,0)� 

REM FUNCTION SUBPROGRAM AMAX/AMIN CSAPASSEMBlER lANG.) DORY 
REM MAXACARRAY,NUMBER) 
REM 
REM 

AMINCARRAY,NUMBER) 
MINACARRAY,NUMBER) 

FUL PROGRAM CARD 
MZE ,.10 
PZE 
PZE INDEX+l 
PZE 
BCD lAMAX 
PZE AMAX 
BCD 1MAXA 
PZE AMAX 
BCD lAMIN 
PZE AMIN 
BCD IMINA 
PZE AMIN 
REl 
REM FIND MAXIMUM OR MINIMUM OF THE FIRST 
REM NUMBER DATA STORED IN ARRAY THROUGH 
REM ARRAY+1-NUMBER. AC CONTAINS MAXIMUM OR 
REM MINIMUM AS CALLED AND MQ CONTAINS VALUE 
REM OF INDEX FOR LAST DATUM EQUAL TO MAX OR MIN 
ORG 0 

AMAX SXD IRSAV,l SAVE A 
ClA 1~4 GET ARGS 
ADD .-1 GET ARGS 
STA INSTI GET ARGS 
STA INST2 GET ARGS 
ClA 2,4 GET ARGS 
STA -+1 GET ARGS 
lXD --,I NUMBER OF TEST VALUES 

INSTl 
ClS 
LOU 

BIG 
.-,1 

PUT 
GET 

-BIG 
TEST 

IN AC 
VALUE 

TlQ -+3 Q••­ BIGGER THAN -BIG 
SXD INDEX,l YES, SAVE INDEX 

INST2 eLA 
TIX 

.-,1
INSTI,l,l 

PUT 
NO, 

-­ IN AC 
CONTINUE 

STO RESULT STORE lARGEST 
ADO BIG SEE IF -BIG 
TNZ RETURN If NOT, fOUND AN ANSWER 

IRSAV TXI NONE,,-­ IF SO, -0 IN AC, JUNK IN HQ 
AMIN SXD JRSAV,l SAVE A 

elA 1,4 GET ARGS 
ADD .-1 GET ARGS 
STA INST3 GET ARGS 
STA INST4 GET ARGS 
ClA 2,4 GET ARGS 
STA .+1 GET ARGS 
lXD •• ,1 NUMBER OF TEST VALUES 
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LDO BIG PUT +BIG IN HO 

INST3 eLA GET TEST VALUE··.1�TLO ·+3 Q. •• SHALL~R THAN BIG 
SxD INDEX.l YES, SAVE INDEX 

INST4� LDO •• ,1 PUT •• IN HQ 
TIX INST].l,l NO, CONTINUE _. ... .... 

STO RESULT STORE SMALLEST 
~ ~_ 

CLS RESULT SEE IF BIG 
ADD BIG IF NOT, fOUND AN ANSWER 
TZE NONE IF SO -0 IN AC, JUNK IN HQ 

RETURN eLA RESULT FOUND AN ANSWER-TO AC 
LOO INDEX SUBSCRIPT OF ANSWER TO HO 

NONE LXD lRSAV, 1 RE:STORE A 
TRA ],4 RETURN TO CALLER 

81G OCT 317171777771 
RESULT PZE .." .. 

INDEX� PZE , ... 
END 0 

REM SUBROUTINE SAVER (SAP ASSEMBLER LANGUAGE) DORY 
REM SAVES STATUS OF 104 ON TAPE 1 
Rt:H TWO RECORDS + END OF FILE REPLACE 1ST EOF ON TAPE 1 
REM UNLESS NO EOf FOUND THEN THES~ REPLAC~ THE 3RD TAP~ .RECORD 
FUL 
MIE 
OCT 
PlE FADER+I 
PZE 
8CD ISAVER 
Pll:: o 
REM 
REL 
ORG o 

SAVE SXD IXl,l 
SXO IX2,2 
SXD lX4,4 
STo ACI 
ARS 35 
STO AC2 
STO MQ 
LXA HI,1 
SLT 1 
TXI ·+1,1,1 
SLT 2 
TXI ·+1.1,2 
SLT 3 
TXI ·+1.1,4 
SLT 4 
TXI ·+1,1,8 
SXD SLT,1 
eLA WTB 
RTT 
CLA WTn 
STO WRITE 
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,.~ 

ARS 2 
ALS 1 
S10 DIV 
CLA Nap 
TOV -+2 

.. --­ _ .. ~ .... ·'.9_ Cl4-_.. 

S10 
TOV 
ACOV 

CLA lOW 
lQO -+2 

H8181 PXD 32163,0 
S10 FADER 
CI-A RTBl. 
STO RTB1+l 

REWT8 REW 1 
RT8l RT8 1 

HTR -­RTB 1 
~LA TRARDl.. 
Cpy -1 
TRA --I 
TRA 8STl 
ETT 
TRA REWTB-l 
T.F.A REWTB+3 

TRARDl TRA READl 
8STI 8ST 1 

8ST 1 
READl RT8 1 

Cpy -1 
TRA --1... 
HTR READ1-1 
100 
RTT 
~OP 

W18 WT8 1 
LXA H5,1 
CPY RESTO,l 
TlX --1,1,1 
LXA H8181,1 
CPY 0,1 
TIX 

WRITI: HT~ 
Cpy 

--1,1,1
•• 
0 

WEF 1 
851 1 
8ST 1 
8ST 1 
8S1 1 
RTB 1 

CHECK RT8 1 
CPY -1 

IXI TX} --1,,-­
TRA REWTB-2 
RE~ 1 
100 

.. - - _._ .•..- •.. _..- ._-­

.. - .....-....- -------- -•.•.._-- .. ----­
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RTT 
TRA REWTB-l 
REM 
HPR 0 
REM 

IX2 TXI Rf:STO,O, •• ._­ - --­
LXA 0,4 
CPY 2,4 
TXI 1,4,-1 

Hl HTR 1 
IX4 TXI RESTO,O, •• 
RESTO RTB 1 

CPY 0 
CLA WRITI: 
DVP DIV 
CLA FADER 
FAD FADER 
CLA • 
AlS 35 
CLA AC2 
ALS 35 
ADO ACI 

ACOV 
LOO 

HTR 
LOQ 

•• 
MQ 

LXO SLT,1 
SLF 
TIX ·.2,1,8 
SLN 4 
TIX ••2,1,4 
SLN 3 
TIX ··2,1,2 
SLN 2 
TIX .+2,1,1 
SLN 1 
lXD IX 1,1 
LXO lX2,2 
LXD IX4,4 

ACl 
AC2 
MQ 
Sl T 

TRA 
HTR 
HTR 
HTR 
HTR 

1,4 
••
•• 
••
5,0, •• 

WTD WTD 1 
OIV HTR -­Nap Nap 
TOV TOV LOQ 
lOW OCT 010400000000 
FADER HTR -­H5 SYN SlT 

END SAVE 


