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ABSTRACT

Numerical methods have been developed to simulate solution
of the Vlasov equation governing the (one-dimensional) azimuthal mo-
tion of particles in circular accelerators. Unlike previous analytical
solutions, these are not restricted to consideration of small perturba-
tions. The numerical methods are used to analyze particle distribu-
tions thought to be representative of those to be found in existing ac-
celerators. The results are found to be in accord with recent experi-
mental data, in that the following features were found. Above transi-
tion energy, the Coulomb interaction of the particles causes formation
of long-lived bound clusters of particles. Such clusters tend to follow
single-particle orbits in synchrotron phase space, even when radio-
frequency acceleration fields are present. When clusters interact,
they can coalesce and orbit as entities about one another in the phase
space. Below transition, beam bunching may occur because of non-
linear instabilities of the beam, or with a fairly simple mechanism,
there develop two-stream velocity distributions which can be unstable.
A symmetry principle is discussed, showing the equivalence of the
"negative-mass'' instability and the two-stream instability.
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INTRODUCTION

Recent experiments at the Cosmotron by Barton and Nielsenl
have indicated that the theory of the longitudinal or azimuthal motion of
a circular accelerator beam under the influence of its own Coulomb
(space ‘charge) field as carried out by Nielsen, Sessler, and Symon,z is
a substantially good approximation to the physical behavior of the sys-
tem., However, because the theory has been limited so far to a linearized
caléulation, a number of the experimentally observed phenomena have
not been well understood,

The theory neglects all interaction of the azimuthal motion with
radial and vertical degrees of freedom except insofar as these are counted
upon to provide gbeam consisting of a toroidal tubé of charge with not too
great spread in energy or position transverse to the beam direction, It
is desirable to know which of the observed phenomena can be explained
by the mathematical model when it is not restricted to linear effects.

The general result of a longitudinal instability is an increase in
the energy spread of the circulating beam, and because the energy spread
which can be tolerated without substantial loss of particles is generally
limited to values not far different from those injected into an accelerator,

it seems clear that more theoretical understanding of the instabilities



is needed. The linear theory by its nature cannot predict the final
energy spread attained in an unstable case, Similarly, it cannot predict
or describe the type of resonance often found in the presence of large
disturbances in complex systems, Because the perturbations on actual
accelerator beams need not be small, the excitation of such nonlinear
resonances cannot be neglected,

The analytical extension to the nonlinear region has thus far
proved to be very difficult, and only a very few general results have
been obtained, For this reason, two simple but fairly effective repre-~
sentations of fhe mathematical model have been developed., Using nu-
merical techniques and a high speed digital computer, these allow the
nonlinear motion to be studied,

These representations use all the simplifyjng assumptions made
in the previous work except that the interaction of a disturbance with it-
self may be neglected. One major assumption is that the parameters of
the machine do not vary with time, As noted by Nielsen and Sessler, 8
time variations which are small in times of the order of the charactexs-
istic times of the azimuthal motion, will not change the results signifi-
cantly, This is exactly true in FFAG (fixed-field alternating-gradient)
machines of type designed by MURA, and is reasonably accurate for the
Cosmotron,

With the numerical calculations, we find that many of the experi-

mental phenomena are observed and to a certain extent explained,on the
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basis of the longitudinal motion alone, In order to further understand
the entire physical system, extensions are currently being made at
MURA on the related problem of the effects of space charge on the mo-~

4

tion transverse to the beam; a.nd, with not too much success so far,

on the interaction between the azimuthal and transverse collective mo-~
tions. 5

In Section I of this paper the linear theory is briefly explained,
some supplementary information found during this investigation is given,
and pertinent results of the Cosmotron experiment1 and recent studies
made with the MURA 50 Mev test model6 are discussed.

In Section II are presented a short discussion of previous numer-
ical calculations of the nonlinear dynamics, explanation of the two nu-
merical procedures used in the present study, descriptions of the re-
sults,l and comparisons with the experimental phenomena.

Appendix I contains an extension of the space charge field calcu-
lation inj:o the relativistic region,

Appendices II and III present the actual computer codes used,
and enough description to allow them to be deciphered by someone

familiar with the Fortran programing system,



I. THE THEORY AND EXPERIMENTAL OBSERVATIONS

We outline the mathematical model of the azimuthal motion of
charged éarticles under the influence of their own collective Coulomb
field and of possible radio-frequency (RF) fields applied externally, A
complete and rigorous discussion of most of these results is given by
Nielsen, Sessler, and Symon.2

Background, The properties of the external magnetic guide

fields in the circular accelerator are neglected, except that the fields
are required to vary appropriately in the radial, azimuthal, and vertical
directions, so that a family of particle orbits which are bounded by the
vacuum tank exists, Generally then, for a given particle energy, there
is an equilibrium orbit which is. stable against small perturbations and
is characterized as being closed, or periodic in the azimuthal angle with
period ZT, A particle on an equilibrium orbit has a known frequency
of revolution which is given as a function §(E) of the particle energy.
Within well known stability limits, a particle perturbed from an equilib-
rium orbit will follow an orbit with different periodicity, but will re-
main cloge to the equilibrium orbit, Comprehensive discussions of
orbit theory may be found in many books about accelerators, 7

The azimuthal motion of a particle may be described in terms of

an equivalent angular distance 2 along an equilibrium orbit, This is
4
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closely equal to the azimuthal position of the particle in the vacuum
tank, the deviation of the orbits from circles being neglected in the a-
nalysis, A variable W’ related to the single particle energy may be de-
fined, allowing a Hamiltonian formulation of the equations for the longi-
tudinal motion, The equations are

do/dt = w(w),

dwidt = ezmeR &o(6t), @
where

w (w) =2z {-'(E), and 72>(E) = _(:ds’ [-f(E’)]" R

and E, is a convenient reference energy., Here ;? is the equivalent
orbit radius,or the length of the orbit divided by ZT¢ , and the azimuth-
al field €e¢ has two possible contributions, the space charge or beam
self-interaction term and the term caused by the application of external
radio-frequency (RF) accelerating fields. The RF term has little net
effect except when the RF is in resonance with the rotation frequency of
the particles and causing them to change energy rapidly, For detailed
explanations of this the reader is referred to the paper by Symon and

8 and for experimental verification to that by Jones et al. 9

Sessler,
These motion equations are derivable from a Hamiltonian of the

form |
W(2w,0) = 2w E(w) + 2re R U(6,2), (2)

where

2T E(w) = foo(-w)dz.r and Co = - 9% Uce.t)
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In most sections of this paper, the particle beam will be taken
to extend over a range in energy which is small enough to allow neglect
. of terms higher than order two in the W’ power series expansion of
£.(2r) about some point W3 , Then
Eaw) = Ew) + emwan)(w-ws) +1 §e| - (w-wi,
If we now measure angles in a coordinate system r::sating with the beam
at frequency @(%53)/27y, the Hamiltonian becomes
NHeso)= L § j:g]m (w-255)" +2meR U(¢+ tw(an , L),

except for constants, Furthermore if %-2Js is measured in the appro-

df
oE 25

plus sign is to be taken if the beam is above or below transition energy,

priate units, fhe number f may be taken as F {. The minus or
above which the number df /df is negative, and since the motion
changes radically under change of this sign, the alternatives will be
carried specifically, Near transition energy, higher terms must be
taken in the expansion of F(z5%). We reserve the letters {W,®) for
measurements in this system and set of units, The Hamiltonian is

H(w,@) = 2w +2TeR U(P+t - wiww) 4 t), (3)
and‘the motion equations are

dw/dt =zweR & (P+t wmn),t).

The negative sign in (3) can lead to a "'negative mass instability, "

(4)

so-called on comparison of (3) with the Hamiltonian for a pair of non-

relativistice particles of charge € and mass #Z in free space:
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H=4wm'(pr+p) +eU, where U & e/I0-Tul.

In the scaled coordinates, the effect of the RF fields may be

easily included by adding to the azimuthal space charge field, a term
-Ws + V sin P,

where Ws is the rate of change of @ for a "synchronous" particle

which stays in phase with the RF fields while these are frequency modu-

lated to accelerate the particles, The value V is the maximum

energy per turn which a particle can gain from the RF field,

I we choose the point %; for expansioa of the function E(w) ,
then the (W,®) coordinate system is accelerated with a synchronous par-
ticle, so0 that particles which are not accelerated have their coordinate

W decreased with time at an average rate ﬁg . Particles accelerated
will remain in the vicinity of W'=%5 or W=0 and execute 'synchrotron”
oscillations about the synchronous point., Above fhe transition energy,
the region of stable oscillations is bounded, in the absence of space
charge fields, by the curve

W= = 2WS(Tr-9)+2V ( 1+ Cos P) >
and below transition energy by the curve

w= —aWs () +2v(l-cCsP),
The stable region is called an RF "bucket.," The acceleration has been
agssumed to be at the first harmonic of the particle revolution frequency,
but this is inessential to our later arguments, The reader is again re-~

ferred to Symon and Seasler® and to Nielsen and Sessler3 for futher



details,

We will analyze the collective motion of a particle beam in
terms of a distribution function’i" in the two-dimensional /u space
(W,#). Then 215( W,@t)- AW. A¢ gives the number of particles at
time | in the AW by A® rectangle centered at W and ¢ . The dis-
tribution will be periodic in 4 with period Z7, and will be taken to be
identically zero outside the region of interest which is assumed to be
bounded. Parts integration then is valid, and integrated terms are usual-
ly zero, When integrations over W are written, the limits implied are
the edges of the region,

The Space Charge Field

For a given distribution of particles, we can calculate the space
charge field, For completeness, we write the full relativistic wave equa~
tion and indicate how it can be solved, but we must soon specialize to the
nonrelativistic limit to obtain tractable solutions,

We regard the beam as a collection of particles distributed
throughout a thin tube extending around the accelerator at an average
radius R ., The particles are assumed to be on or oscillating about
equilibrium orbits with random phases so that to good approximation,
the beam is a tube of current. The azimuthal dependence of the charge
density is given by @ Q(@,t)R™' with the units charge/length, and in
terms of the coordinates (X,Y} which are transverse to the beam at the

azimuth of observation, the true charge density is € §(@¢) O.(X:)I) R~
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The transverse distribution QJ, of particles is held fixed in time and
azimuth, and is taken to fall off quickly from its value at the-center of
the beam, The field used to find the average behavior of beam parti-
cles will be the actual field averaged over the distribution Q , The
variation of particle orbit radii with energy in the beam may then be
neglected, Figure 1 illustrates such a beam, and may clarify the co-
ordinate system (X, }') .

In terms of the operator

: o )
V"—a_; "’5‘):"

which is so written to emphasize that little notice will be taken of the

curvature of the vacuum tank, the wave equation for the field is

R I -
(Wi oae)btpod = 4 & Puyot +30 & Joxp6e), (5)

where charge and current densities are
P(X)y, 9)t )
T(Y)Y) Q,t\

Q) SR D 8-t ey dus,

- (6)
eQuy) § wonw) V(s 0-wewdt, t) dor,

11}

The azimuthal charge density is
oty - (Dwdtydw,
The boundary conditions are that £ should vanish on the tank walls
and should be periodic in € with period 27T% ,
Since @(x.y) is taken as fixed, the transverse variation of

EolX, Y, 6, t) may be separated and written down in terms of the



Fig, 1. Cutaway view of vacuum tank and circulating beam, showing

coordinates used,



Figure 1
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eigenfunctions gj of V: and the corresponding eigenvalues -Kj; /R®.
The subscript j symbolizes a two-parameter set of indices, As dis-
cussed in Nielsen, Sessler and Symon, 2 this separation is dependent
upon the assumption that the radius R is very large., The general ef-
fect of this failure to separate exactly, is the possibility that the num-

ber Kj may be negative,]'0

and that it is not completely independent of
the variation of the field with © . In terms of Fourier coefficients of
index 77, Kj depends upon 77 for very low values 77 .

The appropriate eigenfunction analysis of the remainder of the
wave equation. requires Fourier analysis in harmonics 72, of the @ var-
iation and Laplace transformation in frequencies l'?. » of the time depend-
ence, If T'(x,y,g'-t) is the source term on the right side of equa~-
tion (5) and FSLF and £ jLF  are the full f,our-dimgnsional ﬁ'ansforma-
tions of F(X, y, 6,t), and 89()(,)/, 9,[:)) the wave equation becomes

Eie = ~Fjue - [ +K; - AT -'Rz, (7)
where Wwo=C/R and € and OE/D¢ are zero at zero time,

Equation (7) may be inverted generally to yield Eg( x,y, 9,{:)
when the charge and current densities are given, This result is not
usable here, but shows the interesting behavior of fields in the geome-
try given, We will relegate the calculation to Appendix I and special-
ize to the more tractable nonpropagating limit,

As is pointed out in Nielsen, Sessler and Symon, 2 the simplest

result of relativistic effects is the reduction of the space charge forces
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by a factor )'-,z where the momentum of a particle is ¥ times the clas-
sical value when the orbital radii of the particles are large compared to
the transverse dimensions of the vacuum tank, We include this factor
henceforth in the kernel which is to be calculated.

Since we must restrict ourselves to short wavelength perturba-
tions in order that neglect of the curvature of the vacuum tank is accu-
rate, the delay in propagation of field effects will be neglected also.

When propagation effects are neglected, the field calculation is
an exercise in electrostatics, One correct method for performing the
reduction to étatic fields is to take @ in (7) as infinite and discard the
term ‘1.' s’ in the denominator. This is the latest point at which e
may be made infinite without further worry about convergence in the
process,

With this assumption, the solution for the field has been calcu-
lated by Nielsen and Sessler. 3 Thus, the Laplace transformation inver-
sion is trivial and the Fourier series may be summed. We first note
that F has reduced to 4™ R™5/90 P¢ XY,6,t), and Fie(t) to
4TR™ in Be (4).

We may use the convolution theorem for Fourier series:

{ (4o f(@-019()] = zm e -], (8)
and any table of Fourier series to perform the sum.b Doing so, per-
forming a symbolic inversion of the J transformation, and integrating

over Q to get the average field seen by the beam, we obtain



- w
E@)= Eo(o,t) = [ P £(9-PIK(), (9)
where the field kernel K has the Fourier transform
Kr= ~inKoe = -in )" ze I §i /(K +n), (10)

and is a sum of exponentials with characteristic widths A‘Pj = (Kj )"{z
We have defined Kup, the Fourier amplitude of the kernel Ko with

which f(@¢) must be convoluted to obtain the space charge potential U,
Since the function 3‘/ (« %7*) has the same behavior as Kus for large
and small values of 7%, we may expect that a rough estimate of the be-

havior of Ko is afforded by a single term in the sum on 77 . In that

case, the kernel has the form

K(f) « ,% eEp (- 1P, (11)

assuming that (X is normally large, being of order of the ratio R/,
the machine radius divided by the vacuum tank height. This is clear
simply from considering the shielding of electric fields by the vacuum
tank, Thus, a charge will not have much effect on another at the same
radius but an azimuth differing by more than G/R.

For corﬁparison, the potential kernel for the one-dimensional
solution to Laplace's equation is just proportional to P/1P| which is
the same as (11) with 0O = O.

The Motion Equation
In this section, the motion equation is discussed, a symmetry

principle relating clusters of particles above transition and particle
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deficiencies below is stated, the motion equation is linearized about the
stationary uniform beam solution with $£(#,¢) constant, a disper-
sion relation is obtained, and simple instabilities are discussed., Other
stationary states are described, and a prescription for finding useful
eigenfunction expansions for them is demonstrated. Two ¢xamples
are given where arguments may be made about the stability of states
subjected to large perturbations,

The Vlasov Equation, We can now study the collective motion of
particles since we have a method for approximating the fields.

In genéral, the equation governing the motion of particles is the
Liouville equation in the ZN dimensional 7 space (Wi—Ww, ¢ —Pu),
where N Iis the nurwber of particles., However, since we have tacitly
assumed that close collisjons of small numbers of particles may be
neglected, an assumption justified by the calculatibns of Becher, 10 we
can simplify the problem to solution of the Vlasov equation instead.
This has been called the /a space (W,#) Liouville equation and derived
for the special case of accelerator beams by Mills and Sessler, 11
is also equivalent ¢ the collisionless Boltzmann equation since the only
velocity dependent forces included in the theory are the electromagnetic
ones, The general relationship between the Liouville and Vlasov equa~-
tiona is discussed by Simon, }2

The equation is

d® . 2% 20 _
.I% = S ¢ zreR E(9,t) % + O(W) 9% =0, (12)



A very important solution to this is given by

T @ t) = T(W,0), a3
which is a uniform distribution of particles around the machine, The
density then is independent of @, and the field is zero, The equation
reduces to 3@/9ﬁ =0y 80 that this state is stationary. It is this
state which is attained by a coasting beam (no accelerating fields) if the
particle density is sufficiently small and the energy spread is non-zero,
because the particles have different circulating frequencies, If the den-
gity is slowly increased, or rather if in a number of experiments we in-
crease the number of particles injected, the effect of pefturbations on

this stationary state can be large,

Linearization and the Dispersion Theory. Again following

Z we may write out a first-order perturba-

Nielsen, Sessler and Symon,
tion theory in the form of solution of (12) when it is linearized about the .
stationary uniform state,

If the perturbed system has the distribution Q's 4—7"4— "P,
where Y is small compared to 11’°at each point (W,p), and ¥W is

written as w3(W), the equation takes the form:

% romereet) 4T +ow 33 -MeREGH L. g

The right-hand side is of order ZPZ while the left is of order ¥ . The
linearization consists of neglecting the second-order term, Laplace
transformation of the time dependence and Fourier transformation of

the azimuthal dependence are now natural., The entire procedure is
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carried out in the reference last cited. One important result is the
derivation of the dispersion relation for the system, This obtains
quickly upon consideration of the harmonic trial solution

Piw,dt) = fiw) enp(-ing) exp(-inlt). (15)

The {field obtains from (9) in the form

6(0,6) =2Win Ko W('iﬂfp)f#f(‘inﬂt)f}(w')dw; 16)

where -2 Kuf is the Fourier transform of the field kernel K (@)
at harmonic 77 . The phase of KuUF, the transform of the potential
kernel, has been chosen so that it is real. The trial solution then is a

solution if

[ +w(W)] Fw) - 2@ R %? . 2T Kupff(w')d.v’ =o.

Isolating the :‘ in the first term and integrating over W.

(fndw = aTe R Kog -ff(w')dw'. fdw 3,1‘;"[0 +wm]

A non-trivial solution then must satisfy the dispersion relation

4meRKor [dw B[]’ = . am
Solutions of this equation yield the normal modes,

If the signs of W(W), 9@"/9“,and ) are all changed, equa-
tion (17) is not changed. A state subjected to this "inversion'' then re-
tains all its modes, Since (W) is F W, the inversion just displaces
the system from above to below transition or the reverse, and inter-

changes the roles of particle excesses and particle deficiencies.
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Nielsen, Sessler, and Symon‘z prove a theorem stating that the solutions
ﬂ, of (17) occur in complex conjugate pairs, The inversion then inter-
changes the roles of damping and antidamping modes, and reverses the
direction of propagating modes, The ""symmetry" property is a special
example of the invariance of (12) under the replacements of (W)
by-w(wW)y £ by -t, and DW,dt) by constant- D(W,4t).
This symmetry principle is important because it says that each prop-
erty of a particle beam above transition energy has one and only one
analogue for a beam below,

We may see one consequence of the symmetry by choosing a

simple initial distribution lF°(w) in the form of a set of step functions:

o f Wi <IWl,
TUw) = o if Wi <IWI< W, , (18)
o-s if O< iWi<Wi,

This is shown in Fig, 2, We may take IP/OW= tq ¢ WEWS) TSWLW,)
to obtain from (17), the expression:
W67 W, 5S¢ _ 1
o~ op T -w: -l (19)
Here we have set w(W,)=®; and W(W:)=wW., and assumed that

W(-W)=- (W), recalling that when sufficiently far from transition
energy, a beam with narrow energy spread has (W(W)=+W. The
number T is given by
" = 8r*e R Kur.
Multiplication by (K& -2 ) (LA~ W.5) yields a polynomial

2
quadratic in {)" with solutions given by



o
Fig, 2. A two-stream velocity distribution 4’( w).
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200 = [WEe+w." + T(W.0C-L0s)]+
I W - F(WeE - 5) 2+ 40rs(ws-wNE" (20
Stable modes are obtained if L is real, or the right side of
(20) positive. Squaring this criterion does not introduce spurious solu-
tions if §<OJ° as it should be, The result may be expressed in terms

of a threshold value {e,of " above which the instability occurs:

S I S <
1, @, Wwe ° (21)

This expression gives simple thresholds for the two-stream in-
stability belc;w transition and for the negative-mass instability above
transition, It also illuatrates that the two are just different aspects of
one instability. Above transition where @(W)<0, we may take

O = O to obtain
W =51, (22)
which yields a real threshold. This may be written as
w* =2 2wve RN Kur (23)
for stability. This is the usual longitudinal space charge limit on the

energy spread of the beam, 3

Below the transition energy, taking (0= © yields that the energy
spread which stabilizes a unimodal (single peak) distribution is negative
so that such a beam is always stable., However, for a bimodal distri-
bution (21) indicates that the two-stream instability can arise from a

very shallow depression in the velocity distribution {( W) if the depres-



~18-

sion is sufficiently narrow, For a very narrow depression, the growth
rate is

T~ wrs - wi/(w+Nriqm), (24)
which is very small compared to the characteristic frequency we, of
the system, Although mathematically unstable, a very narrow depres-
sion can cause no difficulties within times for which the entire theory
may be regardéd as a good approximation to the physical system, Fur=-
ther discussion of the two-siream instability will be found in a later
discussion on interpretation of some recent experiments,

Stationary States. There are stationary beam distributions other

than the uniform one, Of these, two especially interesting ones are the
square-hump state and the triangular-hump state, so named for the form
of the azimuthal density. The densities are given by

Ps0 XOW+R)-O(P-R), and §rer & D(Q-01) (0,-(P)) /24,
Here, ® is the unit step function, being zero for negative argument
and unity for positive; and ‘pa is a constant, We will analyze these,
assuming the beam is above transition energy.,

Both of these may be stationary for the potential shape given,

but only in the limit of zero range of interaction where the kernel width
is made very small, The field then is proportional to the 4 gradient
of the density, the potential kernel being a delta function, The Fourier
coefficients are now equal for all harmonics. For kernels of finite

range it is8 clear physically that stationary distributions similar to the



-19-
two mentioned should exist, the difference being a smoothing of the dis-
continuities and rounding of corners. The zero range kernel allows
very simple analysis with which we proceed, taking the potential kernel
tobe K, (P .,

13 pag the

The square-hump potential,describex by Hereward,
distribution P(W,?) =G~ & constant, in the region IW| < W2 and
(Pl < ., where the reference angle ¥ = O is chosen at the center

for convenience, See Fig, 3(a), The distribution is zero elsewhere,
The potential then is 20"KWz for |®(<%;, and zero elsewhere,
The Hamiltonian may be written

H=-3W*+ 4meRa Ko w: @ (.- 19)),
A particleat @ in (-%,4%) and W> O remains at W and moves in
the - P direction at the rate W until it reaches the point - = where
it suffers a discontinuous velocity change AW given by

-3w + 4meR Ko We = -4 (wraw)’,
K lAwW>W , the particle is trapped; if the inequality is in the other
direction, it is not; and if equality holds, it is on the separatrix or line
separating the trapped and untrapped regions. The separatrix then is
given by

-4W' + 47TeRG KoM =0,
or W=72-eRNRKo3’*
This has a more familiar form if Ko is replaced by 217 ug. Then

the separatrix falls at



Fig, 3. Stationary synchrotron phase space distributions: (a) Square
bunch above transition, (b) Square hole below transition,
(c) Triangular density bunch above transition,(The phnse

density is not uniform here, )
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W= [2 2XeRNKul" (25)
and if this value W is W; , the state is seH-coﬁsistent and stationary,
Except for the factor 1’2—' ,» the right sidebis- jﬁst the stable energy
spread given by (23) for the uniform beam. The bunched state should
then be stable against longitudinal instabilities, as well as stationary,
A perturbation in phase density near the center of the bunch sees no
effects of the ends and oscillatory motion should result,

If the energy spread is held fixed and the phase density 0~ is
decreased throughout the bunch from the value implied by (25), the
fields at the ends are no longer large enough to hold the bunch together,
The streaming motion reduces the fields further, and the system quick-
ly leaves the bunched configuration, Because the energy spread is
greater than that critical for the uniform beam, it seems probable that
the system will approach the uniform state after sufficient time, The
opposite perturbation, where the phase density is increased from the
stationary value, will tend to leave the beani bunched, If the field
kernel is much narrower than the bunch, sinall filaments of filled phase
space will be ejected. The streaming spreads these out in the azimuth-
al direction, and the fields are reduced. The main bunch may then ap-
proach the stationary bunched configuration, since this is a negative
feedback. From numerical calculations, it appears that the bunch does
not even lose the streamers, if & was initially not too far from the

stationary value,
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We can apply the inversion symmetry result to the square-hump
state and concludé that the unphysical state where all phase space is
filled uniformly except for a square hole of the proper spread in W,
is also a stationary state if below transition,

Actually, the entire phase space need nct e filled to obtain a
stationary and stable square hole distribution, With the same type argu-
ment as that used for the square hump, it is easy to show that the state
shown in Fig. 3(b) is stable and stationary. The phase density is con-
stant in the shaded region of the diagram. Using the parameters shown
in the figure,v the state is stationary if

Wz =W; +W°  and W'z 8MEeRE Ky(Wi+Ws-Wa)_ (26)
When the first is satisfied, the triangle inequality shows that the second
can be satisfied, and a stationary state actually exists. There is really
a two-parameter continuous set of these states. Each such state could
be susceptible to two-stream instabilities. The equation giving as a
function of § = Wz/ Wc, the critical state which separates the stable
from the unstable ones, obtains from (21) and (26) in the form

5(3-0(1-35+4)=0.
This has two real roots Yz0 and {=1{, which give trivial examples
where there is no hole in the middle of the distribution or there is a
hole but no distribution, The other two roots are imaginary so that a
critical state fails to exist. An example W;=3, W;= 4., and We =5,

yields the stationary state requirement 671"3[? oKue = 9/4,
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while two-stream stability requires that this number be less than 15/2,
so that all such stationary states are stable against two-stream insta-
bilities,

We can obtain a very general criterion for testing distributions
to see il they are stationary. Constructing such states however is a
more difficult question and does not appear to admit of a general pre-
scription,

Thus, it is well known that a distribution function depending on
the canonical coordinate X and momentum P of a system only through
a dependence upon the Hamiltonian H(X,p),is a stationary distribution.
We may show this as a special case of a formalism that yields the eigen-

functions of the operator

o
r ALY BT 1

which by the Vlasov equation gives the difference between o @/dt
and 9P|t as §_C7P . The canonical transformation to coordinates
P-= H(x, p) and Q=T (X P), where T(X,P) =1 is assumed to
be a solution to the Hamiltonian equations fulfilling the correct bound-
ary conditions, yields a new Hamiltonian K (@,P) = P, so that in
these variables Z., = ;% . The operator now has eigenfunctions

V& (P,Q) for which .Z_, ZPA = LA ZR y the l being included because

Z is anti-Hermitian in the appropriate region and its eigenvalues are

correspondingly imaginary, The general eigenfunction is
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Y, =Py ezplira),
where f is an arbitrary function of its ai'gument. Returning to the
original coordinates X and P » Wwe obtain

ZELHp) eZp[iaTonp) = X €7 = idfe'T,
Stationary states are those for which A=<, which is just the result
quoted.

The Fourier integral theorem guarantees that the IPA form a
complete set in the phase space (P, Q) . These eigenfunctions will
then span the space of functions of X and P . Thus for a harmonic
oscillator, f may be taken as H"Iz and A as 7 /LO, 80
that in polar coordinates A and ? in the phase space, the ¢,'\ - be=
come A" eh"q . These functions satisfy the correct periodicity
conditions if ' is integral, and span the space of functions defined
on the planes |( X,P) or (A, ¥). A similar result holds for the free
particle Hamiltonian,

| The theorem just made plausible can be useful because it tells
what expansion process must be used to obtain decoupled equations when
a solution is desired to the Vlasov equation linearized about some sta-
tionary state., For a free particle system with a periodic boundary con-
dition on the variable ¢ the theorem shows that ei"'v times an
arbitrary function of momentum is the general form of the eigenfunction
which should be used. If the ¥ period of the system is 2T, then 72’

must be integral, and we find a fairly fundamental reason for the useful-



-24-
ness of Fourier expansion in the uniform beam calculation, and the use-
lessness of the same expansion in analyzing the square~-hump state sta-
bility.

A third type of stationary state is that calculated by Nielsenl to
explain the existence of apparently stable buncnes of particles above
transition which are trapped on triangle-shaped potential humps. The
essence of the calculation is that states which are stationary and have
this potential must have phase trajectaries which are formed of parabo-
lae joined in a nonsmooth fashion at the azimuthal center of the bunch.
The effect of giving the kernel a range here is to round off the corners
of the potential and the phase curves, Figure 3(c) shows a region
bounded by such a phase trajectory, Using the theorem on the ( W) P)
dependence of stationary distribution functions one may show that the
dependence ﬂ:’dﬁ H f is geli~consistent with the required potential
form,

Nonlinear Motion, The theory of nonlinear effects is very lim-

ited, but at least one argument may be made, It concerns the effect of
strong interactions on a uniform beam above transition, It is quite neb-
ulous and is an attempt to understand the results of digital calculations
to be described later. The essence of the results was that if 1P

is taken to be the constant G- within the region bounded initially by

the curves Wi (P) StWa () = 2 (W+3wd®), and if the narrow

portion (f= £7) of the region contracts at all in the first stages of the
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system evolution, then the beam is pinched off almost completely at
the narrow part, and a bunched beam results, The final result is strik-
ingly close to the square-hump state described earlier.
In order to use this result and partially rationalize it we must
know something about the time behavior of the density, at least at the
initial time T =O, Integration of the Vlasov equation over W yields

the usual continuity equation

2 (Rt =~ B (W coom) Dw, 9t). (21)
Using the continuity equation and the Vlasov equation to evalu-

ate de W’ yields

& ) = B [dw wow) Prungt)-zmeRG Eot)fdwom 98] (28)

which corresponds to the heat flow equations of magnetohydrodynamics.
We evaluate this at zero time for the distribution given, assuming a
zero range potential kernel as before, and taking (W) to be —W

(above transition):

,g, £(A0) = 40 (W) (Na-(0) + 20 Wi [ Wa'— zrg W), (29)

where ¢ is 81'e R Kor, and Kor is the Fourier transform of the
potential kernel, Here primes represent ¥ derivatives, The function
W3(®) is assumed to be positive in the region —T <@ =77
At a local minimum point 42 in the curve W?t= Wa(®) , we

have that 25/2¢€ is zero and
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9ot = 2G Ws ' (We -20T Ws), (30)
where Wg is positive, The local minimum in the curve W@ and
the local maximum in W (@) will then tend to become less pronounced
if WNe=22rG at ¥ . We will leave this result in the form

minimum ( Wg/ (G’ ) = 2, for reduction of fields,  (31)
which is seen to reduce to the stability criterion for the uniform beam
(23) when 5 is small,

The critical point is that the reaction of the narrow part of the
boundary to the field if (31) is not fulfilled,is a decrease in the energy
spread which drives the system even farther from satisfying (31). Es-
sentially this is a feedback mechanism and if (31) is not true, it may be
expected that the beam will always be pinched off,

It is natural to wonder if a useful result obtains from a similar
calculation at a value ? where Wg is a maximum, There va is
negative and a potentially unstable situation exists if maximum ;%—’_ <2.
There is no feedback mechanism here, and the criterion does not seem
to be of such general importance as (31). Thus, equation (31) determines
whether or not beam bunching will occur, while the latter result gives
only a little information as to how the bunching will occur when it does.

If immediate bunching does not occur, the perturbation travels a-
long the boundary. Because the system is periodic, the disturbance re-

turns to a given azimuth repeatedly, and after doing this a number of
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times, could conceivably interact with itself strongly enough to yield a
potentially unstable situation, However, this motion is too complex to
follow with any of the digital calculations made, and analytical studies
have not given any information concerning such an instability,

Given sufficient energy spread, the perturbation will cause little
change in the distribution, This will be made more exact in the section
on the computer results,

The requirement (31) has been obtained for a very special case
corresponding to some digital calculations made., Very similar results
are obtained when 9FP/3t is analyzed for other perturbations of the
uniform beam state, Thus if

L/ T(1- Scos 7P - fw),
the beam will tend to pinch off unless

<w'> 2 F(Nvr/a2m),
where
<wy = W fewydw / [Sondw.
If f(w) is one when |W|& W , and zero elsewhere, the result may be
stated as: The minimum of W/rd must be greater than three for sta-
bility, The result for uniform phase density with boundary perturba-
tions is the same except that the number is two rather than three,

An interesting restatement of these calculations is that unless

the "temperature" 3 {W') is greater than a multiple of order one of

the potential energy ¥'§ at all points within the one~dimensional "gas",
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a "condensation" or beam bunching will occur. The multiple depends
upon the detailed nature of the distribution and the perturbation, but
dimensional analysis fixes the form of the critical energy spread to
that given.
Resume of Physical Experiments

1 at the Cosmotron

The experiments of Barton and Nielsen
yielded the following behavior: 1, In a coasting beam with low energy
spread, high frequency modulations develop rapidly., 2. These decay
or coalesce after their initial growth, to yield lower frequency modula-
tions, 3. Similar space charge bunching can occur when the RF accel-
erating fields are on, 4, These space charge bunches are highly stable
in the coasting beam but may not be completely stable when the RF is
on. 5. The bunches give characteristic triangular peaks in the azimuth-
al density, and contain appreciable amounts of charge. 6. Frequently,
the stationary final state toward which a coasting beam tends, gives a
uniform azimuthal density with triangular notches in it.

Recently, instabilities below transition energy have been noted
in the MURA 50 Mev electron FFAG synchrotron, 6 Recalling that a
unimodal energy distribution cannot give such instabilities, and noting
that the injection devices were previously thought to give such a distribu-
tion, we include this as another phenoménon needing understanding.

Similar phenomena have been noted in other machines. 14,15, 16



II. COMPUTER EXPERIMENTS

An IBM 704 digital computer was used to test which of the
results of the physical experiments could be attributed to the longitudi-
nal reaction of the particle beam to its own Coulomb forces.,

In a broad sense, three numerical techniqueﬁ have been used
to seek solutions to the Vlasov equation (12) which satisfy given initial
conditions, The nonpropagating field approximation is usually made,
The first method described here was not used in the present study; it is
however, the most straightforward approach and a brief discussion of
it seems worthwhile,

Mesh Solution of the Vlasov Equation

The numerical integration of (12) by replacing the derivatives of
the distribution function by difference operations on the values of it
given on a mesh in the ( W,®) plane has been investigated by Sessler, 17
by Nielsen and Sessler, & and by Christian, 19 At the risk of oversim-
plification, it may be said that these results have not been too success-
ful. Because the equation involves two independent variables W and P
as well as time, care must be taken to assure that in the limit of arbi-
trarily fine mesh, the solutions to the difference equation used converge

to solutions of the differential equation, This convergence does not
~29~
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appear automatically and highly sophisticaied differencing schemes
have been used to obtain it. These processes cause the calculation to
require large amounts of computer time because the solutions exhibit
such complex behavior that convergence becomes very slow at just
those times where the system is most interesting.

An explicit differencing scherhe computes the value of the distri-
bution function at time T+4t for a given mesh point, from the values
at nearby mesh points at time T . As a function of the time step At
and the size.of the mesh, the solution generated by an explicit scheme
converges to a solution of the differential equation only if the limits

At—>0 and mesh size —» © are taken properly. This places a re-
quirement on the relative values of these parameters, and this is often
too restrictive to make the method useful. There are however, numer-
ical algorithms which do not have such restrictions, 20

Among the unrestricted schemes is the implicit solution of the
difference systems wherein the values of if at the mesh points at time
increased by one step are written implicitly, that is as a function of one
another and of the previous values, and the resultant matrix inverted.
Another is an iterated explicit scheme. From i‘t on the mesh,

a simple estimate of the change Aﬁ’ Wtut ‘if’t is computed.
An approximation to i't;d; is now known, From it may be calculat-
éd a different estimate of Af . The average of the old and new

estimates will now give a better approximation to @"ﬂat . The re=-
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computation of the estimates is continued until the desired accfiracy
in !Fl.t.mt is obtained. The iteration scheme is reversible in i.l.ime
to within any accuracy asked. Since such a reversible calculation
generally yields a spurious periodic behavior during very long calcula-
tions because of the discrete representation of the distribution function
and because this periodic nature is unphysical, various schemes have
been used to introduce an irreversible mixing of the phase space.

An interesting difficulty arises in that a distribution function on
a mesh is necessarily of finite extent in the W direction, and must then
be zero outside a given region. Numerical derivatives calculated near
the boundary of the region then tend to extend farther than the boundary
and as a result, after one time step, the distribution function is sur-
rounded by a thin region in which the value is negative and unphysical,
The more accurate the difference system used, the smaller and farther
away does this region become but it appears impossible to eliminate it
completely without some arbitrary procedure such as throwing away
negative values of 'I_D' and thus causing charge conservation to fail, A
somewhat related problem is that the W spread of a distribution in-
creases by at least one mesh width on each time step, This is a sort
of conduction process, the distribution attempting to smooth itself out
at each step. The difficulty lies in the finite storage space available

in a computer., Once again, a cutoff procedure must be introduced.
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The following two sections discuss methods which were used to

try to avoid the difficulties mentioned.
Following the Motion of Particles

An integration of the equations of motion was performed numer-
ically (see Appendix II) for each of a large number of particles, The
interaction field was calculated before each time step.

The actual procedure was to calculate the field E£ z:E(maq IA‘(:),
and integrate the equations (4):
q’ix = J% % Je-2at = ‘-T-W,'l,
V.le = i W, 't:lAf = £ (cpjl) lAt))

where subscript J indexes the particles, superscript I the number of

(32)

discrete time steps performed so far, and subscript % indexes the
field values at equidistant points in ? . The values %I and VV;( give
the position of the j'“ﬂ particle in the synchrotron phase space after the
f‘“i step.

The first attempt used the simplest posgsible method of calcula-
tion, that of finding a histogram representing the density Plo, t) as

fm! = f("4¢, IA'E), on a sufficiently fine mesh to allow the field

to be calculated accprately. The immediate result was that the number
of particles required was prohibitively large.

If an insufficient number of particles was used, the statistical
variations in the density were large. These occurred at a wavelength

of the order of the width A of the histogram channels, and because
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the growth rate of instabilities at least in the linear region goes rough-
ly as h/{/&*+#*, where h is the harmonic number and « is relative-
ly large, the growth of the statistical fluctuations is much faster than
that of low harmonics which were to be studied, and the development of
the latter was quickly obscured,

However, regarding each of the ( ﬂ'.wj) not as the position of a
particle, but as the center of a macroparticle or distribution of parti-
cles whose shape is not allowed to change, allows the kernel to be
smoothed out from the exponential form given in equation (11) to a form
such as shown in Fig, 4. This has the immediate effect of reducing the
fields caused by disturbances whose wavelength is less than the kernel
width,

The growth of the short wavelength statistical fluctuations may
thus be reduced by having a kernel whose half width is several times
the channel width A¢ , Structure of the distribution with wavelength
shorter than this is washed out in the calculation of the field and is not
well represented in the macroparticle interpretation, so that the macro-
particle can be given a fixed azimuthal spread equalto A¢ . Con-
tribution to the jth demsity channel, Le., to the value § , bya
macroparticle is now made in proportion to the amount of its azimuthal
width which lies between the edges of the channel., The channels now
contain nonintegral '"counts', so that the coarse nature of the discrete

representation is reduced, The statistical fluctuations at high harmonic



Fig. 4. Typical kernel K(%)obtained by convoluting the exponential
field kernel with a Gaussian particle distribution of similar

range,



Figure 4
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are then further suppressed, without substantial change in the fields
at low harmonic, and the latter may be studied without being obscured
by the former.

In reasonable amounts of computer time it was found possible
to follow of order 2000-5000 macroparticles (hereafter called just par-
ticles) using a representation allowing 128 channels to provide the field
throughout the range -TT £ @ <10 , With linear interpolation for find-
ing the fieid between the tabulated values, the field calculation allows
harmonics from the first to about the twentieth to be well represented.
A potential kernel with a half width at half maximum of about seven
times the channel width allows an adequate representation of the kernel
shape and provides good suppression of harmonics higher than about
the thirtieth. With such a kernel and field, the statistical fluctuations
in the density values were small enough given roughly 2000 particles,
to allow the first through twentieth harmonics to be studied with rela-
tively little interference. The threshold for growth of statistical
"hash' was never too far away and lack of care in choosing the initial
distribution was observed to push the system across the threshold.
Thus interference from the hash occurred if for example, the initial
dist ribution was a series of horizontal rows of particles at different
values W, and the particle spacings in ® of the various rows were in
phase. This distribution is quite unrealistic and quick growth of the

hash resulted.
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The first integration scheme used to step the particles through

time was the straightforward linear algorithm
,_PJI-H - %l + W,I~A‘t

WH =Wt + € (g1 gat)-at,

This has the interesting property that the stepping of ‘Pj from t=dat

(33)

to T=( 1+I)Af, followed by the stepping of W” using the new value of
ﬂ', may be regarded as a canonical transformation since the generating

functions

4. A £ 2
T.!= J,Zw,“P,' F (Wyh%at,

(34)
-rz-l= 7 W, 1] ﬂ,lﬂ ~U( 4'),,!*: Lab)At,
J
in turn yield the transformations
34 ;1 and Wi £ Wi, (35)
- . Ar!
eyt and Wt W)

and therefore this approximation has in common with the true solution
of the differential equations (32), the property of preserving local densi~
ties in phase space, The coarseness of the representation however,
does not allow this property to be ascertained from the computer runs,
A pragmatic approach to the question of required fineness of the
time step At was used, starting with a value clearly too large and
halving it until doing so had no observable effect on the nature of the mo-
tion., A similar process was used to ascertain the effectiveness of using
only 128 channels to represent the field and of using of the order of 2000

particles,
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A comprehensive testing of the growth rates and critical energy
spreads predicted by the linear theory was carried out, For this pur-
pose, initially pure harmonic perturbations were made on a uniform
beam, For example, a phase density of the form Z’I\‘T{' [1 + €ws( h?)] S(W)
was used as an initial distribution for a momc-=nevgetic (AEF =AW =0)
beam, The values of the azimuthal density et @=0 were then tabulated
as a function of time, and the hyperbolic cosines C" of the ratios of
these values to the initial value }_Arlr ( 1+€) were computed. The lin-
ear theory 2 lpredicts the initial growth of such a system to have the
form A E’/KP (ﬁ:t)"’ B W(‘ ot) . The initial distribution used here
requires the initially stationary linear combination to be taken because
the continuity equation (27) shows that for states symmetric in W, the
value Jf /9L is zero when w (W) is taken as FW . The hyperbolic
cosine of S(@t) (P 0) should vary as tir(¢) where T(€) 18 T
in the limit of very small perturbation, Because even small perturba-
tions grow exponentially, the region of nonlinear motion is entered
quickly., However, the extrapolation of the derivative of €t (t) to zero
time does give r. . Since equal times elapsed between the observations
of the CA , the first differences Cl”" CI, are a good repreasentation of
the derivative if At is sufficiently small, On extrapolation of the dif-
ferences to zero time, the value T'o is obtained,

In order to provide comparison with the theory it was necessary

yJ
to know the Fourier amplitudes of the kernel used. The field C m at
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azimuth MA@ was obtained from the density § i at time /5t by the
prescriptioﬁ

, 8:: * Z Suemt * Koot (36)
where the values KKm are A@- K(ma@) |, a tabulation of the values
of the field kernel, In view of the linear in‘erpolation used to find the
field between the mesh points and the spreading described, of the effects
of one particle over one channel, the kernel used may be considered to

be that piecewise linear function connecting the tabulated values K., .

Its Fourier é.mplitude at harmonic 72 then is

Ke = -im Ko =-in 88 [ 2 in( 7a8)] Z Ku S (mm'sp) o

which is so written to indicate that the spreading of a particle is equiv-
alent to the process of ''sigma-smoothing" often introduced in applica-
tions of Fourier transformations to reduce fluctuations caused by cutting

21 7The factor in brackets is

off the series after a finite set of terms.
the smoothing factor,

This series was evaluated for representative kernels and for
various harmonics in the usable range 0<% h <20  and the numbers
were put into (20) after making the reduction @,=38=© and @®2=0 ,

g =00 , with @ 6" held fixed at N/4 . The resulting expression

is the growth rate
Jm (WD) = Ja {h] @ +4weRKxNI"{ (38)
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These results and the growth rate meé.surements were found to be in
accord to within about 5%, both in absolute magnitude and in depend-
ence upon the harmonic number, The harmonics tested were the first,
second, fourth, eighth, and sixteenth, The discrepancy 5% was in
accord with the estimated accuracy of the extrapolation of T l:) to
zero time, which was done graphically,

Further comparisons were xhade by varying the size € of the
perturbation from 0,01 to 0,25, Again to within the accuracy of the
extrapolation, the results were the same, and were in accord with
theory.

Since it is difficult to provide a amooth density variation in a
inonoenergetic string of a finite and small number of partides, the
initial modulation was provided by varying the interparticle spacing,

Figure 5 shows the field kernel used for the greater part of the
calculations made, and its Fourier amplitude as calculated from equa-
tion (37). Checks were made to assure that the computer program
gave the proper field for a density varying as sIn n@, The field in
this case is proportional to the ﬂ’l‘L Fourier amplitude of the kernel,

The results differed negligibly for 72 less than 16 and by less than 10%
for harmonics up to the thirty-second, The discrepancy was in the form
of reduction of the high harmonic fields,

Figures 6 and 7 show representative behavior of a monoenergetic

beam used in growth rate comparisons, and the corresponding curve |"’(t).
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calculated as described, The last extends in time past the time at
which the wave in the string breaks over on itself, It is this breaking
time at which an analogous computation using a mesh approach has dif-
ficulty in converging,

A limited exploration of other field kernels was made, again
with results in accord with theory, Thus, kernels with different shapes
but the same width and kernels of similar but smoother appearance and
doubled and quadrupled width were used. Because the analytical growth
rates and stability limits are always expressed here in terms of the
Fourier coefficients of the kernel, its actual form is not important, and
the one shown in Fig, 5 was used throughout most of the exploratory
calculations,

There are of course limitations on the states which may be ana-
lyzed with this type of calculation, The most important use is for the
analysis of beams with small energy spread. Attempting to represent
a large energy spread or structured energy spectrum is not possible
under the conditions cited because as we have seen, an adequate repre-
sentation of the field (that is, of the ? dependence of the distribution)
requires of order of 128 values to be given, Now the general result of
an instability is a twisting in the phase space of the distribution so that
if a detailed W dependence is desired in the initial beam, it must be
represented to the same accuracy as the ‘P dependence, A calculation

using good statistics then would require more time and more computer



Fig. 5. (a) Typical kernel K{@)used in digital computations, The
density histogram channel width is A@® ., (b) Relative

Fourier coefficients Kn of K .
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Figure 6



Fig. 1. Noniinear growth of a sinusoidal perturbation of a mono-~
energetic beam above transition. The values C‘ =17 |xd.
and the first differences or d%[tf'(@“t are graphed as
functions of t=AAt . The system was given an initial

25% perturbation (€=(0,25) at the first harmonic.
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space than was available, The conclusion then is that the particle follow-
ing approach is most applicable to stable distributions, or to unstable
ones having an unstructured energy dependence, For other states a dif-
ferent type of calculation is required, One such is described in the
latter half of this section,

Stability of Clusters above Transition Energy. An extensive

search was made for evidence that the statistical fluctuations in the cal-
culated field or interaction of the clusters among themselves could
cause destabilization of particle clusters,

For this purpose, an energy spread was simulated by using an
initia} distribution having rows of particles on each of 15 equidistant
lines at constant values W . In each row, the particle spacing varied
smoothly in ¢ so0 that the initial azimuthal density was

P(9) = i’% [1+ € s P+ cosh: 4]
The modulation €\ was usually taken as 25%, This served to allow
several different clusters to be observed at once because it caused the
height, width, and separation of the density peaks to be different among
the h+ peaks formed when the energy width failed to stabilize the sys-
tem against the field of the perturbation at harmonic h+ ,

The actual values bh: which were used were 5 and 10, while €2
was varied so that the high harmonic field ranged from much less than
to much greater than that at the first harmonic. The energy spread

used was always sufficient to ensure strong instability of the first har-
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monic if left alone, but was varied from much less than, to just greater
than that required to stabilize the higher harmonics, The ratios of sta-
bilizing energy spreads of first to fifth and tenth harmonic perturbations
for the usual kernel are

Ws(5)/ws(1) = 0.9¢ and  W:(10) /W5 (1) = 0.86 .

The result in all cases, except when the energy spread washed
out the high harmonic growth and only the first harmonic grew, was
that the higher harmonic grew quickly until a saturation value of energy
spread was reached, and remained there for as long as the system was
watched, Figure 8 shows a sample azimuthal density histogram from
a run where the value h. was five., The behavior is similar to the re-
sults for all the variations tried. It is seen that the beam has formed
five major clusters at the azimuthal positions of the maxima of the
initial perturbation, A sixth maximum may be seen near the azimuth

Q=17 ., This has a rather strange history: The initial growth of the
fifth harmonic was sufficiently quick to deplete the number of particles
in the azimuthal vicinity of the five growing bunches, This depleted
region extends one kernel width on either side of the bunches, Since
the centers of the bunches were azimuthally separated by three to five
times this width, this left small auxiliary peaks in the density between
the five large peaks. These are also unstable and they grew to satura-
tion energy spread, The result of the fifth harmonic was a smaller

amount of the tenth, Of the five small humps, four were absorbed



Fig, 8. Sample histogram obtained for the azimuthal density. This
shows the bunching which occurs in the particle-following
numerical calculations v;rhen the energy spread is too small
to stabilize the initially uniform distribution, The perturba-

tion was 1% at the fifth harmonic.
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eventually by the large peaks nearby, but the fifth was sufficiently far
-from thevpeaks to be able to exist independently, This behavior was
observed to a degree in all the runs attempted at he > { , including one
where the phase of the first harmonic perturbation was shifted by m
to be sure that no spurious effect wé.s generated by an incorrect method
of making the system periodic in ‘P . In the last case, the sixth hump
appeared at O rather than 270 . The absorption of the small
humps by the larger clusters is Teminiscent of the coalescing of
bunches observed at the Cosmofron. 1

In several of these calculations where the energy spread was
initially small and the rééulting clusters tightly bound, it was observed
that an auxiliary cluster could revolve around a main one as a distinct
object, rather than just being absorbed. In no such case did a small
cluster make more than two such revolutions befdre losing its identity,
Such behavior was also observed in the experiments,

A run at twice the energy spread used in Fig, 8 was stable
toward the fifth harmonic perturbation; With all other parameters un-
changed, the result was that the first harmonic grew and formed a very
definitely bunched beam in just one-eighth of the time at which Fig, 8
was observed. Because the configuration displayed in Fig, 8 had en-
dured for over 70% of the time elapsed without detectably organized

variation, further computation was regarded as uninformative, and it

was discontinued. At this time, approximately ten million particle
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steps had been made, at the expense of about sixteen hours of computer
time, The similar runs with vari.ations of energy spread and relative
excitation of the perturbations showed this same reluctance to change
once the bunching had taken place and were also discontinued,

The shape of the density peaks which obtained in this series of
calculation are at least consistent with the experimental triangles, but
are not sufficiently well determined to allow a flat statement that the
triangles have been shown to be the result of the azimuthal motion
alone, The analogous calculation for lower harmonics would yield more
definite information on this point, but a sufficiently fine representation
of the energy dependence of the distribution function was not possible
with the limited storage available in the ordinary digital computer, A
rough estimate indicates th;;.t approximately fifty thousand particles
would be required to obtain reasonably good statistics,

Limiting Energy Spreads, Because the final energy spreads re-

sulting from the space charge instability can be a determining factor
for the amount of current captured in an acceleration bucket, it is im-
portant to have some idea how great the growth is in the event of insta-
bility,

A search through all the calculations made showed that in no
case did the final energy spread attained in an unstable configuration
exceed three times the stabilizing value given by (23). The worst case

of course was that where the initial energy spread was zero, The re-
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sulting state for zero energy spread is a sharply bunched beam, with
the bunch width equal to the kernel width.

Instabilities in the presence of appreciable initial energy spread
cause final energy spreads to be more nearly just that required for sta-
bilizing the system; an initial energy spread of half the stable value
yields a final spread of roughly twice stable, and an initial 90% of stable
energy spread gave a final value of 130%, It appears that the product
of the initial and final energy spreads We and W; in case of purely
sinusoidal pgrturb.ations gives the square of the stable energy spread

We for the given current density, to an accuracy of about 25%, if the
initial value is not too far from stabilizing, Figure 9 shows a graph of

Wo Wy / We' as a function of W./We .

Space Charge Clusters in RF Buckets, We have quoted the re-

sult that the radio-frequency accelerating fields in an accelerator are
well represented by adding the term

—Ws + Vs ¥
to the field in the motion equation

aw/dt - 2weR & t).

Two methods often discussed i:or turning on the RF field are the
"adiabatic" (slow) and the "'sudden'’ turn-on programs, Adiabatic has
been found to mean that the change from V=0 to the full value Y
should take at least one-half the synchrotron oscillation period (period

of oscillation of a particle around the synchronous point when it is very




Fig. 9. Relation of initial (Wo) and final (W) energy spreads to the
critical energy spread (W;) for a uniform beam. The final
value gives the maximum energy spread of the bunches which

result from instabilities when W. < Wc.
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close to synchronous),

Several runs were made for beams above transition, using the
sudden turn-on, When the energy spread was so adjusted to make the
phase area occupied by the beam about a tenth the area of the bucket
and enough particles were injected to make the beam unstable toward
a relatively high harmonic perturbation (fifth or tenth) the result was
that immediate f,'é;r.;nation of the stable space charge clusters occurred,
and that these stable bunches revolved on phase orbits in the RF bucket
roughly as single particles did, The bunches appeared to have a tend-
ency to be destabilized by the coherent action of the RF term, so that
the particles ''leaked' out of the bunches and tended to spread out
throughout the bucket,

This behavior is quite similar in nature to that observed in the
absorption of small clusters by large ones, The value Ws used was
too small to allow any loss of the particles from the bucket because of
the space charge field to be observed,

The effect of a more adiabatic time program for turning on the
RF field was obtained by giving the voltage V  a linear time dependence
with V=O at zero time,and V taking the same value as in the previ-
ous run after a time equal to one synchrotron oscillation period at the
full voltage, The voltage was then held constant,

With the slow turn-on, the instabilities had more time to devel-

op before the question of capture into the bucket arose., In general the
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increased energy spread caused by the instability reduced the total num-
ber of particles captured. The existence of circulating space charge
bunches in the bucket was found in this case also,
Following the Motion of Boundaries

Nielsen and Sessler? suggest that most contemplated injection
schemes cause a distribution in the phase space which is nearly con-
stant inside a bounded region, and zero elsewhere, From this assump-
tion, the linear calculation of perturbations on the uniform state yields
the stability criterion (23) for a beam above transition, Even in the
linear approximation however, following the motion of a perturbed sys-
tem is difficult because the equations for the boundaries can usually be
written only in parametric form., Thus in the limit of no interaction at

all the boundary whose initial formis Ws =W [ 1~ EcCosch9)]

takes the form Wp = W [1-€ (os(h®-Wetd] o1 later times., This
gives Wg only implicitly, while an explicit form must be known to cal-
culate a density. Turning on the interaction does not help the situation,
but Fourier methods allow solution in series form, in the linear approxi-
mation, In the nonlinear limit, the Fourier series do not provide a con-
venient solution,

Numerical solutions however may be obtained easily, although
these are limited to following the motion only for a short time.

The essence of the calculation is that if the motion of the region

boundary is found, then that of the system as a whole is uniquely deter-
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mined, Movement of particles inside the boundary is unimportant here
because the Vlasov equation says the phase density will remain constant
wherever its gradients 0P /9€ and 9P /OW are zero and no explicit
time dependence exists, For this system, the only gradients occur at
the boundary, Computing the azimuthal dengity then becomes trivial,
being simply the calculation of an area.,

A computer program (see Appendix III) was written to follow the
system, The phase boundary was represented by giving a large number
of points on it and following their phase motion, The azimuthal density
and field were represented as before, by 128 channel histograms, The
motion of the boundary point ( ‘pj, W;) is then determined by equations
(32), which were integrated using algorithm (33),

Two topologically distinct types of filled regions (beams) in the
phase space were studied, These are shown in Fig, 10, The upper
region represents a perturbed uniform beam, the middle one a bunched
beam, and the lower one a hybrid case with topological properties of
the middle one,

In the program used, the boundary was assumed to be recti-
linear between the points representing it. If the initial state is an un-
perturbed uniform beam, the motion is represented exactly for all time
except for round-off error which should cause no trouble until a rela-
tively large time, Any other state was approximated, Difficulties a-

rise from this because the boundaries were stretched and distorted by



Fig, 10,

/

The topology of phase boundaries in synchrotron phase
space, The upper region is periodic in @ . The lower
ones differ topologicaliy from the upper one, and need not

be periodic. The periodic nature of the space is accentuated

by drawing it on a cylinder,
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the motion of the system. For a finite number of points representing
the boundary, a very definite upper limit was then placed on the time
for which the calculation is valid. After this time the points on the
boundary were so far apart that a straight line is not a good approxi-
mation to the boundary, and as it happened, the polygon connecting the
points usually became multiply connected., This was easy to detect be-
cause its result was that one of the regions then contributed a density
twice too large, or the right magnitude but wrong sign. Figure 11
shows just such a breakdown,

The azimuthal density was calculated using the polygonal formu-
la
for finding the area enclosed by the simply connected polygon whose
vertices are (X,, )’,). The sum requires the points to be taken in turn
as they are passed in circumnavigating the polygon in the clockwise
direction in the (X»)’)plane. The area within the phase boundary and
within the semi-infinite strip (7-2)AP L P<(m+ /2)AP was
multiplied by the particle density @ and taken as the azimuthal density

fm in the same region of P,

We note that one advantage of the boundary solution over the par-
ticle solution is loosely that the proximity of initially adjacent point
pairs(W,’,q,') and(h’,’«, 4}'.“) is used in the calculation, so that more in-

formation is carried by the two numbers., Because the numbers ‘Pj



Fig. 11. A sample of one difficulty inherent with calculating
boundary motion numerically by following the motion of
points on it, The region in the center should have re-~

mained simply connected.
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and Wj are kept in consecutive locations in the core storage of the
computer, the subscript value j is implied by the locations of the num-
bers, and need not be stored separately, The major advantage however
is that the representation has a continuous nature and no problems a-
rise from poor statistics, The disadvantage is that already mentioned:
In general, a boundary becomes arbitrarily complicated in infinite time,
and an infinite number of points must be used to represent it, This dif-
ficulty could be alleviated by a more elaborate scheme for the area cal-
culation, but would not be completely solved. This failure at long times
was accepted and the method used to investigate behavior on a smaller
scale,

The normalization was checked as before by analyzing growth
rates of perturbations on a uniform beam, With a finite energy spread
(average) of 2W and a perturbation of harmonic h , these are given
by equation (38), The same analysis scheme was used as in testing the
particle program, viz, extrapolation to zero time, The results were
accurate, again to within the error estimated for the extrapolation,
roughly 5%.

The type of perturbation available in this calculation is neces-
sarily limited to variation of the form of the boundary, The dividing
line between stability and instability under a perturbation of a boundary

is not at all well defined.,
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Figure 12 shows the configuration in the (W,#) space taken by
the boundaries initially given by W2 (@)= W (f-Ecos P),
after the elapse of time approximately f/wW€ , The five pairs of lines
represent a boundary at five successive times in this neighborhood,
The upper wave front is moving toward the left, For this run, no inter-
action at all was included. It is seen that the distribution, just by its
streaming motion, becomes radically different from the original one in
the region W(I-€) £|Wl £ W(1+€) | The three diagonal straight
lines are spuxfious, and represent failure by oversight to raise the pen
on the digital plotter, The points connected by these lines are those
which were initially at P=0 ,

Beams above Transition Energy. Turning on a small interaction

yields behavior similar to the zero field case, except that the region of
"included air,' the thin streams of unfilled phase space going into the
filled region, penetrates farther toward the center of the band. There
appears to be some limiting case where the streamer crosses the

W=0 line, In this symmetrical initial load, the upper and lower
streamers will then eventually wind around one another. If a bunching
of the beam can occur because of this, it cannot be seen before the ap-
proximation breaks down., Figures 13 and 14 show a weak field run and
a run which has the streamers crossing the axis, In the latter case,
the field strength was within 10% of the critical value for immediate

bunching given by equation (31), In the former it was roughly 50% of



Fig, 12,

Boundary motion when no fields are present, The initial
boundaries were W(®)=tW(1 +€wsP) ., The phase
diagram shows them after 5, 6, 7, 8, and 9 equal time
intervals, The wave front on the upper set of curves is

moving to the left; that on the lower, to the right,






Fig. 13. Boundary motion, as in Fig, 12 except that a very small
interaction is present, The interaction is that of a beam
above transition energy, The time intervals here are
smaller than those in Fig, 12, but the elapsed time is

comparable,
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Fig, 14,

Boundai'y motion, as in Fig, 12 and Fig, 13, except that
the interaction is larger, The system is above transition
energy., The field here is nearly large enough to cause
immediate bunching of the beam, The elapsed time is

comparable to that in the previous two figures,
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this value,

In the following sections on the unjform beam, the value W was
taken as 1,0, while 2meRN was 64/71° and the parameter Ko was varied
to change the field, This nunber is a multiplicative factor for the en-
tire kernel whose functional form was fixed throughout this section at
the form shown in Fig, 4, Since the entire problem scales, the value

W/o and the value Ko suffice to determine all the parameters of the
system when it is known that the critical value of Ko is given by

Ke = ©./89 (1-€),
where €W=€ is the amplitude of the perturbation, The perturbations
used were 25% variations, that is, €=0.25 for which Ke£ =0.MS ., The
values K. used for the runs in Fig, 13 and 14 were 0, 0625 and 0, 125,

A run which shows the behavior under the bunching phenomenon
is shown in Fig, 15, The value K. here was 0, 1875,

It was from observation of these pictures that the criterion for
immediate beam bunching was noted, Another run, using Ko=0.Z5
is shown in Fig, 16,

Because the resultant states in Fig, 15 and 16 seemed reminis-
cent of the square-hump state described except that ends were rounded
off in an azimuthal distance of approximately the half width of the ker-
nel; .some test runs having the nature of a perturbed and rounded square

distribution were tried, The Casini Oval
[yon1* = (af +4x)" —f-x*



Fig. 15, Boundary motion above transition, in the presence of
interaction large enough to cause beam bunching, All
parameters are identical to those of Fig, 12-14, except

that a multiplicative factor in the interaction is larger,






Fig, 16, Boundary motion as in Fig. 15, except that the interaction
is stronger, Three boundaries are shown, indicating the

motion during equal time intervals,



Figure 16
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was chosen as a tractable if vague approximation to these final state
bunches, The rounded corners of this oval do not have the correct
functional dependence for the stationary state, and this constitutes an
additional perturbation, Figures 17 and 18 show such a run, In these,
graphs of the field are superimposed on the plots of the boundary. The
field increases with time and perturbations travel counterclockwise a-
round the boundary, The second figure shows three successive config-
urations of the system at a time much latelé than that of the first, Later
pictures were not judged presentable because of pen troubles on the
digital plotter, but showed that the perturbation travels around the end
of the distribution with no ill effects, That is, it does not become any
larger, nor does any other part of the boundary become substantially
different, The strong nonisochronism of this state caused the small
cusp discernible in these pictures to spoil the approximation shortly
after the latter picture and long time behavior could not be studied, An
analogous computation with the particle following program gave the
same results for a much longer time. The perturbations travel around
the boundary with little discernible decay and no apparent tendency to
eject particles from the buncl}es.

Beams below Transition, One of the more interesting results

of the boundary program obtained when a mispunched input card changed

the sign of the field kernel, This is equivalent to ¢alculating the motion




Fig. 17, Boundary motion approximating further evolution of the
large cluster formed in Fig, 16, Curve 1 is the initial form,
and 2 and 3 follow at evqual time intervals, The interaction
field at the corresponding times is superimposed. The field

increases with time,
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Figure 17




Fig, 18, Continuation of Fig, 17, showing the boundary after 11,
12, and 13 time intervals, The lines are broken to aid

distinguishing them,
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=53~
of' a beam below transition, in view of equations (32), The distributioﬁ
proved to be unstable in a certain sense. Shortly after this, beam |
bunching phenomena below the transition energy were observed in the
MURA 50 Mev electron test model, and similarity to results in other
machines was noticed, 6 Some further investigations therefore were
made on the computer,

Rowe® has noted that the two-stream instability (cf. equation
(20)) might cause this type of instability., As we have seen here, such
an instability can occur with only a very small depression on the velocity
distribution and analysis is complicated by an overabundance of mechan-
isms, As we have seen, a perturbation in the boundary of a distribution
streams around, in the absence of interaction, until a two-stream dis-
tribution obtains, After the wave crest in Fig, 12 has overtaken the
slower portions of the boundary, a two-stream situation exists, Suf-
ficiently here means by the width of the field kernel, which is very
small as we have seen,

We may generalize this result and say that with no interaction,
the streaming motion acting on a boundary of the form W =W ({+€C05P),
first causes the boundary to attain a vertical tangency at time 1/WE,
and that thereafter a two-stream mode exists, At this time, a particle
at W has traveled an azimuthal distance /€ . Thus a perturba-
tion of 16% yields a two-stream mode after the wave crest moves by

QO Pc= 217  in the rotating coordinate system, Using the numbers
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this same effect increases the width of the gap which will develop to
form the two streams, so that the instability is less likely or will take
longer to develop,

However, another mechanism for instability exists, as may be
seen in Fig, 20 and 21, It is seen that for a strong perturbation ( € is
25% here) the interaction of a boundary perturbation with itself tends to
increase the energy spread as should be clear, but also causes a very
definite wave to appear on the boundary, It is noted that this occurs be-
fore the beam can be claimed to be in a bimodal configuration. The
time at which these waves have definitely appeared is juat that time
taken by the fastest particle to lap one with the average energy, and this
is the same as the time calculated in the previous paragraph, and there-
fore for the 25% modulation this nonlinear instability can also occur
after roughly the observed interval, The perturbation required for this
seems to be larger than that thought to exist, but we repeat that there
are few experimental observations upon which to bage any firm conclu-
sions,

To assure that this wave development is not dependent upon some
approximation in the numerical computation, various parameters were
changed, It is recalled that the field kernel of Fig, 4 was used for most
of the calculations and that this shape was taken to account for the width
of the macroparticles in the parti.cle program, Since most of the pres-

ent results do not depend upon the shape but upon the Fourier ampli-



Fig, 20, Boundary motion with interaction as in a beam below
transition, showing nonlinear effects and development

of a wave, The upper boundary was initially

W(®) = W({+0.25¢05 9), and the lower was

WP)=-w .,






Fig, 22, Development of the wave structure below transition when
the lower boundary is moved far enough away to have neg-
ligible reaction to the modulation on the upper one. The
boundaries here were initially at W =W({ +0.25¢05¥) and at

Wz"sﬁ.
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quoted by Rowe,6 viz.,, DWW/ = 4.0-/o'+ and s = 2.0-/0" cps,
for the frequency spread SWs and frequency (stationary frame) @s ,
as being reasonable estimates for the inj‘ection process used in the
MURA 50 Mev electron accelerator, we obtain the result that in the
time required by the fastest particle (angular frequency s +3ws

to circle the machine twenty times, the two-stream mode appears,
given a modulation of only 8% of the total energy spread of the beam,
According to Rowe, 22 this is a fairly reasonable number of circuits,
and instabilities have been observed 20 to 200 particle circuits after in-
jection begins, It is thought that a reasonable picture of the injection
process used gives a phase density roughly constant in the shaded re-
gion shown in Fig, 19 and zero elsewhere, The scheme is multiturn in-
jection with betatron acceleration giving an average energy gain per
turn of order 100 ev, This energy should correspond to the height of
the steps in the diagram, After 20 turns the step is roughly 5% of the
total energy width and we see that all the numbers are roughly consist-
ent, We have a mechanism for obtaining a two-stream mode in roughly
the time for which experiment yields an instability, The calculation
here has really been to zeroth order in the field strength, but we can
argue heuristically that the first-order effects cancel. Thus, under the
influence of space charge this step in the boundary being a nonuniformity,
will tend to have its height increased, and therefore will tend to stream

faster, and the two-~stream mode will appear sooner, On the other hand,




Fig. 19, Conjectured phase distribution at injection in the MURA
50 Mev electron accelerator, The particle density is
regarded as uniform within the shaded region, and zero

elsewhere,
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this same effect increases the width of the gap which will develop to
form the two streams, so that the instability is less likely or will take
longer to develop,

However, another mechanism for instabllity exists, as may be
seen in Fig, 20 and 21, It is seen that for a strong perturbation ( € is
25% here) the interaction of a boundary perturbation with itself tends to
increase the energy spread as should be clear, but also causes a very
definite wave to appear on the boundary, It is noted that this occurs be-
fore the beam can be claimed to be in a bimodal configuration, The
time at which these waves have definitely appeared is just that time
taken by the fastest particle to lap one with the average energy, and this
is the same as the time calculated in the previous paragraph, and there-
fore for the 25% modulation this nonlinear instability can also occur
after roughly the observed interval, The perturbation required for this
seems to be larger than that thought to exist, but we repeat that there
are few experimental observations upon which to base any firm conclu-
sions,

To assure that this wave development is not dependent upon some
approximation in the numerical computation, various parameters were
changed, It is recalled that the field kernel of Fig., 4 was used for most
of the calculations and that this shape was taken to account for the width
of the macroparticles in the particle program, Since most of the pres-

ent results do not depend upon the shape but upon the Fourier ampli-



F¥ig, 20, Boundary motion with interaction as in a beam below
transition, showing nonlinear effects and development

of a wave, The upper boundary was initially

W(®) = W ({+0.25C05 ®), and the lower was

W@=-WwW .,






Fig, 21, Further development of the system in Fig, 20, The
curve labeled 1 is double, showing the motion during

1/16 the time interval between curves 1 and 2.
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tudes of the kernel, the shape is normally not critical. Using the more
proper exponential kernel by taking Km proportional to 2™, except cut-
off after the seventh term, gives a kernel with the same range as the
usual one, but higher harmonics contribute proportionately more. The
results were similar, and growth occurred again, with the same wave-
length to within 10%, the accuracy of the measurement. A run doubling
the kernel width appeared to double the wavelength of the waves, again
to within the 10% measurement accuracy. The wavelength is roughly
equal to the kernel width, The measurements suggest that the wave-
length increases somewhat with amplitude, for large values, However,
the change was less than the error quoted. It was found that the same
waves develop when the lower boundary is not excited initially, when it
is made farther away by increasing the energy spread by a factor five,
and when it is not allowed to react to fields caused by the waves on the
upper boundary. (Charge is not conserved in the last.) It is thought
that this instability is a proper behavior of the mathematical model in
the nonlinear region below transition,

The term instability as used here, is subject to the objection of
being vague, It is not clear that a growth rate can be defined for it.
The growth occurs sufficiently close to the ''saturation” point where
streaming tends to eliminate further growth (see Fig., 22) so that expo-

nential behavior is a poor fit to the form of the growth,



Fig, 22,

Development of the wave structure below transition when
the lower boundary is moved far enough away to have neg-
ligible reaction to the modulation on the upper one. The
boundaries here were initially at W= w(l +0.25C°S¢),and at

W=-S5W.
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We have then two mechanisms by which an instability can occur
below transition, using only the longitudinal interaction of the beam,
There are many others possible for obtaining a multimodal distribution
and especially in view of the instability of the distribution with a very
narrow depression_ it is not surprising that beam modulations develop
below transition,

Attempts to differentiate or further understand the tWo mechan-
isms mentioned by using the computer programs available have proved
unsuccessful because of the inherent limitation of the programs: One
cannot follow a system for long times, and the other cannot represent
fine grained structure in the distribution function,

The simplest two-stream system for which the computations
were attempted was one in which an initially chopped-off beam with a
reasonable energy spread was allowed to shear by streaming until many
streams were formed, Figures 23 and 24 show such a system initially
and after two revolutions in the moving coordinate system, The result
of the interaction is that the bands tend to remain well separated despite
the shearing, and no evidence of any exponential growth is seen, The
elapsed time at the second picture is roughly twice that calculated for
two-stream instability to occur by assuming no interaction until the in-
stability is ready to begin, Restated, the bands of filled phase space
remain separated about twice as far as they should under the streaming

motion alone and this is sufficient to stabilize the distribution for some



Fig. 23. Phase space boundary enclosing a region filled with
particles. This is the initial distribution used in seek-

ing two-stream effects below transition,
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Fig. 24. Evolved form of the boundary in Fig, 23. The inter-
action has increased the energy spread enough to

stabilize the system toward two-stream instability,
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time, Again the approximation began to fail after the last picture, and
the run was not continued. Similar runs were carried out with greater
and smaller field strengths (by factors two) with the same result. In |
each case, the separation of the streams remained greater than the
critical value, and roughly twice that given by a calculation assuming

no interaction, It is possible that this type of initial system is always
self-stabilizing and that two-stream instabilities cannot occur as a re-
sult of the shearing of bunched beam, unless the gap in the azimuthal

spread is very small,



CONCLUSIONS

Co'mputer studies have indicated that azimuthal modulations of
the current densities in the Cosmotron and the MURA 50 Mev electron
accelerator may be understood qualitatively. The theory given by
Nielsen, Sessler, and Symonz appears to provide phenomena corre-
sponding to most of the gross features of the experimental observa-
tions, The theory predicts these phenomena, despite failure to include
details of the transverse motion of the beam or to do a more careful
analysis of the fields, The extension to the nonlinear region appears
to be the only modification required to obtain such results.

The phenomena noted both in the computer experiments and
those on the accelerators include the tendency of a uniform beam |
above transition energy to assume a stably bunched configuration
when the energy spread is too amall to stabilize the uniform state.
Also found are interactions of such clusters as entities, both with one
another, and with the RF accelerating fields, Both types of experi-
ments indicate that insufficiently tightly bound clusters may coalesce
to form larger clusters in which the original ones lose their identities,

More detailed correspondence between the two types of experi-
ments was not obtained because of time limitations on the amount of

=59~
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detail which could be analyzed numerically, Thus, the shapes of the
stable bunches were consistent with those seen in the accelerator ex-
periments, but to claim them to be the same would be unjustifiable,

The bunching of uniform beams below transition has been ob-
served to occur through at least two mechaniams, the two-stream in-
stability and the growth of large perturbations, The accelerator experi-
ments have not yet been made in sufficient detail to obtain an accurate
picture of the beam profile (say $(®) vs, ¢ ), and determination of
which, if either,of the two mechanisms is responsible for the modula-
tions is not yet possible,

A symmetry principle has been demonstrated showing that par-
ticle clusters above transition energy, and particle deficiencies below
behave in the‘ same fashion,

In private communication, C, E. Nielsen has suggested that
this result can be combined with the nonlinear behavior noted here, of
a small energy spread beam above transition, This shows the configu-
ration taken after long,tin‘les, when a two-stream instability occurs
below transition. The modulations observed at the MURA 50 Mev
electron accelerator could be regarded as the result of the formation
of a stable hole in an otherwise uniform distribution in the synchrotron
space, The experiments also show that the density modulations are

themselves amplitude modulated at a very low frequency; that is, a
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beating phenomenon occurs, Two stable holes in an otherwise uniform
distribution would exhibit just such behavior if they were centered at
slightly different energies,

It has been seen that the motion of a one-dimensional many-
body system may be studied with the current digital computers when

analytical approaches prove to be too difficult,
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APPENDIX I. AN APPROXIMATION TO THE RELATIVISTIC FIELD

We proceed with a solution to equation (5) in the approximation
that we are discussing situations where the azimuthal dependence of
the field is at a harmonic sufficiently high to allow the dependence of

K{ upon 72 to be neglected.
The periodicity requirement in ¢ proves to be an unnecessary

complication here, so we will synthesize a periodic solution from solu-~

tions to
( 99’71 - Ka. __CL.‘ %) s(x,t) Eg j(x,t) = - 47";(X)t)’ (AI)

where a particular transverse mode is chosen with Kj/R* = K, and
-00< X< . The boundary condition is now that the solution 3(X)t').
should be bounded for large X . This is the equation governing propa-
gation of the electric field in a rectangular waveguide excited in a trané-
verse electric mode,
The Green's function G(X,t) for the system is given by the well-
known formal express.’uon23 |
G(Xyt) = 41 Z. VE o) B (0,0) O, (A2)
where ¥, and W, are the eigenfunctions and eigenvalues of the oper-
ator g :
O =W, (A3)



-64-

Suitably normalized forms for these are

Bot) :(Zﬂ}"??([) (Z kx—iwt), and - wC-K- €, (a9
Then
-twt Qﬁ -
——‘-f e wet- K- &1,
G =+ (deo 5., [ s
A contour in the @& plane which passes between the two poles at
2.3 ct!
&: “_‘:E'-c =i'/l.0.‘0"< ’
results on making the replacement
(&o- &.){Qw-&,) — (Rotie ~&) & +i€+R) (A6)

if € is real and positive, This contour yields a Green's function sym-
metric in X , the appropriate symmetry here, The result of the

integration is then

pt 4 - WIpen
Got) = -zwi & f dPe [ie+icfp3dK] € s (AT)

where { is -ZwWw , Taking a contour to the right of all singularities in
the w plane in order to obtain a Green's function which satisfies the
principle of causality, this integral becomes a Laplace transformation
inversion, which is found in the more comprehensive tables, 24 The re-
sult, using the unit step function @ (X), which is zero for negative argu-

ment and unity for positive argument is:

-ect

G Wt) =27me B £) ®CCE-X) J_(K‘V/C% -X* ) . (A8)

Here J, is the first-order Bessel function of the first kind, and € may
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now be set equal to zero.
For a complete solution we must add to this a generai solution
to the homogeneous equation where ‘f(X,t) is taken to be identically |

zero, Fourier and Laplace transformations yield the complementary

solution

Cxt) = £ 9(x-ct,00+ g (x+ct, 00+

ot
+ .ftdx'c-' &,, j(X;'L") kngx,xl . I(”'/c:,ét_x,z ')+ (A9)
= "=0

+Het[ IX'GOK0)-T; (MyTTx ) /TR | Lct-1XD).

The complete solution then is d_'
t
J(Ht)= C(KE) +2w ,[cdt’_fdcfx'f(x—x,’é-t') T (Byet™x"7).  (a10)

One interesting consequence of the term in K in the equation is

shown by taking the simple case

9(%0) = 8®K)  and 2 904, = fo =0, A11)

where §(X) is the Dirac delta function. The solution becomes
9iKt) - $@ ek ) Boreto0x-ch)thet T K LEX)EX} |,

The first two terms are propagation of the initial disturbance as in the
ordinary one~-dimensional wave equation; while the third may be re-
garded as a wake following the disturbance.

Solution to the periodic problem may be obtained by replacing X

by (®+ Z’”Zﬂ') R, and summing over M , in equation (A10), It
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is to be understood that each term is to be included only when the square
roots in it are real and only if (&4 +z7mt)R < ct . The M '/A
term represents the effects of a disturbance at =0 and $x=0 on the
field at @ and € , after the disturbance has traveled |M| times around
the toroid. If M is positive, the direction of travel is the 4 direction,
if negative, the~® direction, The display of the result does not seem
warranted here.

The modes found by Neil35 in which Kj is negative, do not
satisfy the conditions under which (A1) is a good representation of the
wave equation, These modes have transverse field dependences which
make invalid the assumption that the eigenvalues K, are independent

of wave number £ . The integration yielding (A7) is then incorrect.



APPENDIX II. THE PARTICLE FOLLOWING PROGRAM (MU F51)

The philosophy of this calculation was described in the body of
this paper, A few of the details are mentioned here and the actual code
is included.

A listing of the program is attached, It is in the form of one
main control program and numerous subroutines, These subprograms

are written in Fortra.n25

language or in the SAPZ6 language for the IBM-
704, There is some slight mixing of SAP instructions and literals into
the Fortran parts where this saved a reasonable amount of indirection
in accomplishing what was required,

The most often repeated part of the program, subroutine OPUS 3
was written for Fortran until it was noticed that using the SAP language
(essentially the actual machine language) allowed a reduction in operat-
ing time of roughly 20%. This is the part of the program which is re-
peated for each particle at each integration step, The reduétions con-
sisted primarily of omission of superfluous operations included by the
Fortran assembler, An estimated 10% further reduction in time could
be made by revising some of the conventions used throughout the pro-
gram, e, g., carrying the azimuth in units such that width of a density
channel is unity would allow some multiplications to be left out,
~67-
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The system admits up to 10,000 particles but less than half this
number were used normally, To carry 2500 particles through one time
step requires roughly 15 seconds on an IBM 704 with add time of 24/05
and multiply time of 204/us . The time required for writing the output
data on a tape is roughly 45 seconds for each complete set,

Extra subroutines required for operation as written are MURCD2,
MUSAVE, MUSIN4/COS4, MUPLOT, and MURANS, 2T All but the last
are described in Appendix III, MURANG6 computes a digital computer-
type psuedo-random integer modulo 2 to some power using the argument
given it as the modulus,

Two types of particles are admitted: normal particles and test
particles, of which the latter does not contribute to the fields, The mo-
tions of the two types of particles are computed in the same fashion, and
the test particles serve only to allow a small sample to be looked at in
detail, Their coordinates can be included with the output at specifiable
intervals,

The main program initializes the memory, determines the form
of the input and calls various subroutines, The two input forms are
card input using subroutines BEGIN and INPT3, and tape input using
subroutine TAPES,

Subroutine BEGIN reads input card data, computes useful num-
bers for the rest of the program, and provides output which includes

listing of the input parameters,
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Subroutine INPT3 allows the initial distribution to be specified
with just a few control parameters, Two types of input are possible,
The first computes a function -f( w,&) and depending on the value of -f
decides how many particles to place ina AW by A$ rectangle
centered at (W,®). The second enters the particles along a line

W= W7 + (A + Aikw))cos ( h$+9),
with azimuthal spacing

Ap= 1K@ + Aesin (hi@+4) 4 As sm(hs P+ )3~
Using the second form, the distributions can approximate those used in
the boundary program.,

Subroutine WORPRO controls the output sequence and contains
sense switch options which allow some indication of the progress of a
run to be printed on the on-line printer, allow discontinuing of a run,
or allow the subroutine SAVE to store the status of the machine on a

-tape for continuing later. The output options here are the printing or
plotting of the azimuthal density, printing of the field, printing of test
particle coordinates, or calling of the subroutines TPPR, PLRXY, or
TAPES,

Subroutine TPPR is an attempt to allow study of the phase space
orbits of the test particles. It creates an image of a blank output page,
and thereafter when called, enters letters into this image, regarding
the page as a part of the (W, $) plane and putting the letters in the

positions corresponding to the locations of test particles. Each of 44
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test particles may be given a distinct symbol A, B, C, ¢.. , Z, 1, 2,
3, ¢¢¢,9-)(=,+,8 ¢,1, or +, The symbol * is reserved
for indicating that at different times, different particles entered the
same region, The idea was that by connecting all the A's on the page,
the trajectory of particle A could be seen, with similar possibilities for
the other 43 particles, In practice it became difficult to control the
scales and not too much information was obtained from these pictures,
One of the better examples is included here as Fig. 25.

Subroutine PLRXY proved more useful, This treats an output
page as the (W,®) plane between Wmin and Wmax . The banks of parti-
cle coordinates are scanned and a two-dimensional histogram is formed
giving the number of particles in the S§W by 9 region centered at

(W,®) . When these numbers are printed in the proper order, the
page may be regarded as a ''plot" of the distribution function. An ex-
ample of this is reproduced in Fig, 26, Where no numbers occur, no
particles were found, The resolution is limited to a 60 by 40 channel
histogram, The scale factor is automatically adjusted if any points fall
outside the nominal range (Wmin y Wwmax) given,

Subroutine PRINT provides diagnostic print out for the computer
operator if any difficulties occur during the manipulation of tapes in sub-
routine TAPES,

Subroutine INFELD calculates the fields present, in preparation

for the first integration, Thereafter they are calculated by subroutine




Fig., 25. Sample phase trajectories of test particles, calculated
with the particle-following program. The motion is in the
counterclockwise direction, and represents the motion

under the influence of a fixed frequency RF field.




F-51 RUN 1803, TEST PART. AT TIME 1.1&431728t 0C, STEP 17, YMAX, YMIN= 1.2500000£-02, -1.250000CE-02
C c c c G 0 C o] c (V] G

5C ’ 2

59 H2 3

58 11 H2 3

57 n 2 3

56 n H 2 3

59 *) H 2 3

S4 Gs H , 3

46 212222 G G H R I y

45 1z FF 2 Gic . 13

Uy 2z FFZ H R 1 4

43 FFZ P 1o . 13 Y
b2 w FFZ P ¢ 13 M
ui F zp G G H R I 4

C
E——0—F P———jEL G H R 1
o] Q

=
< < € € < <
o
UV n

0
A v W C 0 P

(€N
1<
[
coccoccaoccc
>
<
[«-]
(2]
*
©

c P

0 . S
0
N (+]0} P G R S

X C

20 TT v N X C
19 T A ve WC . XN D
18 T K A W X NCO
17 T KA L MC X NCC ’
16 T A L ] NDC N
15 T K A » L 14 N B N
Ty T A Ve W C NN#NNNN

o0 Q

23 u > VB c

XK X X

Figure 25



71~
OPUS 3, of which INFELD is a copy with the integration steps omitted.
It is here that a potential user would first have trouble with the normal-
ization. During the evolution of the program, it was noted that a multi-
plication per particle per time step could be saved (multiplication and
division are usually the determining factors for the operating speed of
a program) if the size A%, of the time step was incorporated into the
unit system, Thus (33) may be written
le-n - le T YJ (,
i =Y+ E(zmx™, LaL)- (at) /2,

where X; is /217 and )’} is W;At/z,‘(r . Another multiplication was
saved by taking (At)/ZTT to be an integral power of 2. This caused no
trouble until it was found that the time step had to be adjusted occasion-
ally to keep the integration accurate. To save rewriting the entire pro-
gram this adjustment was made by doubling or halving all the values y,
when necessary. Because the Y,‘ rather than the M{, are the numbers
listed in the output, this expanding and contracting coordinate system is
somewhat inconvenient, but since adequate notice is provided when the
scale changes, it can be tolerated. The output graphs are so acijusted
that the points plotted will be in the same position on the page, whatever
the current scale factor.

Subroutine OPUS 3 does the actual integration of the motion equa-
tions for all the particles, and recomputes the fields after each such

step. It also tests and corrects the scale factor to assure accurate
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integration,

Included in the listing is some patching required for the IBM 704
Fortran input-output subroutine (IOH).Z 5This is required by subroutine -
PLRXY to prevent the distribution function plots from being filled out
with zeros, which make them harder to interpret, With this patch, no
zero integers are ever printed, thé proper space being left blank instead,

Subroutine SWITCH tests all six sense switches on the operating
console and informs the calling program of the configuration in them,
This simplifies testing of the switch settings,

Subroutine TAPES provides for storing on tape just enough of
the data used in a run to allow the run to be continued from that point at
a later time, It also allows such a tape to be interpreted properly and
this rerunning to be carried out, with revised control parameters, if
desired, A fairly complicated format is used to be sure the proper tape
is used for this,

The program is sufficiently general to make definition of all the
parameters a lengthy process, This will be done in the form of a MURA
report, and only a few important ones mentioned here to allow the code
to be decipherable,

For the most part, integer-type parameters are stored as mem-
bers of an array IG(I) where < I£128 . Floating point parameters
are stored in the array Z(I) for {€ J€1024 . These are common to all

the subprograms, The numbers X, and Y» are called X(N) and Y(N).



Fig, 26,

Sample phase density of particles, calculated with the
particle-following program, The single integers repre-
sent the number of particles found in the corresponding re-
gion in the (W, P) rhase space. The run shows one stage
of the evolution of a band of particles initially spread
uniformly in a region -We < W < W, and -T<P=T,

under the influence of a fixed frequency RF field.
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The field and density are named mnemonically, The arrays IP and
BANK are the locations of the printer page images used in the sub-
routines PLRXY and TPPR,

The equivalence statement of subroutine WORPRO provides a
good dictionary of mnemonical variable names, For clarification,
INDX is the total number of particles and NBOX is the number of
channels in the field and density histograms, (This is an integral
power of 2,) The field kernel is stored in locations Z(101) through

Z(132),

For further details, the MURA report* must be consulted,

*MURA reports are available upon request from the Office of Technical

Services, U, S. Department of Commerce, Washington 25, D. C.



101

901

10

12
8l1

82
40

500
501
502
503
504
505
506

F 51 MAIN 1V e
c?gg”gN IGOZtFIELCvBBB,RHOoXthCCCiIPvBANK

N IUNIG(IZS’oZ(1024’,F‘ELD(1024) RHO(1024),X(10000),Y(100
CIMENSICN BANK(1C2C), IP(6CAY, G(1) ' ' ' o0
ECUIVALENCE (IG(Z)’INCX)'(IG(ZI)'NBOX,,(G(l"1(801‘)

SENSE LIGHT ¢

Z (79) = 0.
Zi6) = 1.
Z(25) = 1.
2(27) = 1.
Z(9C) = 1.

IF (SENSE SWITCH 3) 4C, 101!
CALL MURCL2(G)

IG(1) = G(1)

IG (2) = Gt2)

NEWCT = G(3)

CALL TAPES (+1)

SENSE LIGRT 3

SENSE LIGHET 4

REWINC 3

[F (NEWCT) 901, €11, 9C1
IG(31) = NEWCT & 512

NRE =NEWCT-IG(32)
IGU32)=NEWDT
2182)=SCRTF{6.2831853«12,0#«(-1G(32))))
B=SCRTF(2.0%=(-NRE )
CC 1C 1=1,INCx
Y(I)=Y(I)#8

CC 12 I=1,5
Z(1+4139)=2{1+4139)+8
IGL69) = NEWCT

CC 82 I=1,128

GlI)=IG(1)

CaLL BEGIN

CALL WCRPRO

GC TC 1

ENC(Cy141+1,Q)

F-51 BEGIN Iv
SUBRCUTINE BEGIN
COMMGON 1Gy2,FIELC,BBB,RHOsX,Y»CCCyIP,BANK

CIMENSIONIG(128),2(1024),FIELD(1024),RHO{1024),X(10000),Y110000)

CIMENSION BANK(102C),IP(60CC), G(1)s RF(1)

ECUIVALENCE (LN2NBX, IG(3C))y (CT, 2(82)), (ENBOX, Z2{(81)), (LNTAL,
1I1G6(31)),(LNBXD2, IG(32))y (GAMMA, Z2(80)), (IG(l),y ID), (IG(2), INC
2X)e (Z(10)y TIME), (IG(33), NKERN), (2(801),G(1)), (IG(21),NBCX)

3 ,(Z2(851)4RF)

FGRMAT(Aly 9HF 51 RUN 16,2H 2A64,15H BANK AT TIME = 1PE15.7)

FCRMAT(I644E15.7)

FCRMAT(13HOSPACE CFARGE,A6)

FCRMAT(1216) ‘

FCRMAT({16HORACIC FREQUENCY,A6)

FCRMAT(I6,11F6.0)

FCRMAT(A6,411H TRANSITIGN)



509 FCRMAT (9HLF 51 RUNI6) S L
510 FQRMAT (1H2)
SCN  ALF ON
SCFF  ALF OFF
SBOVE ALF  QABOVE
SBLCh ALF  QBELOW

SBLNK ALF

SB8BBI ALF I
SNTGR ALF NTEGER
SCATT ALF CATA

SCNE ALF 1

17 CALL MURCD2 (G)
CALL MURCLC2 (Z)
18 CO201=1,128
20 IG(I)=G{I)»1.0000C1
PRINT 509, IC
PRINT 510
IF(SENSE LIGHT 3) €2,50
50 1G6(2) = 0
SENSE LIGHT 3
2(81)=2.0¢+1G(30)
16(21)=Z2(81)+8
2(82)=SQRTF(6.2831853%(2.0%#(~16(32))))
CALL INPT3
16 (4) = ©
TIME = O.
16(38) = 0
16(31)=1G(32)
1G(30) = IG(30) « 512
1G(31) = IG(31) =512
CO 51 I=1,NBOX
51  RF(I)=0.
IFU1G(34)) 54,52,52
52 CO 53 I = 1, NBOX
53  RF(I) = GAMMA + SINGF(FLOATF(I-1) /ENBOX)
54  CALL INFELD
62 NZ=1G(19)
BBB=INCX
IF(SENSE LIGHT 3) 60,55
S5 IF (IG(15)) 60, 63, 60
60 CC 611 = 1, 1020

61 BANK (1) = BLNK
63 WRITE CUTPUT TAPE 9, 500, ONE,IDyBBBIJNTGR,TIME

WRITE QUTPUT TAPE 9,
15033 (KyIGIK) 9 IG(K+1) s IG(K+2) s IG(K+3),IG(K+4),IGIK+5),IGIK+6),IG(K+

2T) s IGIK+8) ) IGIK+9), IG(K+10)4K=1,77,11)
WORLC = ON
IF (IG(23)) 66,67,¢&7
66 WORD = OFF
67 WRITE CUTPUT TAPE 9, 502, WORD
wWORD = OFF
IF (IG(34)) 69, 68, 68
68 WORD = ON
69 WRITE CUTPUT TAPE 9, 504, WORD
WORD = BOVE



70
70
80

15
19

20

30
31

40

50
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IF(Z(84)) 70,80,8C

WCRD = BLOW

WORD = BLOW

WRITE GUTPUT TAPE S, 5C6, WORD

-CALL NAME

WRITE CUTPUT TAPE 9,500+BCVE,ID,BLNK,DATT, TIME
WRITE CUTPUT TAPE 9,

15011“('1|K)12(K+1)|Z(Kf2"Z(K*3)vK=1’NZ,4)

RETURN
END (Cslylyl,0)

F-51 INPT3 1V
SUBRQUTINE INPT3
COMMCN IGeZ4FIELC,BBByRHO,XyY,CCCHIP
DIMENSIONIG(IZ8);Z(1024) FIELD(1C24),RHO(1024),X(10000), Y(IOOOO)
EQUIVALENCE (IG(Z).INDX). (2(24),Y30 )y (Z(23),0Y3), (2(45),TOTAL)

ly (Z{46),00ULTN)y (IG(3),NTEST)y (IG(4)4III)y (IG(5),JJJ)s (IG(6),
2NVAL)y (Z(47)4PHASE), (2(48),HARMON), (Z(7)¢TRIGF)

NTEST=Z{150)+H
YE=Y3(0-DY3

IND=INCX+1

ISWTC=215)+H

IF (2{6)-1.0) 1,2,2
It6)=1.0

Zi6) = Lt6) + .01

L(6) = Z2(6) & 3T774COCOCOCC
LRANC=2({6)+H

IF (NTEST) 30,30,19
IM=INC+NTEST-1

CC 20 I=INC,IM
X{I)=2(2#]+4149)
Y(I)=Z(2%]+150)
INC=IM+]

IF{TRIGF) 300,31,3C0O
CX3=1./72(21)
NVAL=Z(29)+H
JAX=Z2(21)+H

K3Y=21{22)+H
B=2(26)+0.5#2125)/21{21)
C=7(28)+40.5%«2(27)%721{23)
CRANX=CX3/721(6)
CRANY=Z(23)/72(6)
A=0.5=CX3

C=0.5«CY3

CC 70 K=1,K3Y

YE=YE+CY3

WY=Z(27)aYE+C

WY2=hYsWY

XS=-CX3

CC 70 J=1l,43X

XS=XS+LCX3

EX=Z2(25)sXS+B

EX2=EX®EX

F=Z(30) + Z(31)#EX + 2(32)#EX2 + 2(33)«COS4F(Z(35)« EX + Z2(36)) +



12041)® WY + Z(42)eWY2 + Z(43)#WYSWY2 + Z(44)® WY2aMWY2 -
IF(Z(8)) 55,60,60
55 NO=F
GC TC 64
60 CO 63 I=1,NVAL
IF {F-Z(3#1+4298))€3,61,61
61 IF (F-2(3#1+300))62,62,63
62 NC=Z(32]4299)+H
GC TC 64
63 CCNTINUE
G0 7C 70
64 [FINC) 70,70,6401
6401 IF(2(91)65,66,66
65 CCX3=CX3/FLOATF(NC)
XN=—.5-0CX3+XS
GC TC 6601
66 XN=A+XS-,5
6601 NC=NC+INC-1
YN=YE+C
CC 69 I=IND,NO
IF(ISKWTQ) 6701,67,617
67 XN=DRANX#FLOATF(XRANF(LRANO) ) +XS-.5
YN=DRANY«=FLOATF({XRANF(LRANQ))+YE
6701 IF(Z(9)) 6702,68,¢8
6702 XN=XN+LCDX3
68 X{[)=XN
Y(I)=YN
69 IND=INC+]
70 CCNTINUE
GO TC 1000
300 J3X=TOTAL+H
K3Y=2(22)+H
CX=0.0
CC 6C0K=1,K3Y
YE=YE+CY3
XS$=0.0
400 CC 600J=1,43X
410 CENOM=TOTAL+ODULTN#SINAF{HARMON=XS+PHASE)
1+4Z2(50)SINGF(Z(52)#XS+2(51))
IF (CENOM) 500,46C,5C0
460 PAUSE 17717
GO TO 410
500 XS=XS+1./CENQOM
IF (ISWTO) 520,560,560
520 CX=~FLCATF(XRANF{LRANQ))/(Z(6)«CENOM)
560 X(INC)=XS+DX
YOINCI=YE~(Z(3T7)+YE«Z(38))#COS4F(Z(39)aX{IND)+Z(40))
IF(ABSF(Y(INC))-Z2(30)+2(31)«COS4F(Z(32)sX(IND)+Z(33))) 570,570,600
570 IND=INC+1
600 CONTINUE
1000 INDX=IND-1
RETURN
END (0,141,1,0)

C F-51 WCRPRO IV



500

501
503
505
507

508

509
512
513

514

515
SCNE
SBLNK
SESTP
SRTCL
SROW
SFLC
SF517

10
11

e .. =8~

SUBROUTINE WORPRGO

cfg::g?g;?élizIELE;BBB.RHD'X.Y,CCC.IP.BANK

: (128),2(1024),FIELD{1024),RHO(1024

CIMENSION BANK(1C2C)}, [P(600) RHO11024),X(10600), vi10000)
EQUIVALENCE (IG(1),IC), (IG(2),INDX) 11G(16),NO)s (IGl4)oI111), (IG
1(5)9J4d)y (IGL16),1SWTL6), (IG(20),NPLRXY), (1G(21),NBOX), (IG(25)
24NPRR)y (IG(26) NPLR)y (IG(27)4NPLXY), (I1G(28),NPRXY)s (IG(29),NTC
3TAL) 4 (1G(35) ,NTOCC) s (IG(58)4NFIRS)y, (IG{(38)4NNN), (IG(39) MMM}, |
4Z(10),TIME), (2(81)4ENBOX)y (IG(4L1)4NPL),(IG(43),NP3),(S(L),2(T6})
50 (1G(44)sNP4), (1G(45)4sNPS5),(IGI57)4NLAS) y (1G(46) sNP6) 5 (IG(50) yNDUN
6P )y (16(42)4,NP2), (1G(52)yNBM1), (IG(53)NRHOL1) ,(1G(54) {NRHQ)
7+11G(55) yNFEELD)» (1G(56) 4NFELD1) -
CIMENSION S(1)

FCRMA
1 TUALy9HF S1 RUN[6+2H ,2A6,15H BANK AT TIME =1PE15.7,21H  NC
2. OF PARTICLES =0PF6.0,6H AFTERI7,8H STEPS)
FORMAT(169F13.8,E15.74F13.8,E15.7,F13.8,E15.74F13.8,E15.7)
FCRMAT(16,8E15.7)

FORMAT(16,10F12.6€)

FORMAT(10H*F 51 RUNIG6,13H RHG(X) AT T=1PE15.7,16H HOR, VER SCALE=
10P4F11.5,6H AFTERI7,8H STEPS)

FORMAT (71H SWITCF 6 IS UP. TO ABANDON RUN RAISE THE OTHER FIVE
1 ANC PUSK START. ) ,
FORMAT (27HORUN ABANCONED VIA SWITCH 6)
FORMAT(17HOTAPE CUMP  ID =18, 9H STEP =I8,13H F 51 TAPE A6)
FORMAT (24HOSAVE CALLEC BEFORE STEPIS,22HMOUNT ERASABLE TAPE 1./52H
1 REMCVE ANY F 51 TAPES. PROCESS TAPE 9. SAVE TAPE 1./67H TO RESTOR
2E REPLACE ALL TAPES SET SWITCHES (1 DOWN) CLEAR LOAD TAPE)

FORMAT {9HLF 51 RUNIB,31H RESUMED FROM SAVE TAPE AT STEPI8) _
FORMAT (1H2)

ALF 1

ALF

ALF PA
ALF RTICLE
ALF RHC

ALF FIELD
ALF FS1TAP

ZER = C

21145)=21140)
1(146)=21141)
1(147)=1(143)
2(148)=21144)

NRHO=( (NBOX-1)/10)#10
NRHC1=NREO+1

NFEELD=( (NBOX-1)/8)+«8
NFELC1l= NFEELC+]
S(1)=ENBCX+2.0
S(2)=1l.

IF (SENSE LIGHT 4) 5,10
NC=NNN

BBB=INCX

GC TC 15

CC 11 I=1.5

IGL1+40) = 32760



NP6 = 0
NO=0
15 COB9NNN=NO,NTOTAL,NTOCO
CC 16 I=1,6
16  IG(I+40)=IG(I+4C)+1
IF (NCUMP) 7000, 18, 7C0C
7000 IF (NDUMP-NP6) 7CCl, 7001, 18
7001 NP6 = ¢
CALL TAPES(-1)
CALL TAPES (0)
7003 WRITE CUTPUT TAPE 9, 512, IG(1), NNN,IG(17)
18 IF INPLR) 1800, 2101, 1800
1800 [F(NPLR-NP2) 1801, 1801, 2101
18C1 NP2 = ©
S (3) = AMAX{RHC, NBOX}
S (3) = MAXLIF(S(3), Z(87))
2001 CC 21 I=1,NBCX
AYE=]
21 CALL PLOY (9, AYE, RKC(I)y S, 1, Q)
CALLPLCT{9,ZER,ZER,So1,1)
WRITE CUTPUT TAPE 9, 507, ID, TIME, {S(I), I=1,4) NNN
2101 IF (NPRR) 2102, 3C, 21¢2
2102 IF(NPRR-NP1) 2103, 2103, 30
2103 NP1 = 0
WRITE CUTPUT TAPE 9,50C,0ONE,IC, BLNK yROW, TIME ,BBB,NNN
IF (NRRC) 23, 25, 23
23 WRITE CUTPUT TAPE 9, 505+ (KsRHO(K)s RHO(K+1)y RHO(K+2), RHO(K+3)
ly RHO(K+4), RHO(K+5), RHO(K+6), RHO(K+7), RHO(K+8), RHC(K+9),
2 K=1,NRKO,10)
25  WRITE CUTPUT TAPES,5C5,NRHOL, (RHO{K) ,K=NRHO1,NBOX)
IF(IG(23)) 30, 26, 26
26  WRITE CUTPUT TAPE 9,500,ZER,1D, BLNKFLD, TIME ,BBB, NNN
IF (NFEELD) 2601, 27, 2601
2601 WRITE CUTPUT TAPES,5C3,(K,FIELDIK)FIELD(K41),FIELDIK+2),FIELD(K+3
1) sFIELC(K44) ,FIELC(K+5),FIELD(K+6) FIELD{K+T) K=1,NFEELD,8)
27  WRITECUTPUTTAPE9,5C3,NFELDL, (FIELD(K),K=NFELD1,NBGX)
30 IF (NPLRXY) 31, 4C, 31
31  IF (NPLRXY-NP3) 32, 32, 40
32 NP3 =0
WRITECUTPUTTAPE9,5C0,ZER, IC, ESTP,RTCL, TIME ,BBB,NNN
WRITE CUTPUT TAPE S, 501, (K, X{K)y Y(K)y, X{K+L), Y(K+1l)y X(K$2),Y
1(K+2), X{K+3), Y(K+3), K=NFIRS,NLAS,4)
40  IF (NPLXY) 41, 50, 41
41  IF (NPLXY-NP4) 42, 42, 50
42 NP4 = ¢
CALL TPPR (TIME, NNN, NP4)
50  IF(NPLRXY) 51, 60, Sl
51 IF (NPLRXT - NPS) 52, 52, 60
52 NP5 = 0
CALL PLRXY (TIME, NNN)
60 IF (SENSE SWITCH 1) 61,6001
6001 CALL BELL
REWINC 2
SENSE LIGHT 0
PRINT 513,NNN
PRINT 515



61
6101
6102
62

65

70
80
89
90
91
100

11¢C

SPLLS
SSLSH
SPERC
SCOLR
SCcOm;A
SEQUL
SLPRN
SRPRN
SMINS
SNINE
SEIGT
SSEVN
SSIX

SFIVE
SFOUR
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WRITE CUTPUT TAPE 9,513

CALL SAVE

WRITE CUTPUT TAPE 9,514, IC,NNN
PRINT S14,ID,NNN

PRINT 515

IF(SENSE SWITCH 4) 6102,6101
PRINT 5004ZER,IC+BLNKBLNK,TIME,BBB,NNN
IF (SENSE SWITCH €) 7C,¢&2
PRINT 508

CALL BELL

PRINT 515

CALL SWITCH (NUTS)

IF (NUTS) 70, 65, 10

PRINT 509

PRINT 515

WRITE CUTPUTTAPES,S509

GC TC 90

IFINNN-NTOTAL) 80,89,89

CALL GPUS 3

CCNTINUE

IF (NPLXY) 100, 1CC, 91

CALL TPPRI(TIME,NNN,NTGCO)
2(140)=2(145)

Z(141)=21146)

2(143)=2(147)

2(144)=2(148)

RETURN

ENC (Cylyl1,1,0)

PRINT 515

F-51 TPPR 11 DORY

SUBRCUTYINE TPPR (T, Ny ISW TCH)

CCVMMCN IGoZ+FIELC,BBB,RHGyXsYCCC,HIP
1,BANK
CIMENSIONIG(128),2(1024),FIELD(10U24),RHO(1024),X(1L00QC),Y(10000)
CIMENSION BANK (17,60), M(1), A(1l)
1,IP110,60Q)

ECUIVALENCE (IG(4),III),(IG(5),Jd3)s(Z(143),YMAX),(Z(144),YMIN)
1, (IG(L1)oID)

ALF 44444

ALF 1217777

ALF e eoes e

ALF $88$3$

ALF 00900

ALF ===zz===

ALF cooacd
ALF 1))

ALF ===
ALF 999999
ALF 888888
ALF 11771717

ALF 666666

ALF 555555

ALF 444444



STHRE ALF 333333
STHC ALF 222222
SCNE ALF 111111
siz ALF 1222212
Svyy ALF YYYYYY
SXX ALF XXXXXX
Shi ALF WhwhbwiWh
Svy ALF VVVVVYV
Suu ALF Luuuyuy
STT ALF TTTTTT
SSS ALF SSSSSS
SRR ALF RRRRRR
SCQ ALF CCccQQ
SPP ALF  PPPPPP
SCO ALF CoCooo
SNN ALF ANNNNN
SVM ALF MMMMMM
SLL ALF LLeLee
SKK ALF KKKKKK
SJJ ALF JIJJJJ
SI1 ALF ITIII11
SHH ALF FHHHHH
SGG6 ALF GGGGGG
SFF ALF FFFFFF.
SEE ALF EEEEEE
SCD ALF COCCOD
scC ALF cccccece
SBB ALF EBBBBB
SA ALF AAAAAA
SBLNK ALF
SSTAR ALF ssases
SMARK ALF C
Sk gCT C0C0Q0000077
SMS gCT 0CCO00Q007700
SMH4 CCT 000000770000
SM3 CCT 00007700C0CO
SMp2 CCT 0Q77000Q000Q0
SMm CCT 770000000000
500 FCRMAT (9H3F-51 RUNI6,20H, TEST PART.
1y YMAX, YMIN=E1S5.7,2H, E15.7/22A5)
501 FCRMAT (1lH=,12,3Fk 17A6)
Tl=YMAX-YMIN
IF(T1l) 30,150,30
30 FACTGCR=59.0/T1
BIAS=1.~-FACTOR#YMIN
IF (JJJ-44) 35,35,34
34 IX=44
GO TC 50
35 IX=JJ4J
50 CC 90 I=I111,1X
IY=Y(I)=*FACTOR+BIAS
IF (1Y-60) 52,52,51
51 NOV=NOV+1
GC TC 90

52

IF 1Y) 53,53,54

AT TIMELPEL1S5.7,46H,

STEPIS,13



53

S4

55

n
o

hwnnwnm

~ ~
o o

nunnumumunouvLuvunmuvmunumunmnumnunmunuunununnoeunnoymnwm
® o
SN

90

100
11C

111

120

121

150

NUN=NUN+1

G0 TC 90
IX6=(X(I)+1.).’102.
IX=IX6/6+1
IDX=IX6+7-1X26

IF (IX‘17) 56’56'55
IX=1X-17

K=IX+17e]Y-17

CAL M(UIDX)

SLW T1

SLW 15

COM

SLW T4

CAL BLNK

ANS T5

CAL A(])

ANS T1

CAL BANKI(K)

ANS T4

ANA M{IDX)

TZE»82

SLW T2

CLa T2

CAS T5

TRAx76

TRA#82

CAS T1

TRA=79

TRA=GQ

CAL STAR

ANA M(ICX)

TRA=84

CAL T1

CRA T4

SLW BANK(K)

CED, (K)

CEC, (ICX)

CCNTINUE

IFUISW TCH) 100,15C, 100
IF(SENSE SWITCH 5)110, 120
WRITE CUTPUT TAPE G,
15004 ICy ToyNo YMAX,YMIN, (BLNK,MARK,L=1,11)
ca1l1ll 1=1,60

K=61~-1

WRITE CUTPUT TAPES,
1501'KQ(BANK(JOK’.J=1,17)
GC TC 150

PRINT
ISOO.XD,T,N,YMAX.YPIN'(BLNK'MARK.L=1,11)
L0121 I=1,60

K=61~-1

PRINT

15CLl oKy {BANK(JeK)yd=1,y11)
RETURN

END (Oslslels0Q)



500

503
S1600
SIV4
SIu3
SIu2
SIu
Ske
SM3
SK2
SRM
SIM4
SIM3
SIM2
SIM

Do -

20

24
25

26
27

28
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F-51 PLRXY II11 ' DOR'
SUBRGUTINE PLRXY (T ,N)

COMMON IG,Z,FIELC,BBByRHO4X,Y,CCCy P
DIMNENSIONIG(128),2(1C24),FIELD{1024),RHO(1024),X110000),Y{10000)
FORMAT (10MH3F~51, RUNIG6y Ll7H RHO(X,Y) AT TIME 1PE15.7, 16H. NO. P

IRTICLES=16,10H STEP=16/ 12H YMAX, YMIN=1PE15.7,2H EI5.7,
219H, NO. ABGVE, BELOW=14,2Hy I4/127H J71- 1 2 3 4 5 6 7
38 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 :
40 31 32 33 34 35 326 37 38 39 4C )
CIMENSION IP(10,60), IU{L1)4RM(1), IM(1)
EQUIVALENCE(IG(2),INDX)

FCRMAT (}He,14,15,3913)

CCT 001130000000

CCT 000000000001

0CcT 000000001000

0CT €00001000000

CCT 0010000QQ00QC0O

cCT 000000000777

CCT C0CO007770C00

CCT ©00777000000

CCY 777000000000

CCY 7771777777000

CCT 7177777000777

CCY 777000777717

CCT 0007777717107

YMAX=Z(140Q)
YMIN=Z(141)

IF (2(142)) Sy 5,y 9
YMAX = AMAX{Y, INCX)
YMIN = AMIN (Y, INCX)
IF (YMAX=Z (140)) 7, 74 6
YMAX = 2(140)

IF (YMIN - 2(141)) 8y 9, 9
YMIN = Z(1l41)
TEMPI=YMAX-YMIN
IF(TEMPL) 10,571,110
FACTOR=59.0/TEMPI]
BIAS=1.-FACTOR#YMIN
DC 20 I = 1: 600 )
IP (1) =0

NCV = Q

NUN = O

CC 50 K=1,INCX
J=Y{K)=FACTOR+BIAS

IF (J) 25,25,426
NUN=NUN+1

GC TC SO

IF (J-60) 28,28,27
NCV=NOV+1

GC TC 50
IT4=(XIK)+1.)®40.
[=1+41T4/4

L=IT4~4a]45



nhnnnwmunmnummunuvmuonnmnonnnnnowm

SREAD
SWRIT

100
102

200
201

IF(I-11) 30,29,29
I1=1-10
Nz=10eJ+I-10
CAL IP(M)

SLW TENMP]

ACL IU(L)

ANA RM{L)

SLW IP(M)

CAL TEMP)

ANA IM(L)

ORS IP(M)

CED, (M)

CED, (L)

CCNT INUE
WRITEQUTPUTTAPES,
CC 70 K=1,60
L=61-K

LC 60 wm=1,10
CAL IP({M,L)
SLW TEMP1

ANA RM(1)

ARS 9

SLW IG(4aM+7T7)
CAL TEMPL

ANA RM({2)

SLW IG(4#M+78)
CAL TEMPL

ANA RM(3)

ALS 9

SLW IG(4%M+79)
CAL TEMP1

ANA RM(4)

ALS 18

SLW IG{4aM+80)
I=L-30

500, ]G(1l)s, T» INDX, N, vMAx'

WRITE CUTPUT TAPE 9, 5C3, I, (IG{J), J=81,120)

RETURN
END (Qs1,1,1,0Q)

F 51 PRINT

SUBRCUTINE PRINT (NTAPRE,N)
ALF READIN

ALF WRITIN

NT = NTAPE

M =N

60 7C (100, 200,
PRINT 102, NT

GC TO 1000
FCRMAT (5H TAPEI3,59F
1IND PUSH START.)

WCRD = REAQ
PRINY 202,
GC T7C 1000

300, 400, 500, 600) , M

WORDs NT

IS NOT A CANONICAL F 51 TAPE.

YMIN, NOV, NUN

DCRY

REPLACE IT A



FORMAT (18H TAPE ERRGK WHILE A4,6HG TAPEI3,23H

FORMAT (22H THE F 51 TAPE ON UNITI3,44H IS FULL.

-88-

+PUSH _START TQ RE

MOUNT AN ERASAB!

FORMAT (T79H THE RUN REQUESTED IS NOT ON THE INPUT TAPE. VYCOU MIGH:

202
2RY.)
300 MWCRD = WRIT
GO0 TC 201
400 PRINT 402, NT
GC TC 1000
402
4E ANLC PUSH START.)
500 PRINT 502, NT
GC TC 1000
502
5 TRY ANOTHER INPUT TAPE.)
600 PRINT 602
GC TC 1000
602

(FIL)
{STH)
(IDH)C
{LEV)
S

START

20A
21A

25A

26A
2TA

FORMAT (65H YQU CIC NOT REPLACE THE TAPE AS REQUESTED. 0O SO AND
6PUSH START)

1000 PRINT 1002

1002 FORMAT (1H2)

PAUSE 70707

RETURN

END (Oy 1, 1, 1, Q)

REM
FUL
MZE
cCcT
PLE
PZE
BCC
PZE
REM
REL
REM
ORG
B8CC
BCD
BCC
BCD
HTR
HTR
HTR
SXC
SXg
SXD
CLA
STO
CLA
STC
STC
STOD
LX0
ST
TIX
LX0
CLA

F 51 INFELD S
PROGRAM CARD
0'0'4

LAST+1,,S
4]

LINFELD
START

PROGRAM

0
LIFIL)
1(STR)
1{ICKH)D
1(LEV)
0

1]

o

Syl
5¢1,2
S+244
1G-2
51A
NBOX
498

718

758
NBOX,2
RHO+1,2
25A,2»1
INDX,2
X+l,2

(SAP ASSEMBLER LANGUAGE)

CHECK SUM



28A
29A
30A
31A
32A

4TA

498
51A
52A

53A

6382

6TA
678
684

708
T0A

718
13A

748
758
78A

UFA
FAC
CHS
FAD
STGC
TPL
TZe
FAC
STO
LOg
FMP
FAC
STC
UFA
ST
FAC
CHS
FAD
sTC
CLA
ANA
ALS
PDX
ACC
POX
TIX
XL
CLA
FSB
FAC
STO
CLA
FAC
STO
TIX
REM
LXC
SXD
CLA
STO
LXD
SXD
CLA
ADD
PCX
TIX
CLA
SuB
ADO
POX
TIX
CLA
FSB
STO
LDQ

&)
6)

X+l,2
X+1,2
324
32A
CNE
X+1,2
X+1,2
ENBOX
ONE
FNC
6)
TEMP
6)

FNO

CEL

TEMP

7)

18

0,4

2)

0,1
#4)l,lynn
63824200
RO+l 4
CEL

ONE
RHO+1e 4
RiC+1,1
CEL
RHO+1,1
2TA9 2,1

NBOX,.1
I.1
RF+1,1
FI1ELD+1,1
32530,2
Jr2

I

Jd

G4

84]l 4,
1

J

NBOX

5.1
#4]lygloen
REO+1,4
REQO+1,1
TEMP
1-99,2

NKERN

A - ———  ————— . - ——- o
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acs

818

90A

sie
92A

93A
94A
95A
96A
97A

98A

99A

9901
1004

1014

103A

2)
FNAG

FMP
LXD
FAC
ST0
TIX
Tix
REM
LxC
CLA
SSP
LDC
LRS
TLG
TRA
TIX
TRA
CLA
FOH
STQ
TIixX
LXA
CLA
FCH
STC
TIX
CLA
SSP
ADD

STQ

CLA
FCH
STC
CLA
ADC
STO
CAL
XIT
ETM
CaL
SLW
CAL
NTR
ETM
NTR
NTR
LTM
CAL
XIT
TRA
REM
LXD
LxD
LXD
TRA
oCrt
cCcT

TEMP

I,1
FIELD+1,1
FIELD+1,1
708,2,1
678,1,1

INCX,7
32345 YLIMIT

Y+1l,2

0

*42

3CA
81B,2,1
103A
Y+1l,1
TWO
Y4l,1
90A,1,1
T48,1
-138,1
TWO ‘
Z-138,1
92A,1,1
LNTAU

FNAG
LNTAU
cT
WO
DT

2)
IG-13
16-13
]

{LEV)

(10H)0

1

(STH)
8)FK,0,9

16-37
I6-13

(FIL)
808

Syl

S+1,2

S424+4

| Y
+000001000000
+002000000000



CNE
TWO

7)

8)FK

CEL
FNO
LAST
TEMP
IG
INCX
NBCX
LNTAU

ENECX
CT
FIELC
RHC

RF
XIT
NTR

(FIL)
(STH)
(I0K)O
(LEV)

START

OCT

ocr
ocT
ocT
8CC
8C0
BSS
8SS
83sS
8SS
8sSs
SYN
EQU
EQu
EQU
EQU
EqQu
EQU
EQU
ECQU
EQU
ECU
EQU
SYN
cpC
ceC
END

REM
FUL
MZE
acy
PZE
PZE
8CC
PZE
BCD
PLE
REM
REL
ORG
DEF
REM
REM
REM
BCD
BCD
BCC
BCO
HTR
HTR
HTR
SXD
SXOb

4201400000000
+2024000000CC
+23300000000¢C
+000000077777
718)  NUMBERS,

1(25H0T7
1

1

1l

1

1

LAST
32562
32561
32542
32532
32434
32354
32353
31410
30385
29361
19361
1-850
002100000000
100C00000000
0

F 51 OPUS 1V
PROGRAM CARCLC
v b

LAST,»S
o
1CPUS3
START
LNAME
NAME

0
CATA,13

F s1 QPUS IV

LIFIL)
1(STH)
1(I0K)0
LILEV)

TH  STEPINGE ATEP CHAIME ST
_FCRMAT (READ UP)

(SAP ASSEMBLER LANGUAG

CHECK SUM

E)

cEm e e m—————— s =



10A
11A

12A
12A1

13A
14A
18A
19A

20A
21A

228
23A

25A
26A

27A

284

292
30A
31A
444

SXC
NCP
NCP
TOV
CLA
STC
CLA
STO
CLA
TZE
TPL
CLA
STC
CLA
STC
ST1Z
STZ
CLA
STC
CLA
STD
STC
STC
Lx0
SXC
CLA
FAC
STC
LXC
STZ
TIX
LXD
REM
CLA
FSB
STC
UFA
FAC
CHS
FAC
STC
TPL
TZE
FAC
STC
LCC
FMP
FAD
STC
UFA
STO
FAD
CHS
FAC
STO
CLA

-88-
S+2,4 -

*d]

5)

LCC4
5)+1
LCC3
IFIELD
18A

18A
5)+2
LCC4a
5)+3
LCC3
TEMP
FEILC
I1G-2
51A
NBGX
498

718

758
NTOCC, 1
C)200,1
TIME

CT

TIME
NBCX,2
RFO+1,2
25A,2,1
INDX,2

X+1,2
Y+l,2
1)+1
6)

6)

1)¢l
X412
444
444
ONE
X+1,2
X+1,2
ENBOX
3)+1
FNOC
6)
FANCO
6)

FNC
DEL
FNGC



47A

498
S1A
S52A

S3A

S54A
55A

56A

57A
S8A
60A
€lA
€2A

6382
€6A
67A

678
684

7CB
10A

718
13A

748
158
T8A

ANA
ALS
PCX
AGC
PCX
TIX
TXL
CLA
FSB
FAC
STG
CLA
FAD
sTC
TRA
CLA
FSB
STO
LEQ
FMP
CHS
FAC
STC
CLA
FAC
FS@
LRS
SSP
SUB
LLS
FAC
STC
REM
TIX
TRA
LXC
REM
SXC
CLA
STC
LXC
SXO
CLA
ACC
POX
TIX
CLA
SUB
ADC
PDX
TIX
CLA
FSB
sT0
LDQ

6)+1

18

0,4

11

Oel

4] ,]1yne
S4A 240
RHO+14,4
CEL

3)+1
RHG+1,4
RpC+1,s1
DEL
REGO+1,1
LCC4
FIELC+1.4
FIELC+1,1
1)+l

1}+1

CEL

FIELC+1,4
FEILC
FEILD
GAMMA
TEMP

a

LNTAU
0

Y+1,2
Y+1,2

27A42,1
LCC3
NBOX,y 1

I.1
RF+l1,1
FIELC+1,1
NKERN, 2
Je2

I

Jd

0s4

#4] 44,00
l .

J

NEeGX

5,1
Stlolone
REO+1,4
RFQO+1,1
1)+1
1-99,2



FMP
LXC
FAD
STO
TIX
REM
TIX
19A LXC
TIX
REWM
808 LXC
CLA
Ssp
g1s LCC
LRS
TQ
TRA
TIX
TRA
SOA cLA
FOP
STC
TIX
G1lB LXA
92A CLA
FCP
STC
TIX
93A CLA
G4A sSSP
95A ACC
S6A STC
S7A CLA
FCP
STQ
98A CLA
ACC
STO
CLA
ACC
STC
99A caL
XIT
ETM
CAL
SLW
CAL
S9D1 NTR
1COA ETM
NTR
NTR
NTR
NTR
NTR
LTM
101A CAL

L)+l

Il
FIELD+1,1
FI1ELC+1,1
7084241

6785101
€)aco,1
22By 141

INCX,7
YLIMITY

Y+1,2

0

%42

90A
81B,2,1
1C3A
Y+l,1
3)+42
Y+l,1l
9CA, 1,1
748,1
1-138,1
3)+42
Z-138,1
92A,1,1
LNTAU

FNAG
LNTAU
CT
3)+2
CTY

2)
[G-13
IG-13
1G-37
I1
TEMP
*
(LEV)

(ICK)O

1

(STH)
8)FKy0+9

TEMP

I16-13
32353
32532
32532

CELTAT
LNTAU
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NAME

5)

2)

3)

€)

8)FK

8)FL
ANAVME
ADATE
1)
CATA
IKF
CNE
Il
FNAG
IX
IRF
INCX
IG

XIT
TRA
LXD
LXC
LXC
TRA
REM
CAL
XIT
ETM
CaL
SLW
CAL
NTR
ETM
NTR
NTR
LTM
CAL
XIT
TRA
REM
TRA
TRA
TRA
TRA
TRA
TRA
cCr
CCT
cCcT
CCT
CCT
ocT
ccr
ccr
GCT
CCT
BCC
BCC
BCC
8CC
8CC
ecc
8CC
BSS
PLE
SYN
SYN
SYN
SYN
EQU
EQU
EQU
EQU

{(FIL)
8csB
Sel
S+1,2
S+2,4
le4

] PRINT SUBROUTINE NAME + DATE
{LEV)

(ICKIO

1

(STH)
8)FL,0,9

ANAME
ACATE

(FIL)
144

55A
6TA

56A

79A

33A

444

+00000100000C

+0020000000CC

+2004000000CC

+20140000000C

+20240000000C

+2330000000CC

+000000077777

+€0000000000C

+00000100000C

+0¢0000000000C

916) 4H OR =013, LNTAU5.7,8HDT =E1I4,5H H NC.
4TER STVEC AFCT HAL#sexss
1(28Hne FORMAT (READ UP)
4A6)  4H OF US A6,SES OP
1(11h0U FORMAT (READ UP)
11V S ASSEMBLY NAME
1C52862

10

)

3)

3)+1

2)

2)+1

29361

32529

32561

32562

-92-

EPI4,5



IFIELC
GAMMA
FIELLC
ENECX

.07
BBB

LNZ2NBX

LNTAU

NBCX
NKERN
NTCCGC
RHEC
TIME
X
YLIMIT
Y
1

RF

XIT

NTR

LAST

EQU
ECU
EQU
EQu
EQuU
EQU
EQU
ECU
EQu
EQu
EQU
EQU
EQU
EQU
ECU
EQU
EQU
SYN
orC
oPC
SYN
ENC

REM
REM
REL
CRG
HPR
TRA
ARS
TNZ
TXI
REM
CRG
TRA
ENC

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
FUL
MZE
PZE
PZE

-93-
3254¢C
32355
31410
32354
32353
30386
32533
32532
32542
32530
32528
30385
32425
29361
32345
19361
32434
1-850
002100000000
160000C00Q000C
CATA+30
0

PATCH (SAP ASSEMBLER LANGUAGE) DCRY
PATCH FOR ICF FOR USE WITH F 51 SUBROUTINE =PLRXY=
PRECLUCES USE OF OCTAL INPUT FEATURE OF IOH)I

609 CAUSES ZERO INTEGER TO PRINT AS BLANK
3,3 STOP BECAUSE OCTAL INPUT CALLED
»24800 PUSKF START TO IGNORE DATA

18 PATCH TQ TEST INTEGER FOR ZERO
s#4769 NOT ZERO CONTINUE o
25+782949-2 LERC--FOOL FORTRAN

768

#4609 GO TC PATChH

0

INTERRCGATE SENSE SWITCHES-—-FORTRAN SUBROUTINE
ALLCwS SIMPLIFIED USE OF THE FULL 64

PCSSIBLE SETTINGS. CALLING SEQUENCE IS
CALL SWITCH (INTGER)

INTGER IS REPLACEC BY AN INTEGER AS FOLLOWS
INTGER(LCEC) (OCT) SWITCH SETTINGS
C C LuuLuu
1 1 Uuuuub
2 l Luuuou
3 3 uuuubnb
8 1C LubLUU
32 40 Culuuy
€3 11 CCOODD
PRCGRAM CARD
"l‘
0
SWIT+16



SWIT

PRINT
FIRST

TAPQS

PLE
BCD
PLE
REM
REL
REM
ORG
SXC
LXA
CLA
STA
STA
STZ
CLA
PSE
TRA
CRS
ARS
TIX
LXC
TRA
PZE
PLZE
ECQU
SYN
ENC

REM
FUL
Mit
PZE
PZE
PZE
BCC
PZE
BCC
PZE
REL
REM
CRG
BCC
SXC
SXC
SXC
cLA
STA
CLA
TZE
TPL
CLA
TZE
TMI
SLT
TRA

0
1SWITCH
SWIT

0 PROGRAM
SWIT+15,1
SWIT+15,1
1,4

SWIT+S
SwIT+9

'Y

SkiT+1l4
119,1
SKIT+10

ES

E
SNIT+7,1,1
SklT+15,1
2e4

1932
Gggun

1

SKIT

F51 TAPE FANCLING (SAP LANGUAGE)
PRCGRAM CARC
"6

LAST,,FIRST

LTAPES
FIRST
LBELL
gELL

PRINT
X1,1
RZ,2
X444
ly4
#4+]

X
TAPCUT
TAPIN
1G-49
8ACK
BACK

A2

=04~

CGRY



AQ
X1

Al

X2
A2

x4

A3

A3.5

A4

SLN
TRA
SLT
X1
SLN
BST
BST
RTS8
cpPY
TRA
TRA
ETY
TRA
TXI
REW
SLN
RTB
cey
TX1
TRA
TRA
CLA
suB
TNZ
crPy
TRA
TRA
TRA
RTB
CPY
TRA
REW
TSX
TSX
PZE
PZE
LCQ
HPR
TQP
REW
WTR
CPy
WTB
CPY
WEF
REW
SLT
NOP
TRA
gsT
BST
RTB
cPY
TRA
TRA
1GC

1

LIMBC
#43,0yun
A3

A3
LIMBO
CGCEND
A3
LIMBC
A3l

w2

A3

2
I1G-16
Al

2
BELL,4
PRINT 4
192
ve l’
#=1

2

A3.5

2

2
CCDEWD
2
TAPEL

OFF
ON

-95s.

§mme @ - — e caa L




AS

CCDEMWD
LIMBC
IG
TAPIN

Nl

BO
N128

N1G24
N1C20

RYT
NOP
TRA
TSX
TSX

PLE

PLE
TSX
TRA
BCC
PZE
ECU
REW
RTT
NCP
RTR
cPy
TRA
TRA
TRA
cLA
SuB
TNZ
cpPy
TRA
TRA
TRA
RTB
crpYy
RTT
NCP
RTB
cey
TRA
TRA
ETT
TRA
cLA
sus
TNZ
crPy
NCP
NOP
CLA
SuB
TNZ
LXA
cPy
TIX
LXA
cpPy
TIX
LXA
cLa
STC

BACK
BELL,4
PRINT, 4
102

114
C3.5,2
TAPGS
1LF51TAp

32562
IN

1

IN
LIMBQ
%43
B2

B2
LIMBC
CCEREWD
B2
LIMEBC
B2
42
B2

IN
NAME

128
IN
QIC
a+3
80

83

QID

IC

80
QSTEP
1024
1020
QSTEP
STEP

B8O
N128,1
IG+1,1
“-1,s1,y1
N1024,1
Z+1,41

"11111'

Nl,1
NBOX
#4+3




81

B2

B3

IN
NAME
CIC
CSTEP
1D
STEP
4
BANK
NBCX
FIELD
INCX
BANK
TAPGUTY

cePy
XI
TXL
LXA
CLA
STC
cey
cpy
™I
TXL
LXA
CPYy
TIX
RTT
TRA
TRA
BST
BST
8sT
TSX
TSX
PZE
PLE
TRA
TSX
TSX
PLZE
PZE
TRA
TSX
TSX
MZE
PZE
TRA
EQU
PZE
PLE
PZE
SYN
SYN
EQU
EQU
SYN
EQU
SYN
EQU
WTB
cPY
cPy
ETT
TRA
LXA
CPY
ETT
TRA
TIX

FIELD+1,1

#+l,141
#=24 1o e
N1l,1
INCX

L R X
X+1l,1
Y+1l,1
#41s1,1
A= glousn
N1020,1
BANK+1,1
#=1y1s1

Bl

BACK

IN

IN

IN
BELL,4
PRINT,4
v IN
r923

8C
BELL o4
PRINT»4
IN

vl
TAPIN
BELL,4
PRINTy 4
NAME
r95
TAPIN

3

16
[G-1
32434
8760
I1G-2C
31410
[6-1

2
IG
16-37

C3
N128,y1
IG+1l,1

c3
l-301'1

TAPE ERROR

IMPROPER TAPE

NOT FOUND




Cc2

c3

LXA
cPYy
ETT
TRA
TIX
LXA
CLA
STO
CpPY
ETT
TRA
TX1
TXL
LXA
CLA
STC
CcPY
crPY
ETT
TRA
TX1
TXL
LXA
CPY
ETT
TRA
TIX
WEF
8ST
BST
RTB
CPY
TRA
TRA
10C
RTT
TRA
CLA
STC
CLA
STO
CLA
STC
TRA
BST
WEF
8sT
TRA
8ST
WEF
REW
TSX
TSX
PZE
PZE

N1024,1
Z+1l,1

Cc3
#=3,1,1
Nl,1

NBOX

*45
FIELD+1.1

C3
#4]1,1,1
=G ] onn
Nl,1
INCX

*46
X4lel
Y+4l,1

Cc3
stl,1,1
#=5,]1,us
N1024,1
BANK+]1,1

C3
#=3,1,1

c2

Q1C
[16-6L
QSTEP
16-617
NAME
I1G-17
BACK

2

2

2
TAPQUT
2

2

2
BELL 4
PRINT 4
192
reé




C3.5

o

BACK

BELL

TSX
TRA
REW
RTHB
CPY
TRA
TRA
TRA
CLA
Sus
TNZ
cpy
TRA
TRA
RTB
cpPy
TRA
TRA
TRA
CLA
sug
TNZ
TSX
PZE
PZE
TRA
REW
WiB
cPY
wis
CLA
ADD
STO
cpy
TRA
LXD
LXD
LXC
TRA
WPR
SPR
SPR
TRA
ENC

3592
TAPOUT
2

2
LIMBO
*43

C4

Ca
LIMBO
CCCENWD
C4
LIMBO
Ca

C4

2
LIMBC
243

Cs4

C4
LIMBG
NAME
C4
BELL 4
122
196
C3.5

2

2
CCLCENWC
2

NAME
PZE1
NAME
NAME
1,2
X1l,1
X252
X3,3
2+4

5
10
le4
0



APPENDIX III: BOUNDARY TRAJECTORY SPACE CHARGE PROGRAM

Attached is a listing of the program, which is broken into 13 sub-
programs, of which the first is the main control program, The first 11
subprograms are coded in the Fortran language, except that the one
named PLOT has a few symbolic machine language instructions., The
last two are coded in the symbolic machine language and would require
rewriting for use on a machine other than the IBM 704, The Fortran
language part qf the code is nominally compatible with the assemblers
for machines other than the IBM 704, but thé compatibility has not been
tested.

The program requires 14 seconds to step 2000 particles once
and recompute the field. Roughly one minute was required to record
on tape, the output sequence which consists of roughly 400 numbers and
four 8-1/2" by 11" graphs, The nominal add time of the IBM 704 is
24/45 and the multiply time is 204/15.

The subroutines MURCD2, 28 MU sAVE, 2% MU sm4/cos4, 30

31 mu symBoL>! and MU LPLOT?! are

MU PLOT!, 3! MU HPLOT,
required, The first of these reads data from cards into core locations
specified on the cards and is used for all input data for the program.

The second, a generalized version of the subroutine SAVER included

-100-



-101-

here, saves the status of the computer on a tape if sense switch 1 is off,
allowing a run to be temporarily discontinued, The third computes the

sine or cosine of  f times the argument given it, and last four routines
convert their input numbers irto output data on tape 9 in the form of in-

32

crements to be plotted on a Calcomp digital plotter, Such a tape may

be interpreted on an IBM 4K1401 compuier with attached plotter using
MU x25, 33

The reason for the obscure linkage between the present program
and the plotting subroutines is one of compatibility, If subroutine PLOT
is replaced by MU PLOT, 34 tpe output i3 in the form of graphs simu-
lated by printing asterisks on printer paper by the 1401 computer., No
digital plotter is then required, but the information density of the out-
put is reduced,

Points or ''particles" on the boundaries and "test particles" are
carried in the calculations, The difference is that the test particles do
not contribute to the azimuthal density $(%)or to the field £(P), and
are included only to allow a small sample of the boundary to be regarded
in detail, The test particle coordinates at each output time may option-
ally be printed out, They are also used to control the size of the time
step to assure accurate integration of the motion equations,

The main program initializes the data banks, reads the control
parameters, controls the sequence of use of the subroutines and per-

forms a few calculations, All sense switch options occur here, These
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allow manual control of the program, and are normally all off. Sense
switch 1 (SS1) must be off, If SS2 is turned on, the program is inter-
rupted and SAVE is called, If SS3 is on, the number of integration
steps completed is printed on-line as is the total charge in the distribu-
tion, If SS6 is on, new control parameters are read through the on-
line card reader, At the termination of the calculation, the main pro-
gram calls SAVER which stops the machine.

Subroutine INPUT specifies the initial distribution of boundary
particles and test particles from data read from cards. It has two
optional forms., The first provides boundaries either of the form

W(®) = A +B, cos (h@+B:) + B: cos(h,P+@.), or in the form of
a single closed curve whose shape is that of an oval of Casini. The
second gives a boundary in the form of a rectangle in the phase space.
The number of complete boundaries is variable but less than 11 and
the constant value of the distribution function within each closed curve
may have different values, The number of particles must be less than
10001 and of test particles less than 1001 but greater than 1,

Subroutine DENSTY calculates ?(¢) at 128 points in the region
—Tr<¢ @< TX | The boundary is taken to be rectilinear between adja-
cent points. Periodicity is forced, and the first and last points on a
boundary are taken to be adjacent and connected by the boundary. The
two types of boundaries used are indicated in Fig, 10, One type is

closed on itself in the region -2WN €9 < Z2WN, where?? isa
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finite integer, and the other is periodic, The region bounded by a

single curve of the second type extends from the line W=O to the line
W= Wa () which may be multivalued, These boundaries must then

occur in pairs, each having the same value of the distribution function,

Subroutine FIELDS computes a kernel from the control param-
eters, specifies a field bias of the form -Ws +V Sinn P,  corre-
sponding to a radio-frequency acceleration term, and convolutes the
density with the kernel to obtain the net field,

Subroutine STEP integrates the motion equations through one
time step for either type of particle, In retrospect, it is seen that five
multiplications per particle per time step could have been saved by car-
rying @ in units of 2W/428 rather than 27t . This would be a saving
of roughly 10% in over=-all operating time,

Subroutine PLOTSS forms graphs of $£(9)versus CP, and plots
the curve formed by the test particles in the phase space, checking first
to éee that no points fall outside the range of the graph, If this overflow
occurs, the scales are increased accordingly, The graph of E(P)
versus ¥ may also be made and the boundary curves formed by the
particles may be plotted.

Subroutine INPRIN writes the control parameters and the density
and field values as output records on tape 8. These are interspersed

among the plotting records.
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Subroutine WTEST checks to see that the largest movement in
? during one integration step lies between specified limits,

Subroutine PLOT forms the plotter output, placing five graphs
on one 7-1/2" by 11" area, These five graphs represent the values of
one of the output functions at five instants in the evolution of the system,
The graphs are labelled with the function name, the run number, and
the integration step number of the first graph included. In general, the
known behavior of the system allows them to be distinguished. It should
be noted that the subroutine HPLOT causes the next output statement en-
countered to give written information on the graphs rather than output
for the printer,

The function subprogram AMAX/AMIN finds the maximum/mini-
mun of a specified array of numbers, more efficiently and easily than
Fortran coding allows,

Subroutine SAVER records the status of the computer on tape 1
at the end of a run, If sufficiently interesting, the run may be continued
from this point by reloading it from the tape. The format of the tape is:
two records for ordinary SAVE records,2M records containing 7
SAVER records from 72 runs and an end of file marker, The program
does its own bookkeeping except that an end of file must not be the first
record on a tape to be converted to a SAVER tape, Access to the 72 #‘

run may be obtained by reading 272+ 1 records and loading from the

tape.
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The usual SHARE disclaimer should be appended here: the pro-
gram has been extensively tested and was found to operate properly on
the MURA computer system early in 1962, No other guarantee is justi-

fiable, since these machines are being continually modified by the

manufacturer,



c

10

50

55

57
60

200
2020

210

380
400
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BOUNDARY TRAJECTORY SPACE CTHARGE PROGRAM (MURA F51.5) ’ OORY
DIMENSION DATA{100); D(100}), SIGMA(10), NUMBER(10), PHIT(1000), WT
D{1000), PHI(10000), W(10000), P(128), E(128)

COMMON DATA, NBANDS, SIGMA, NUMBER, PHIT, WT, PHI, Wy Py Es NCOUNT
Cy» INDEX, NDEX,¢ NPLOTS, NCOUNT, A

EQUIVALENCE (DATA,D), (D{7),TIME) : —
Es(D(3)+DT)

DIMENSION DUMMY (20)

A=0.

INDEX=1

NDEX=1 - .
NCOUNT=0

NPLOTS=0

D(18)=1.

D(19)=1.E+35

D(20)=-D(19)

D{23)=0.

0(24)=0.

D(46)=2.

D(50)=1.

CALL MURCDZ2 (DATA)

D(21)=0.

NBANDS=DATA(4)

NLINES=D(5)

NPLO=D(45)

NLAST=D(46)

IF (A) 60450,60

SENSE LIGHT O

CALL INPUT (W, PHI, INDEX, SIGMA, NUMBER, NBANDS, D, 10000)
CALL INPUT (WT, PHIT, NDEX, DUMMY, DUMMY, NLINES, D, 1000)
INDEX=INDEX-1

NDEX=NDEx-1

DO 55 I=1,NDEX
PHIT(I)=(PHIT(I)+2.0)-INTF((PHIT(I[)+2.0))
DO S7 I=1,INDEX o
PHI(I)=(PHI(I)+2.0)-INTF({PHI(I)+2.0))
CALL DENSTY

CALL FIELDS

CALL INPRIN(1)

CALL PLOTSS

IFINCOUNT-NLAST )2020+450+450

CALL WTEST

DO 210 I=1,128

E(I)=E(]1)=DT

CALL STEP (WT, PHIT, NDEX, DT7/6.2831853, E)
CALL STEP (W, PHI, INDEx, DT7/6.2831853, E)
CALL DENSTY

CALL FI1ELDS

TIME=TIME+DT

NCOUNT=NCOUNT+1

NPLOTS=NPLOTS+1

IF(SENSE SWITCH 3) 380,400

PRINT 501, NCOUNT , D(44)

IF (SENSE SWITCH 2)410,420




420
430

437
438
440
450

460

501
502

47

50

60
65

70

90

100
110
200

D(21)=1. -107-

CALL PLOTSS
CALL SAVE
D(21)=0.

CALL INPRIN{(1)
IFI(NPLOTS-NPLO) 440,430,430
NPLOTS=0 _

CALL INPRIN(1)

IF (D(6)) 437,438,437 .
WRITE OUTPUT TAPE 9, 502, NCOUNT, (PHIT(I), WT(I), I=1,NDEX)
CALL PLOTSS

IF(SENSE SWITCH 6) 460,200
NUMBER(32452)=D(2)

D(21)=1.

CALL PLOTSS

CALL SAVER

D(21)=0.

NUMBER (32452 )=NUMBER(32452)
PAUSE 50505

A=l.

GO TO 10

FORMAT (S5H STEPI10, 1PE15.7)
FORMAT (1H I7/(1H 1P10OE13.5))
END (Oyly191,0)

INPUT DORY
SUBROUTINE INPUT (W, PHI, INDEX, SIGMA, NUMBER, NBANDS, D, MAX)
DIMENSION W(l), PHI(1), SIGMA(1l), NUMBER(1), E(1), D(1)
DIMENSION PR(20)

WFCNOF (X )=PR(4)-PR(5)#COS4F(PRI6)+PR(T)=X)
W-PR{8)*COS4F(PR(9)+PR(10)#X)
CASINIF(X)=U#SQRTF((SQRTF(ALPHA4+{ ({{X=XD)/V)#82)))) +(SQRTF{ALPHA
Fa+((({X-X0)/V)#22))))=1.=((({X-XO)/V)®e2)))

N1=XMINOF(NBANDS, 10)
IF (D(22)) 200,47,200
DO 100 N=1,Ni

CALL MURCD2 (PR)
NPTS=PR(2)
NUMBER(N)=NPTS
SIGMA(N)=PR(1)«D(18)
X=—1./FLOATF(NPTS)
DX==X

DO 90 I=1,NPTS

X=X+0X

WU=WFCNOF (X )

IF{ INDEX~MAX) T70,70,90
PHIC INDEX)=X

W(INDEX)=WU
INDEX=INDEX+1
CONTINUE
CONTINUE

RETURN

D0 260 J=1l¢Nl1
CALL MURCDZ2 (PR)
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"NPT=PR(2)
NPTL=NPT-1
NPT2=NPT+nPT
NPTS=NPT2+NPT2
IF(INDEX+NPTS~MAX) 201,201,260

201 SIGMA(J)=PR(1)«D(18)
NUMBER (J })=NPTS

202 XO0=PR(3)
X0=X0
ALPHA4=(PR(1l)=n4) /4,
U=PR(12)
V=PR(13) _
XMAX=VeSQRTF(l.+PR{(1ll})=e?2)
DX=XMAX/FLOATF(NPT)
X=X0

230 WUINDEX)=CASINIF(X)
PHI{INDEX)=XO0
N=INDEX+NPT2
W(N)=-W{ INDEX)
PHI(N)=X0
N=INDEX+NPT
MDEX=INDEX
W{N)=0
PHI(N)=X0+XMAX
N=N+NPT2
W{N)=0
PHI(N)=X0-XMAX

240 DO 250 M=1,NPTL
X=X+DX
N=MDEX +M
F=CASINIF(X)

243 W(N)=F
PHI(N)=X
N=MDEX4+NPT2-M
WN(N)=-F
PHI(N)=X
N=MDEX+NPT2+M
W{N)=-F
PHI(N)=X0+X0-X
N=MDEX+NPTS-M
WiN)=F
PHI{N)=X0+X0—-X

250 CONTINUE

253 INDEX=INDEX+NPTS

260 CONTINUE )
RETURN
END (0,1,1,1,0)

INPUT ALTERNATE VERSION DORY
INPUT BOUNDARIES ARE RECTILINEAR

SUBROUTINE INPUT (W, PHI, INDEX, SIGMA, NUMBER, NBANDS, D, MAX)
DIMENSION W(l), PHI(1l), SIGMA(1l), NUMBER(1}, E(1), D(1)

DIMENSION PR(20)
WFCNOFLX)=PR(4)-PR{S)=COS4F(PR{6)+PR{T7)ex] ™ ~
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W-PR(8) #COS4F(PR(9)+PR{10}*X) e

N1=XMINOF(NBANDS,10)
IF (D(22)) 200,447,200
47 DO 100 N=1,4N1l
CALL MURCDZ2 (PR)
NPTS=PR(2) o o o
50 NUMBER{N)=NPTS
SIGMAIN}=PR{1)+#D{(18)
60 X==1/FLOATF{NPTS)
65 Dx=fx
DO 90 I=1,NPTS
X=X+DX
WU=WFCNOF{X)
IFUINDEX-MAX) 70,70,90
70 PHI( INDEX)}=X
W{INDEX)=KwU
INDEX=INDEX+1
90 CONT INUE
100 CONTINUE
110 RETURN
200 Dp 260 J = 1y N1
CALL MURCD2(PR)

NPT = PR(2)
NPT2 = NPT+NPT
NPTS = NPT2+NPT2

IF (INDEX+NPTS-MAX) 201, 201, 260
201 SIGMA(J) = PRI1)+D(18)
NUMBER (J) = NPTS

X0 = PR(3)

X0 = X0

XE = PR(12)
YT = pRr{13)

PERIM = XE-XO+YT

NHFTOP = (XE-X0) /7 PERIM = FLOATF(NPT-1)

NHFSID = NPT-NHFTQgp-1 v

DX = (XE-X0) / FLOATF(NHFTOP)

DY = YT / FLOATF{NHFSID)

X X0

Y YT
230 WUINDEX) = YT

PHI (INDEX) = XO

N = INDEX+NPT2

WiN) = =YT

PHI(N) = XO

N = INDEX+NPT

MDEX = INDEX

WI(N) = 0 N

PHI(N) = XE

N = N&tNPTZ2

W(N) = 0 .

PHI(N) = XO+XO-XE

DO 250 M = 1,NHFTOP

X = X+DX
N = MDEX+M
WiN)} = ¥



PHI(N) = X

N = MDEX+NPT2-M

WI(N) = -Y

PHI(N) = X

N = MDEX+NPT2+M

WiN) = -Y

PHI(N) = XO+X0-X

N = MDEX+NPTS-M

WI(N) = Y

PHI(N) = XD+X0-X

CONT INUE

X = XE

Y = YT+DY

DO 252 M = 1,NHFSID

Y = Y=-DY

N = MDEX+M+NHFTOP

WIN) = Y

PHII(N) = X o

N = MDEX+NPT2-M-NHFTOP
W{N) = ~-Y

PHI(N) = X

N = MDEX+NPT2+M+NHFTOP
W(N) = -Y

PHI(N) = XO+X0-X

N = MDEX+NPTS—-M-NHFTOP

250

WI(N) = Y

PHI(N) = XD+X0-X
252 CONTINUE
253 INDEX=INDEX+NPTS
260 CONTINUE

RETURN

END (Osls1s150)

DENSTY
_SUBROUTINE DENSTY

. =110¢4

DORY

DIMENSION DATA(100), D(100), SIGMA(10), N NUHBER(IO)o PHIT(1000), WT

D(1000), PHI(10000),
COMMON DATA., NBANDS,
Cys» INDEX, NDEX
EQUIVALENCE (DATA,D),
E,(D(3),DT)
DIMENSIDN PT(256)

(D(7)TIME)

SENSE LIGHT 1

D0 10 N=1,256
10 PT{(N)=0.

NORG=0

DO 340 N=1, ,NBANDS

NPB= NUHBER(N)

SIG=SIGMA(N)®#3,141592¢
100 DO 330 K=1l,NPB
110 K1l=K+1+NORG

IF (K-NPB) 130,120,120
120 K1=1+NORG

W(10000), P(128)y E(128)
SIGMA, NUMBER,

PHIT, WT, PHI, W, P, Eo NCOUNT




130
145

150
160

170

180

200

210

220

240

250

260

270

300

330

340

350

KK=K+NORG 111

PHI1=PHI (KK )
PHI2=PHI(KL1)

DELPHI=PHI2-PHI1

IF (ABSF(DELPHI)-.5) 180,150,150
IF (DELPHI) 160,160,170
RHI2=PHI2+1.

GO TO 145

PHI1=PHI1+1.

GO TO 145

N1=PHI1#128.+1.

N2=PHI2#128.+1.

IF (NL-N2) 200,300,210

NMIN=N1

NMAX=N2

PHINT=PHI1

PHIFIN=PHI2

WINT=W(KK)

WFIN=W(K1)

G0 TO 220

NMIN=N2

NMAX=N1

PHINT=PHI2

PHIFIN=PHI1

WINT=W(K1)

WFIN=W(KK) .
SLOPE=(WINT-WFIN)/(PHINT-PHIFIN)
XNITAL=PHINT

YNITAL=WINT
EX=(FLOATF(NMIN-1))#.0078125

DO 270NN=NMIN,NMAX
EX=EX+.0078125

IF (PHIFIN-EX) 250,260,260
AREA=SIG & (PHIFIN-XNITAL) ® (WFIN#YNITAL) = SIGNF(1l.,DELPHI)
GO TO 270
YFINAL=WINT+(EX-PHINT)#SLUPE
AREA=SIG & (EX-XNITAL) » (YFINAL+YNITAL) » SIGNF(1.,DELPHI)
YNITAL=YFINAL

XNITAL=EX

PTINN)=PT (NN)+AREA

G0 TO 330
PTINL)=PT(N1)+SIG#DELPHI®{W(KK)+W(K1))
CONT INUE

NORG=NORG+NPB

D(44)=0.

DO 350 Kk=1,128
P(K)=PT(K)+PT(K+128)
D{44)=D(44)+P(K)

RETURN

END (Oylely1450)

FIELDS DORY
SUBROUTINE FIELDS

DIMENSION DATA(100), D{(100), SIGMA(10), NUMBER(10), PHIT(1000)s WT
D(1000), PHI(10000), W(10000), P(128), E(128)
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COMMON DATA, NBANDS, SIGMA, NUMBERs PHIT, WT, PHls» We Py Es NCOUNT
C, INDEXs NDEX

EQUIVALENCE (DATA,D), (D(T7},TIME),(D(24),NK)
E,(D(3),DT)

DIMENSION RF{128)

DIMENSION CERI(50)

IF (NK) 40,10,40
10 DO 15 I=1,128
15 RF{1)=0.
DO 20 I=1,30
CER(I)=D(50)=«D(1+50)
NK=]-1
IF (CER(I)}) 20,30,20
20 CONT INUE
30 IF (D(48)) 33,40,33
33 DO 35 I=1,128
35 RF{I)=D(49)~SINGF((FLOATF(I)~.5)/128.)eD(4T)
40 DO 100 I=1,128
50 E(I)=RF(1)
D0 100 J=1,NK
Il=1+J .
IF (I1-128) 70,70,60
60 Il1=11-128
70 12=1-4
IF ([2) 80,80,90
80 12=12+128
90 13=11
[4=]2
100 E(l)=E(I)+CER(J)I=(PLI3}-P(]4})
IF {SENSE LIGHT 1) 110,110
110 RETURN
END (Osl9olsls0)

STEP DORY
SUBROUTINE STEP (W, PHI, INDEx, DT, E)
DIMENSION w(l), PHI(l), SIGMA(1), NUMBER(1), g(1)

DO 330 =1, INDEX
PHIF=PHI(I)-DT#nW(1I)
PHIBAR=PHIF+PHI(])
240 IF (PHIBAR) 250,2604260
250 PHIBAR=PHIBAR+2.
GO TO 240
260 IF (PHIBAR-2.) 285,270,270
270 PHIBAR=PHIBAR-2.
GO TO 260
285 IF (PHIF) 290,295,295
290 PHIF=PHIF+l.
GO0 TD 285
295 IF (PHIF-1.) 305,300,300
300 PHIF=PHIF-1.
GO Tg 295
305 PHI(I[)=PHIF




_ .ENO=64.#PHIBAR+.5 = e —— . —
DEL=ENO- INTF(ENO) :
NO=ENO
310 IF (NO) 315,315,320
315 NO=NO+128
320 NOL=NO+l
IF(NO1-128) 326,326,323 ; . e e
323 NOL=NO1-128
326 FIELD=E(NO)-(E(NO)-E(NO1))=DEL
330 W(I)=W(I)+FIELD
RETURN
END (0¢1s1+1,0)

PLOTSS DORY
SUBROUTINE PLOTSS

DIMENSION DATA{100), D(100), SIGMA(10), NUMBER(10), PHIT(1000), WT
D(1000), PHI{10000), W(10000), P(128), E(128)

COMMON DATA, NBANDS, SIGMA, NUMBER, PHIT, WT, PHI, Wy, P, Ey NCOUNT
Cs INDEX, NDEX

EQUIVALENCE (DATA,D), (D(7),TIME)
Es(D(3),DT)

DIMENSION S(4)

NSTEP=NCOyUNT
25 BIG=AMAX(P,128)
SMALL=AMIN(P,128)
s{l)=129.
S(3)=MAX1F(BIG,D(14))
St4)=MIN1F{SMALL,D(1l5))
DO 30 N=1,128
EN=N
30 CALL PLOT (99 ENy PIN)y Sy 1, 0)
CALL PLOT(9,0,09S,1,1)
WRITE OutPuTl TAPE 9, 503, NSTEP, TIME, (S(I)s I=194), BIG, SMALL
5 BIG=AMAX{WT s NDEX) .
SMALL=AMIN(WT,NDEX)
Si1)=1.
S(3)=MAX1F(BIG,D(10))
S(4)=MINLF{SMALL,D(11))
DO 10 N=1,NDEX
EX=PHITI(N)
10 CALL PLOT (95 EXy WT{(N)y Sy 1,4 0Q)
CALL PLOT (99 Oy 0y S» 1o 1)
WRITE OUTPUT TAPE 9, 501y NSTEP, TIME, (S(I)y I=1,4), BIG, SMALL
IF (D(9)) 35,15,35
35 BIG=AMAX(E,128)
SMALL=AMIN(E,128) _ -
S{1)=129.
S{3)=MAX1F(BIG,D({16))
S(4)=MINLFI{SMALL,D(1T))
DO 40 N=1,128
EN=N
40 CALL PLOT (99 ENy E(N)sy Se 1s 0)
CALL PLOT(940,04S,1,1)




15
16

20

45

501
502
503
504

10
20

501
502
503
504
505
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WRITE OUTPUT TAPE 9, 504, NSTEP, TIME, (S(I), I=1,4), BIG, SMALL
IF(D(8)) 16,45,16 :
BIG=AMAX {(Wy INDEX)
SMALL=AMIN(W, INDEX)
S(l)=1.
S(3)=MAXL1F(BIG,D(12})
S(4)=MINLF{SMALL,D(13))
DO 20 N=1, INDEX
EX=PHI (N)
CALL PLOT (9, EX, WI(NJ}y Sy 1y O)
CALL PLOT(9,0404S+1,41) '
WRITE OUTPUT TAPE 9, 502, NSTEP, TIME, (S(I), I=1,4), BIG, SMALL
RETURN
FORMAT (31H#TEST PARTICLES-STEP TIME SCALE[6,7F10.5)
FORMAT (31H#BNDY PARTICLES-STEP TIME SCALEI6,7F10.5)
FORMAT (3]H# DENSITY STEP TIME SCALEI6,7F10.5)
FORMAT (31Hs» FIELD STEP TIME SCALEIG6,7F10.5)
END (Osl91ls1,40)

INPRIN DORY
SUBROUTINE INPRIN(ISH)

DIMENS{ON DATA(100), D(100), SIGMA(10), NUMBER(10), PHIT{1000), WT
D(1000), PHI(10000), wW(10000), P(128), E(128) o
COMMON DATA, NBANDS, SIGMA, NUMBER, PHIT, WT, PHI, W, P, E, NCOUNT
C,» INDEX, NDEX

EQUIVALENCE (DATA,D), (D(7),TIME)
E,(D(3),0T)y (D(23),JAKE)

WRITE OQUTPUT TAPE 9, 501, ISH, JAKE, NCOUNT
IF (JAKE) 20,10,20 o
JAKE=D(2)

PRINT 501, ISHy JAKE, NCOUNT

WRITE OUTPUT TAPE 9, 505, TIME,NCOUNT,NBANDS,INDEX,NDEX, (SIGMA(I),
11=1,10), (NUMBER(I),1=1,10)

WRITE OUTPUT TAPE 9, 502, (DATA(I)s I=1,100)
WRITE OUTPUT TAPE 9, 503, (P(i), I=1,128)
WRITE OUTPUT TAPE 9, 504, (E(I), 1=1,128)
RETURN

FORMAT (I11,29HBOUNDARY SPACE CHARGE PROGRAM,20X2110////)

FORMAT (SHODATA/(1H 1P10E13.5))

FORMAT (8HODENSITY/(1H 1P10OE13.5))

FORMAT (6HOFIELD/(1H 1P10E13.5))

FORMAT(30H TIME STEP NBANDS NBNDRY NTESTF10.5,4110/16H SIGMA, NO./
1BAND/1H 1P10E13.5/10113)

END (Osly1le1l40)

WTEST T DORY
SUBROUTINE WTEST

DIMENSION DATA(100), D(100), SIGMA(10), NUMBER(10), PHIT(1000)s WT
D(1000), PHI(10000), W(10000), P{(128)y E(128) _

COMMON DATA, NBANDS, SIGMA, NUMBER, PHIT, WT, PHI, Wy, P, E, NCOUNT
Cy INDEX, NDEX _ L
EQUIVALENCE (DATA,D), (D(7),TIME)




10
20
30
40
50
60
70

sLoce
SLOCE
SLoCr
SLOCW
SMASK
SL4
SL3
SL2
SLABL

nwunwnonm

10
20
30

40
50

E,{D(3),DT) : . i S

BIGEST=AMAX (WT yNDEX)

IF (BIGEST-D(19)/DT) 50,50,20

DT=DT/2.

IF (BIGEST-D{(19)/DT) 40,40,20

RETURN o o D L
IF (BIGEST-D(201/DT}) 60460,40

DT=DT»2.

GO TO 50

END (Oglylel,l)

PLOT LINKAGE FOR BSCP AND THIRTY INCH PLOTTER . DORY
SUBROYUTINE PLOT (NTAPE, EX, WY, S, NO, IND)

DIMENSION S(4), BANK(200), SW(4), ORG(4), LABL(1) .
COMMON DATA, NBANDS, SIGMA, NUMBER, PHIT, WT, PHI, W, P, E, NCOUNT
C,» INDEX, NDEX, NPLOTS, NCOUNT, A, BANK

DIMENSION DATA(100), D(100), SIGMA(10), NUMBER(10), PHIT(1000)s WT _
D(1000), PHI{10000), W(10000), P(128), E(128)

EQUIVALENCE (DATA,D), (D(7),TIME), (D(3),DT)

DEC 10441
DEC 10313
DEC 31441
DEC 20441
ocT 1717717
ALF WePH]
ALF EsPHI
ALF WT#PHI
ALF PePHI]

N=N

IF(N)5+5,60

CLA 57

ANA MASK

ALS 18

STO IWY

IF(D(21)) 9,49,6

IF (D(21)-1.5) 7474220
D(21)=2.

M=0

IF (NP) 200,200,140
N=1

IF(IWY-LOCP) 10,40,10
N=2

IFCIWY-LOCT) 20440+20
N=3

IF(IWY-LOCE) 30,40,30
N=4

IFCIWY—-LOCHW) 200940,200
IF {(NP) 50,50,60
ORG(1)=0.

ORG(2)=7,5

ORG(3)=7.5

ORGl4)=T.5




52
54
56

$57
58
60

70
80

83

87

90

100
102

110

112
113

120

123

127
130

140

NORUN=D( 2)

M=2

IF (D(9)) 52,54,52

ORG(3)=15.

M=M+1

IF (D(8)) 56,58,56
ORG(4)=DRG(4)+7.5

CLA WY

M=M+]

CALL PLOTS (BANK(200)s 200, 1ll.)
IF (IND) 70,700,120

IF (SW(N)) 80,80,110
EXMAX=MAX1F{S(1), S(2))
EXMIN=MINLF(S(1), S{2))
WYMAX=MAX1F{S(3), Sl(4))
WYMIN=MINLF(S(3), S{(4))

IF(N-1) 87,83,87

NP=NP+1

NDUMMY =NO

NDUMMY =NTAPE

NPEN=3

IF DIVIDE CHECK 90,90

AX=10./{ EXMAX=EXMIN)
BX=.5-AX#EXMIN

AY=6 .5/ {HYMAX-WYMIN)
BY=-AY®WYMIN

IF DIVIDE CHECK 200,100

SW(N)=1.

IF {(Np-1) 110,102,110

CALL PLOT1 (.59 ORGI(N}, 3, -1)
CALL PLOTLl (.5, DRGIN)+6.5, 2y -1)
X=AX#EX+BX

Y=AYsWY+BY

X=MIN1F(Xy10.5)

X=MAXLF{Xy+5)

Y=MINLF(Y:6.5)

Y=0RG(N) +MAX1F(Y,0.)

IF (ABSF{XLAST~-X)-2.5) 113,112,112
NPEN=3

CALL PLOT1 (X, Yy NPEN, -1)
NPEN=2

XLAST=X

GO TO 220

SW{N)=0.

IF (NP-1) 127,123,127

CALL PLOT1 (10.5, ORG{N)y 3, -1)
CALL PLOT1 (.59 ORG(N)y 2y -1)
HALF=.5

CALL HPLOT (HALF, ORGIN)-.25, .01)
WRITE OUTPUT TAPE 9, 501, NORUN, NCOUNT, LABLI(N)
IF (NP-5) 200,130,130

M=M-1

IF (M) 140,140,200

NP=0

CALL PLOT1 (11.304341)




200
220
501

AMAX

INST1

INST2

IRSAV
AMIN

N=0

"RETURN

FORMAT (BHBSCP RUNIG6y5H PLOTI694XA6)
END (C,1+¢191+0)

REM
REM
REM
REM
FUuL
MZE
PLE
PZE
PZE
BCO
PZE
BCD
PLE
BCD
PZE
BCD
PLE
REL
REM
REM
REM
REM
REM
ORG
SXD
CLA
ADD
STA
STA
CLA
STA
LXD
CLS
LDQ
TLQ
SXD
CLA
TIX
STo
ADD
TNZ
TX1
SXD
CLA
ADD
STA
STA
CLA
STA
LXD

FUNCTION SUBPROGRAM AMAX/AMIN (SAP ASSEMBLER LANG.) _ _ DORY
MAXA{ ARRAY , NUMBER ) ‘
AMIN(ARRAY,NUMBER)

MINA(ARRAY,NUMBER)
PROGRAM CARD

1110

INDEX+1

LAMAX

AMAX

1MAXA

AMAX | L _ }

LAMIN

AMIN

LMINA

AMIN

FIND MAXIMUM DR MINIMUM OF THE FIRST

NUMBER DATA STORED IN ARRAY THROUGH
ARRAY+1—-NUMBER. AC CONTAINS MAXIMUM OR

MINIMUM AS CALLED AND MQ CONTAINS VALUE
OF INDEX FOR LAST DATUM EQUAL TD MAX OR MIN
0

IRSAV,1 SAVE A

lygy GET ARGS

a-1 GET ARGS

INSTI1 GET ARGS

INSTZ2 GET ARGS

2+¢4% GET ARGS

a+] GET ARGS

anyl NUMBER OF TEST VALUES
BIG PUT -BIG IN AC

sn,] GET TEST VALUE

*43 Q. «* BIGGER THAN -BIG
INDEXs 1 YES, SAVE INDEX

#ayl PUT =« [N AC

INST1ls1,1 NO, CONTINUE

RESULT STORE LARGEST

8IG SEE IF -8IG

RETURN IF NOT, FOUND AN ANSHER
NONE, , ¢+ IF SO, -0 IN ACy JUNK IN MQ
IRSAV, 1 SAVE A

le4 GET ARGS

#-] GET ARGS

INST3 GET ARGS

INST4 GET ARGS

204 GET ARGS

24] GET ARGS

syl NUMBER OF TEST VALUES



INST3

INSTS

RETURN
MONE
BIG

RESULT
INDEX

SAVE

LDQ
CLA
TLQ
SxD
LDQ
TIX
STQ
cLS
ADD
TZE
cLA
LDQ
LXD
TRA
ocT
PZE
PZt
END

REM
REM
REM
REM
FUL
MZE
oCcT
PLE
PZE
BCD
Pt
REM
REL
ORG
SXD
SXD
sXD
STO
ARS
ST10
STQ
LXA
SLT
TXI
SLY
TX1
SLT
TXI
ST
TXI
SXD
CLA
RTT
CLA
STO

-118-

8IG PUT +BIG IN MQ

TIPS GET TEST VALUE

®+43 Q. #* SMALLER THAN BIG

INDEX, 1 YESs SAVE INDEX

an,l PUT =& IN MQ

[NST30111 NOos CONTINUE -
RESULT STORE SMALLEST

RESULT SEE IF 8IG

BIG IF NOT, FOUND AN ANSWER

NONE IF sO -0 IN AC, JUNK IN MQ

RESULT FOUND AN ANSWER-TO AC

INDEX SUBSCRIPT OF ANSWER TO MQ

IRSAV, 1 RESTORE A

3,4 RETURN TO CALLER

377797717177

Ry gnn

X Rt

0 e e N . .. e
SUBROUTINE SAVER (SAP ASSEMBLER LANGUAGE) DORY
SAVES STATUS OF 704 ON TAPE 1

TWO RECORDS + END OF FILE REPLACE 1ST EOF ON TAPE 1
UNLESS NO EOF FOUND THEN THESE REPLACE THE 3RD TAPE RECORD

reé
FADER+]

1SAVER
0

0

IX1l,e1l
1X2,2
IX444
AC1l

35

AC2

MQ

Hl,1

1
#+l,1,1
2
#+ly1,2
3
#+l,1,4
4
*4+1,1,8
SLT,1
WTB

WTD
WRITE




HB187

REWTSB
RT81

TRARD1
BST1

READ1

WTB

WRITE

CHECK

IX1

0CT_

ARS
ALS
STO0
CLA
TovV

...CLA

STO
CLA
TQ0
PXD
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