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I. INTRODUCTION

A. Brief Description of Space Charge Effects

Particle accelerators are constructed to produce beams of
charged particles which have sufficient kinetic energy so that they can
be.used as projectiles on targets in particle scattering experiments.
The purpose of such experiments is to induce nuclear reactions, either
for their direct interest or for the purpose of generating secondary
beams of particles for other scattering experiments, or to probe the
interaction forces between particles, The desired reactions or events
created in the target occur at a rate measured by the number of events
per unit time., In order to perform an experiment in a reasonable
amount of time or to obtain a desired degree of statistical accuracy,
the number of events per unit time must be sufficiently large. General-
ly the number of events per unit time is a function of both the energy
and the intensity of the accelerator beam. Here the beam intensity is
the time-averaged number of particles per unit time supplied by the
beam to the target area, For a fixed energy of the beam the number of
events per unit time is directly proportional to the beam intensity.
Hence, an understanding of the factors which may influence the beam

intensity is desirable.
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The types of accelerators specifically in mind are the cyclotron,
the synchrocyclotron, and the synchrotron. The particles are con-
strained by a magnetic field to move in orbits which are near a closed
reference path lying in a horizontal plane; the reference path may or
may not be a circle, it may change size slowly in time, and the orbits
themselves need not be in the horizontal plane. The beam then sur-
rounds the closed reference path as shown in Fig, 1. The beam as a
whole is contained within a vacuum chamber so that the particles are
impeded as little as possible by gas scattering,

For any parti(;le at a given time there is a nearest point on the
reference path, Let the vertical plane containing the particle and this
nearest point be called the ''transverse' plane. The transverse plane
is perpendicular to the reference path and it is unique if the particle is
not too far from the reference path depending on how much the curva-
ture of the reference path varies frox_x; point to point., The direction
perpendicular to the transverse plane is called the "longitudinal" direc-
tion. Any motion or force in the longitudinal direction is referred to
as a "'longitudinal" motion or force, and any motion or force perpendic-
ular to the longitudinal direction, and thus lying in the transverse plane,
is referred to as a ''transverse'' motion or force.

The forces acting on the particles may be classified into
"external" forces and "internal" forces. The "external' forces are the

forces produced by the magnetic field which constrains the particles to



Partial Section of the Beam

Closed Reference Path

Figure 1. PICTURE OF THE BEAM




the vacuum chamber and the forces produced by the electric fields
which are used to accelerate the particles, The "internal' forces are
the interaction forces between the particles of the beam, the interaction
forces between the particles of the beam and residual gas molecules in
the vacuum chamber, and the interaction forces between particles of
the beam and charged particles created by ionization of the residual gas
by the beam. The total force acting on a particle of the beam caused
collectively by all the other charged particles within the vacuum cham-
ber (i.e., the other particles of the beam and charged particles created
by ionization) is referred to as the "'space charge'' force. It may be re-
solved into two components: the longitudinal space charge force and the
transverse space charge force.

For a first approximation the internal forces may be neglected
to predict the behavior of the beam. Deviations from this behavior,
when they are caused by space charge forces, are called "space charge'
effects. In general, if these effects are serious, they result in beam
instabilities which cause a loss of particles and therefore a reduction
of the beam intensity. Usually, for simplicity, space charge effects
are analyzed as two separate effects. Under appropriate assumptions
the influence of the transverse space charge force can be decoupled
from the influence of the longitudinal space charge force and converse-
ly. Then the space charge effects separate into two independent effects:

the "'transverse space charge' effect and the "longitudinal space charge"




effect., Of course, such a separation is an approximation; the two
effects are interdependent and the true situation is more complex,

To obtain a qualitative picture of the transverse space charge
effect, consider a beam of charged particles which is a torus with a
circular cross section and let the particles be uniformly distributed
within the torus, The particles have the same charge 8o that the elec-
trostatic force between them is repulsive., This tends to make the beam
expand transversally and produces a transverse defocusing force on a
particle. The longitudinal motion of the particles gives an electric cur-
rent which creates a magnetic field surrounding the center of the beam,
This produces a transverse force tending to contract the beam and gives
a focusing force on a particle. The electrostatic force is always larger
than the magnetic force but the two nearly cancel one another at rela-
tivistic energies. Thus the net transverse space charge force is de-
focusing. (This result is not necessarily true when account is made of
additional charged particles due to gas ionization.) Increasing the num-
ber of particles in the beam increases the space charge defocusing
force. The space charge force thus modifies the focusing force pro-
duced by the external magnetic force resulting in a net focusing force
which depends on the number of particles in the beam. Since the focus-
ing force determines the frequency of betatron oscillations, increasing
the number of particles changes the frequency. This can put the oscil-

lation on a resonance which causes the betatron oscillation to increase
Ny



-6~
in amplitude driving a large number of the particles into the walls of the
vacuum chamber,

One type of longitudinal space chﬁn effect called the "'negative-
mass'' instability can be described as follows., Consider an accelerator
operating above the transition energy so that df/dE € 0 where f is the
particle's frequency of revolution around the accelerator and E is the
particle's energy. Let the beam be monoenergetic and longitudinally
bunched. A particle apiaroaching a bunch from behind is repelled by the
electric field of the bunch and the particle loges kinetic energy. Con-
sequently the particle's frequency of revolution increases so that the
particle catches up with the bunch, just as if it had a negative mass.
This situation is unstable and will cause the beam to collapse into small
bunches.

B. Methods of Accelerator Theory

Various methods of developing the theory of accelerators may
be used depending on the approximations made and the degree of ac-
curacy desired. Their usefulness rests on whether or not the equations
which are set up can be solved, at least, to some approximation, A
complete theory, after solving the equations of motion, would describe
the motion of each particle of the beam under the influence of all forces.
This is not possible because of the complexity created by the interac-
tions of such a large number of particles (the number of particles in the

0 15).

beam is of the order 101 to 10 Even if it were possible to give



such a description, by itself it would not be useful since one cannot
read and interpret 1010 items of data. Some statistical measures of
the data would be needed.

One method of approaching accelerator theory is to assume that
the internal forces are negligible, In this approximation each particle
then moves independently of the others and its equation of motion is
that for a single particle under the influence of the external forces.
This method is called the "single-particle' theory. With various addi-
tional simplifying assumptions the single-particle theory has been used

152 The fault of the single-

most extensively; it is now well developed.
particle theory is that it ignores the internal forces which can have a
large influence on the beam,

An approach which attempts to account for the internal forces
is to assume the particles are distributed in the beam in some manner
and calculate the internal force on a single particle which results from
the assumed distribution. The calculated internal force is then inserted
as a correction into the equation of motion in the single-particle theory.
Investigations of the transverse space charge effects have been made
primarily in this manner, 8,45 In this method the effect of the internal
forces is only partially taken into account since no allowance is made

for the change in the distribution of particles broughtabout by the inter-

nal forces,
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Another method, more general in that an attempt is made to
describe the collective motion of all the particles, is based on a statié-
tical approach. A distribution function is defined which specifies how
all the particles are distributed in position and momentum; i.e., the
distribution function gives the density of particles in the phase space.
This approach seeks to determine how the distribution function changes
in time starting from some initial distribution. The distribution func-
tion satisfies a partial differential equation known as the Boltzmann
equation which depends on the forces acting on the particles. 6

Besides the Boltzmann equation, equations governing the forces
are required. In particular the equation for the internal force is func~-
tionally dependent on the distribution function. The Boltzmann equa-
tion and the force equations together form a system of equations which
completely determines the distribution function at any time. Solving
the system of equations is generally impossible; simplifying assump-
tions are usually nécessary to obtain exact solutions or to obtain approx-
imate information concerning the distribution function.

Investigations of space charge effects by means of the Boltz-
mann equation have heretofore been almost exclusively on the longi-
tudinal effects. 78,9 The present investigation of transverse space
charge effects is made through the Boltzmann equation for the purposes
of putting previous results on a firmer theoretical basis and obtaining

a better understanding of beam dynamics.



C. Previous Investigations of Space Charge Effects

The transverse space charge effect has been studied by a num-
ber of people, Kerst made calculations for the maximum beam current
which could be contained within the dimensions of the vacuum chamber
of a betatron by the external focusing force against the electrostatic re-
pulsion force of space charge, 3 The calculations were based on assum-
ing a uniformly distributed beam of circular cross section and the mag-
netic force of the space charge was ignored because he was interested
in conditions at the injection energy at which it was negligible. How-
ever, he mentioned that the magnetic and electrostatic space charge
forces nearly cancel at relativistic energies., This calculation was re-
fined by Blewett who showed that a uniformly distributed beam in a
betatron would have an elliptical cross section for the particular form
of the external magnetic field, 10 |

In a study of injection processes Judd stated that the transverse
space charge force would change the frequency of the betatron oscilla-
tions, 4 He suggested that this was the reason why some betatrons
which had been designed to opérate on a resonance worked better than
had been expected,: name_ly, the space charge effect took the frequency
off the resonance. Barden has discussed the limitations placed on the
beam intensity by the space charge force changing the frequency to a
resonance in alternating-gradient synchrotrons. 5 Jones investigated

the influence on the transverse space charge effect due to the variation



-10-
of the beam's cross section produced by the alternating gradients in an
alternating-gradient accelerator. 11 This was found to be small. Modi-
fications of the space charge force created by the charge and current
induced in the walls of the vacuum chamber by the beam have been con-

sidered by Mills and by Cole et al, 12,13

These are small unless the
beam nearly fills the aperture. The change of betatron oscillation fre-
quency for a uniform beam of elliptical cross section has been studied
by Teng. 14

None of the above-mentioned studies of transverse space charge
effects made use of the Boltzmann equation, An investigation which did
was made by Courant.® He investigated the stability of a beam when it
is uniformly distributed longitudinally but distributed transversally in
such a manner that the density of particles oscillates coherently with
the betatron oscillations, He concluded that the beam would be stable,

Nielsen and Sessler have studied longitudinal space charge ef-
fects with radio-frequency acceleration, and, for this case, have ob-

tained a stationary solution of the Boltzmann equation, 7

Longitudinal
instability (i.e., the negative-mass instability) has been investigated
by Nielsen, Sessler, and Symon by means of a linearized Boltzmann

equation, 8 It was found that this instability will not occur if the energy

spread of the particles is sufficient,

D. nggerimental Observations

Experimental observations of transverse space charge effects
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15,16 The meas-

have been reported by Haxby et al,, and Kerst et al.
urements were made on an electron spiral sector fixed-field alternating-
gradient (FFAQG) accelerator at the Midwestern Universities Research
Association, An injection current greater than the calculated space
charge limit was injected over a relatively long period of time and the
output current was observed. Over the time of injection the output cur-
rent behaved roughly as shown in Fig. 2. The initia]l output current I,
waa found to be about 30 to 50% of the calculated space charge limit.
Then ions formed in the residual gas begin to be collected in the beam
and neutralize the electrostatic space charge force but not the magnetic
space charge force of the beam, The current then builds up to I ..
which perhaps represents the maximum current available from the in-
jector. The measured frequencies of the betatron oscillations were
found at the time of I, to be lower than for small injection currents and
to increase as ions were collected in the beam, This is in agreement
with the qualitative picture of space charge effects. Eventually enough
ions are collected that the frequency of betatron oscillations increases
to a resonant value and the beam is lost. In a short time enough ions
migrate to the walls that the beam is again established at L, ... This
process keeps repeating as shown in Fig, 2,

Measurements of longitudinal instabilities in the Cosmotron

17

have been reported by Barton and Nielsen. The results are in agree-

ment with the linearized theory of negative-mass instability in the
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Output Current

Figure 2, OUTPUT CURRENT FOR HIGH INJECTION

CURRENT
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range where it is applicable.

E. Outline of Investigation

The following chapters present an analysis of transverse space
charge effects by a method using the Boltzmann equation, Various
simplifying assumptions are made so that the general Boltzmann equa-
tion can be reduced to a one-dimensional, collisionless Boltzmann equa~
tion. A technique for solving the reduced Boltzmann equation by using
moments is developed which gives an infinite set of moment equations
to be solved, In general a finite number of the moment equations do not
form a closed set but instead they are coupled to the remaining set of
equations, By means of two essential approximations a closed set of
moment equations is obtained. The first of these approximations is
that the forces acting on a particle are linear with respect to its posi-
tion, The second approximation is that the space charge force depends
on the beam distribution only by being dependent on the position of the
center of the beam and on the width of the beam, The behavior of the
beam is then described by the resulting closed set of moment equations,

It is found that the motion of the center of the beam is independ-
ent of the space charge forces and that space charge effects cannot put
- the beam onto an integral resonance, Conditions are obtained for an
approximate stationary solution for which the center and width of the
beam remain constant. In the absence of figld errors and if the condi-

tions for a stationary solution are not satisfied, the beam width per-
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forms oscillations which are always stable. A linear theory for the ef-
fect on the beam width due to gradient errors in the external magnetic
field indicates that unstable resonances may exist,

Chapter II gives an elementary treatment of transverse space
charge effects, In Chapter III some considerations of the Boltzmann
equation and the initial assumptions are presented which allow the gen-
eral Boltzmann equation to be reduced to a one-dimensional Boltzmann
equation. The technique for solving the Boltzmann equation by using
moments is developed in Chapter IV and a linear approximation for the
space charge force is obtained which enables one to get a closed set of
moment equations, The behavior of fhe beam described by the moment
equations is discussed in Chapter V, Finally, in Chapter V1, some of
the limitations of the results arising from the initial asgumptions are
discussed and possible ways of extending the analysis are presented.

Gaussian units are used throughout the analysis with the unit of
electric current being statcoulomb/sec. All integrals without specified

limits are over the complete range of the integration variables.



II., ELEMENTARY THEORY OF
TRANSVERSE SPACE CHARGE EFFECTS

A. Review of Single-Particle Theory

An elementary treatment of transverse space charge effects is
presented in this chapter. Before doing so, a brief account of that part
of the single-particle theory needed for understanding in this and the
remaining chapters is given without derivation. The literature can be
consulted for details concerning derivations and justification for the ap~
proximations, 1,2,18,19

The single-particle theory is based on ignoring the internal
forces and considers the motion of a single particle., For a particle of

charge q, velocity ¥, and momentum P, the equation of motion is

taken to be

gtﬁzqﬁ+gvx§ )

where t is the time, E is the accelerating electric field, B is the

magnetic field for constraining the particle within the vacuum chamber,
and c is the speed of light. An approximate analysis of the transverse
motion is made by assuming that the effect of B on the transverse mo-

tion is negligible and that B is constant in time. Then
g = % ¥ x B; B constant in time. (2)

-15~
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Consequently, the magnitude of the momentum and the energy of the
particle are constants of the motion,

Consider a cylindrical coordinate system r, 8, z with the
r - @ plane horizontal, As an idealization it is assumed that the mag-
netic field B is such that B, =Bg=0 on some horizontal plane which
is called the ''median' plane. Let z = 0 on the median plane. For a
particle of a given energy, or momentum p, there exists an orbit
which lies in the median plane and is closed; i.e., the orbit is specified
by r=R (9), z=0, where R (8) is periodic in 8, This orbit is called
the "equilibrium'' orbit of the particle corresponding to its momentum
p.

Now consider the motion of a particle of momentum p which is
not necessarily on its equilibrium orbit. It is convenient to describe
the motion in terms of a new coordinate system defined with respect to
the particle's equilibrium orbit in the following way. For any point P,
let Q be its vertical projection onto the' median plane (see Fig. 3). Let
x be the perpendicular distance from Q to its nearest point O on the
equilibrium orbit., x will be taken positive when Q is outside the area
enclosed by the equilibrium orbit. Let z be, as :Defore, the distance
P is from. the median plane., Let s be the arc length along the equilib-
riﬁm orbit from some arbitrary point to O, Then P is uniquely spec-
ified by the new coordinates x, 8, and z, provided that x| is less

than the curvature of the equilibrium orbit at O, Let 8,, &,, and @,
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Figure 3. COORDINATE SYSTEM x, 8, 2z
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“be a right-handed orthogonal set of unit vectors at O, Equilibrium or-
bits will be used for the closed reference path discussed in Chapter I
and the x - z plane then becomes the transverse plane,
The magnetic field is specified by giving B, on the median
plane, For constant gradient accelerators B, on the median plane is
usually taken to be

r\?
B, = B —)
* ° (ro

where B, is a constant, r, is a reference radius, and 0 { n ¢ 1, For
most alternating gradient (AG) accelerators the median plane field is

taken to be
B, = By + By (8) x

with respect to a particular equilibrium orbit. Here By is constant
and B; (s) is periodic of some square-wave form, For a fixed-fiéld
alternating-gradient (FFAG) accelerator the median plane field can be
written | |

B. = B (Y £k L - N0
2 = B (55) oo

where B, K,. and N are constants, r, is a reference radius, and f
' is a periodic function of period 27, In most machines n, k, and K ‘
are independent of r. Along an equilibrium orbit in an AG or FFAG

oB : .
machine B, or Tx'z' as functions of s are periodic with a smallest
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period T L. where L is the length of the equilibrium orbit once
around the machine, The basic periodic structure is called a '"sector"
and the number of sectors N is L/T. _

Within the vacuum chamber, $x B =0 and ¥. B =0, These
relations and the knowledge of B on the median plane make it possible

to expand B,, BO' and B,, or instead, By, B and B, about the

8’
equilibrium orbit in a double power series in x and z with coefficients
which are functions of s, Substituting these expressions into equation
(2) and making a change of variable from t to s for the independent
variable, the equations of motion in x and z, including relativistic
effects, take the form:

d?x

— + K, (8)x = My

ds
(3)

Adzz
ds2

+ K, (8)z = M,,

K, and K, are periodic functions of s with period T. M; and M,
are functions which make the above equations nonlinear. These equa-
tions give the motion of a particle relative to its equilibrium orbit,

The x- and z-motions according to equations (3) when the acceleration
process is ignored are called "'betatron" oscillations, Although the x-
direction is not the same as the r-direction, x-motion is referred to

as ''radial" motion, and naturally z-motion is referred to as ''vertical"

motion,
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Let 8 be an "angle" variable defined by

T - (4)

Here @ 1is not the azimuthal angle used initially for the cylindrical co-
ordinate system., However, if the equilibrium orbit does not deviate
too much from a circle, @ is very nearly equal to the azimuthal angle,

Transforming from s to 8, equations (3) can be written:

g.f.’£+ K, (8) x

de? = M

(5)
2
92 + K, @z = M,

de?

Ky and K, are periodic functions of @ with period 297/N, M, and M,
are the nonlinear terms,
The linearized approximation is obtained by ignoring the non-

linear terms and solving the equations:

%;%+lg((9)x=0 (6).
ﬁ%+x,(0)z-o. (1)

Consider equation (6) for the radial motion, Its solution can be written

in the form

iv,e

= e!Yx®n (0) + ¢ V%% n, (o)
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where h;, and h, are periodic functions of @ with period 2w /N and
,Vx is a constant. By ''stable motion' it is meant that the motion is
bounded. The motion is stable only if V, is realand ¥, # %— n N
where n is an inlteger or zero, The value of Vx is determined by K, (8)
which depends on the parameters of the accelerator., A typical stable
solution has the appearance shown in Fig. 4. It looks like a sinusoidal

oscillation of

< oscillations per revolution around the machine with a

superimposed ripple which is periodic with period 27T/N, Vx is the
number of radial betatron oscillations per revolution; it is also called
the radial "tune."

Similar results hold for the vertical motion given by equation (7).

Namely,

iy, -iv/, 0

z = e 2% h3(9)+e h4(0)

where h3 and h, are periodic with period 21 /N and Jz is a constant,
Again the motion is stable only if ), is real and V), #-;- n N where n
is an integer or zero. ))Z is the number of vertical betatron oscilla-
tions per revolution and is called the vertical "tune, "

When the effects of the nonlinear terms M, and M, in equa-
tions (5) are considered, it is found that resonances exist which may

create unstable motion if ))x and ’)z satisfy the relation:

ng Vy+n, vV, = nN, (8)
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N
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Figure 4. TYPICAL STABLE BETATRON OSCILLATION
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where ny, nz, and n are zero or positive or negative integers. These
resonances are called ""essential' resonances because they arise out of
the idealized magnetic field agsumed for the machine. When n, = 0,
relation (8) gives the resonances of the x-motion which are independent
of the z-motion, Similarly, when n, = 0, relation (8) gives the reso-
nances of the z-motion which are independent of the x-motion. When
n, and n, are both nonzero, the resonances given by relation (8) are
called "coupling" resonances because they occur when the x-motion and
the z-motion are coupled together. Those resonances for which ny and
n, have the same sign are known as ''sum' resonances and those for
which nx and n; have opposite sign are known as '"difference'' reso-
nances., Not all of these resonances generate unstable motion. The
difference resonances are stable and also, if the amplitude of oscilla-
tion is not too large, the resonances are stable if |ny] + [n | > 4. Al-
though a particular resonance by itself may be stable, it can cause
trouble by making the amplitude of oscillation large enough to drive the
particle into the walls of the vacuum chamber or by making the ampli~
tude large enough to put the oscillation on another resonance which is
unstable., The latter possibility comes about through the fact that the
tune is a function of the amplitude of oscillation when nonlinearities
are included.

Resonances can also arise in an accelerator because the actual

magnetic field, in practice, cannot be made exactly as desired. These
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resonances are known as ''imperfection' resonances. Because of the
deviations from the desired field, the actual magnetic field, in general,
has a periodic structure with a period which is, at most, one revolution
around the machine, This is equivalent to saying that the machine has
one sector, Thus the possible imperfection resonances occur when Vx
and v, satisfy relation (8) with N = 1,

Suppose AB, is the deviation from the desired B, on the me-
dian plane. Let AB, be expanded around the equilibrium orbit in a

power series in x. Taking the two leading terms gives

AB. = A(8) + B (9) x

z

where A (0) and B (8) are periodic with period 27, A (8) is referred

t '

to as a ''field bump' and B (9) as a ''gradient bump.' In the vicinity of
the equilibrium orbit the influence of these} terms on the radial motion
is usually larger than the ignored terms and therefore the resonances
whigh can be excited by them should be avoided. A (8) can be expanded
in a Fourier series and, if ‘)x is equal to the frequency of a nonzero

Fourier component, a resonance is excited. The possible resonances

excited by the field bump are

szn;n=o:102;"':

and are called "integral' resonances. Similarly, B (8) can be expand-

ed in a Fourier series and it can be shown that, if W, is equal to half
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the frequency of a nonzero Fourier component, a resonance is excited,

The possible resonances excited by the gradient bump are

1
\)x='2‘n;n-0.1.3.' »

and are called "half-integral' resonances, Similarly, in considering
vertical motion with x = 0, the deviation ABx in the field B, from the
desired value can be expanded in z and the two leading terms give a

field bump and a gradient bump. Again the possible integral resonances

Jz::n;n=0,1,z,---

and the possible half-integral resonances
VZ 3-12-1'\; n = 031021"'

are to be avoided, It is to be noted that an integral or half-integral
resonance is not excited unless the proper Fourier component of the
field or gradient bump is nonzero, The integral and. half-integral reso-
nances are imperfection resonances but not the only ones since there
are others given by relation (8) with N = 1,

The essential and imperfection resonances given by (8) can be
plotted on a ¥, - ))_ plane to give a diagram like that in Fig. 5 which
shows only some of the resonance lines for N = 6. An accelerator is

designed so that its tune or operating point on the diagram is well away

from the important resonance lines as illustrated by point P in Fig, 5.



Vy

Essential Resonances
— — — Integral and Half-Integral Resonances

Figure 5, SOME OF THE RESONANCE LINES FOR N = 6

-92—
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If the tune should vary during the operation of the machine and pass
through a resonance line, it must pass through rapidly enough, depend-
ing on how serious the resonance is, that too many particles are not
lost., Since most AG and FFAG machines are designed so that the tune
is relatively constant, the major cause of a change in the .tune is the
transverse space charge effect.

The above discussion dealt with the transverse motion. The
equations of motion also give the longitudinal velocity vg = ds/dt as a
function of t, s, or 8. When a particle is on its equilibrium orbit, vg
equals the velocity v corresponding to its momentum p. If a particle
ié executing betatron oscillations, vg varies with the amplitude and
ripple of the betatron oscillations but generally vy is much greater
than the transverse velocity and since v is constant, Vg is very nearly
equal to v. '

B. Elementéry Treatment of Transverse Space Charge Effects

The following elementary treatment of transverse space charge
effect's gives some quantitative insigﬁt into their nature, It is based on
the method of calculating the space charge force and inserting this into
the single-particle equations of motion,

Consider a beam of particles, all ﬁaving mass m, charge q,
momentum p, and velocity v. The particles all have the same equilib-
rium orbit which is surrounded by the beam. Assume that the cross

section of the beam in the transverse dimensions is a circle of radius
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a and that the density of particles, n, within the beam is uniform. As
an approximation take the longitudinal velocity v to be v for each
particle,

In an accelerator the average radius of the equilibrium orbit is
much greater than the dimensions of the beam cross section and the
deviation of the equi'librium orbit from a circle is small enough that to
a good approximation the beam can be treated as an inﬁniteiy long cyl-
inder of radius a filled uniformly with charge moving with velocity v
for the purpose of calculating its electric and magnetic fields, Let E

and B now be the electric and magnetic fields, respectively, produced

by the beam:

-
E

A
Eye +Eg8 , +E, §,

B

Pl -~ A
Byex +t Bgeg t By e,

where now the coordinate system x, s, and z is treated as a rectan-
gular coordinate system. The cylindrical symmetry and uniform charge
distribution give Eg = Bg=0.

'I“o determine the electric field apply Gauss' law to a cylinder
coaxial with the beam of unit length and of radius y { a. Let E, be the

outward normal electric field on the surface of the cylinder. Then

2wy E; 47 « charge in cylinder

417‘Tl‘yz-nq,



-29-

or

E, = 2qny.
Then
Ey = En% = 27rqnx (9)
- Z
Ez = Eny = 27 qnz, (10)

For the magnetic field apply Ampere's law to a circular path lying in a
transverse plane with its center on the central axis of the beam, Let
the path have a radius y < a and let B, be the tangential magnetic field

on the path, Assume the longitudinal velocity is positive. Then

27Ty By = 4Zr - current through the area enclosed

4m
c

ecurrent density . area

4
c

oanoTryz

where c is the velocity of light; or
By = 297 ngq Fy |
where g = ‘vl/c. Then
= Z-nqn’z: A Es (11)

Bz=-Bt-;-5-=-Z'rrqn’x=-PEx. (12)
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The space charge force F acting on a particle in the beam is

—1': = qﬁ+§3x§.

From this,

Fx = qEy + 3 (vgB, - v, Bg) = aEy + 3vB,

q(Ey + g By

After substituting equation (12),

Q(Ey - g By) = afl - pA) Ey. (13)

x’!l
"

%!
N
"

qE, + 3 (x Bg-vgBy) = qE;- VB,

q(E; - @ Bx).
After substituting equation (11),

F, = a(E,- g2 E) = a1 - g)) E, (14)
Equations (9) and (10) put into equations (13) and (14) give

Fy

2mgin(l - Pz)x (15)

i
]

2me®n(1- g?a (16)



Now consider the linear approximation for the radial mc:iion of
a particle ignoring, for the moment, the space charge force Fyx. The

equation of motion {cf. equation (6)} is

dzx+
(9) = 0
Frr A

where @ = 27 s/L and L is the length of the equilibrium orbit. In
general the oscillations consist of a ripple superimposed on a basic
oscillation of frequency \Ji For an approximation, let the ripple be
ignored, Then the oscillation is sinusoidal of frequency v, and the

equation of motion can be written:
d%x 2
+ x = 0 {17)
de’ %o |

where is replaced by M, to indicate the radiai tune when no space
charge forces are present. The space charge force is now taken intoc
account by inserting it into the equation of motion, 7To see how this mod-
ifies equation (17) suppose a force F,, in general, is acting in the x-

direction, The equation of motion would then be

d dx
at {m*’gf’.af.} = F,

where ¥ = 1/3/1 - @2 and ﬁz vie,

Assuming that the variation of ¥ is negligible, this becomes
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To a good approximation vg = v is constant and 8 = vt. Transforming
from the variable t to the variable s, the equation of motion is
2d% _
mYyv ;;2' = Fg.
But 8 = 2s/L = s/R where R is an equivalent radius defined by
R = L/27T , Making a change of variable from s to @, the equation of

motion becomes

mYyv?: d% = F
2 2 o’
R de
or
d2x _ __ R?

F,.
de? mYv?
Thus equation (17) is to be modified to account for the space

charge force Fy by inserting

2 2
R R
mY ve Fx = mczYPz Fx

in the right-hand side which gives

d’x + Vz X = EZ F
X
deZ  'x® mc? Y g2

Substituting equation (15) for Fy results in

[\éo 2mgl nRZ(l- z)‘]x=0
mcz'Y'd

or



d’x + sz = 0
dec  *
where
2 42 2w q?nR%P(1- g2

mc? Y pz
Here Vx is the radial tune under the influence of the space charge
force. Instead of measuring the beam intensity by the number of par-
ticles per unit time, let it be measured by the beam current I in e, 8, u,
(i.e,, statamperes). Then
I = current density « cross sectional area of beam
2

= nqv-7Ta

orn=——1___ |
TTqazv

Inserting this into equation (18) gives

NLANENT 2gR%1(1 - 8%
X mc3azp3;’

"
Rt'
[ V]
[}
(4]
Lo
oo
[4¥]
—

T . (19)

In a similar manner for the vertical motion,

2 D2 2qRZI(1- 8%
z z0 m c3 a? P3Y
2 2qR%1

c3 42 F373

"
N~

’ (20)

where Vzo is the vertical tune when no space charge force is present
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and y[l is its value otherwise,

Several conclusions can be drawn from equations (19) and (20).
Both the radial and vertical tunes are lowered by the space charge force.
The amount of reduction increases with beam current and is strongly
dependent on the energy of the particles. As the energy increases, the
factor 1 - pz-—»o because the magnetic force becon'xes large enough
to cancel the electric force. Consequently the space charge forces
which limit the current are usually dominant at the injection energy.
According to equations (19) and (20), if the space charge forces are
large enough, \): or \)zz is negative which would result in an exponen-
tially-growing (unstable) motion for the particles; thus the beam would
blow itself apart in this picture. This is an erroneous conclusion phys-
ically which arises out of the fact that the above analysis does not allow
for the change in the density of particles in time under the influence of
the space charge forces, In a later chapter it is shown under suitable
assumptions that this type of instability does not exist,

Suppose one of the tunes, say

"+ Das been decreased by the

space charge effect to an integer which is an integral resonance being
driven by the proper Fourier component of the field bump. The nature
of the resonance is such that, at a given longitudinal position, a par-
ticle experiences a transverse perturbing force which is always in the
sar;rze direction on each successive revolution so that its transverse

position becomes larger and larger in the direction of the perturbing
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force. This occurs regardless of which side of the equilibrium orbit
the particle was initially. Then, if the space charge forces create an
integral resonance, the above picture implies that the beam as a whole,
including its center, cbntinuously moves awa.y from the equilibrium or-
bit, resulting in an unstable beam.

But a dubious light can be cast on this conclusion., Consider the
beam initially when it is centered about the equilibrium orbit and as-
sume one of the particles is going around on the equilibrium orbit,
Since this particle is centrally located with respect to the charge distri-
bution, there are no space charge forces acting on it and, therefore, it
cannot be put on an integral resonance in this manner, Thus the center
of the beam would remain on the equilibrium orbit instead of moving
away as indiéated earlier, The contradiction suggests that something
is wrong with the modified single-particle equation of motion. A closer
look at the situation reveals that the difficulty arises from two sources,
One has been mentioned 'alrea.dy; namely, that no allowance has been
made for the change of the beam in time, The other, which is essen-
'.cially the same, is that the above analysis expresses the space charge
force in terms of the particle's displacement from the equilibrium or-
bit whereas, since the beam may move a.way from the equilibrium or-
bit, the force should be in terms of the displacement from a suitable
| point within the beam which measures the transverse motion of the

beam as a whole, Thus there is doubt as to whether or not the space




-36~
charge effects can induce beam instability through an integral resonance
in the manner described above. This question i8 examined more thor-
oughly in a later chapter,

Suppose now one of the tunés, say Jx, has been lowered by the
space charge effect to a value which is an half-integral resonance being
driven by the proper Fourier component of the gradient bump, The
nature of this resonance is such that the strength of the perturbation
which a particle experiences is proportional to its distance from the
equilibrium orbit so that particles on the equilibrium orbit are unper-
turbed, Furthermore, consider two particles having the same longitu-
dinal position and the same amplitudes of betatron oscillations but com-
pletely out of phase. Then, when one is on one side of the equilibrium
orbit, the other is on the other side by the same amount, Their ampli-
tudes of oscillation grow because of the resonance so that when one is
making a larger excursion away from the equilibrium orbit than before,
the other is also but in the opposite direction. Thus the particles on
the equilibrium orbit remain there while those off the equilibrium or-
bit oscillate with growing amplitudes so that the beam as a whole re-
mains on the equilibrium orbit but steadily spreads out in the transverse
dimension. No serious criticism can be made of this conclusion as in
the case of an integral resonance,

Ignoring the questions raised above and assuming that increas-

ing the beam current I decreases ), and ;/z until one of them is on



a resonance causing particles to be lost, the value of I corresponding

to this situation is taken to be the space charge limited current. Let

Sux = on- ))x
;Vz = ‘)zo- ‘)z
be the change in tunes for current 1, Using equation (19) for Vx, put
2 2 2 2qR%1I .
8( ‘)x) = on ‘jx - m o3 a2 P§ ),3
2
Assuming §y <<V, §(V,) is approximately
(vh = 2 V) 6y, = —2aRI
S Vx = X0 x - mc3a2 P37,3 *
Solving this for I,
2
pomecda? g3 yd Vo SV (21)
. qRZ
Similarly, from equation (20) for V),
3 3 ‘
= m C3 az p y ‘)ZO SJZ (22)

q R?
The maximum allowable values for S ‘)x and Sl)z can be determined
from a resenance line diagram and the initial operating point depending
on which resonance lines are important. I can then be calculated for
S\)x and §)/,, and the lower value is the space charge limit.

To illustrate the use of the above formulas, consider the 50 Mev
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electron FFAG machine at the Midwestern Universities Research As-
sociation. At injection at 100 Kev, B =0.548, ¥ =1,196, and

R = 128 cm, The beam is roughly elliptical in cross section with a
radial half-width of about 2, 5 cm. and a vertical half-width of about

1 cm, As an approximation, take a to be the average of these:

a=1.75cm. Then (21) or (22) gives
I = 9,01 x 102 VOSV (milliamperes),

where \)0 is either \)

o OF ‘)zo and §v is either §V, or s,)z.

The initial operating point is approximately V., = 4.42 and V) = 2.75.
Two resonance lines which are near the operating point are the lines
2 ¥, - ))z =6 and 2 ‘)z - ¥, =1; however, it is not certain how
serious these are. On the basis of these resonance lines an estimate
for the allowable change in tune is g\}x = g\)z = 0.05, Since

\)zo £, < Yo S ‘)x' 1 is determined by the vertical tune and the
result is

I = 125 ma.

The measured space charge limited current is approximately 100 ma.
The agreement between the two values is much better than that usually
obtained, If the resonances used above are not really serious and other
resonances were used for the calculation, the estimated current would

be larger by a factor of two or three. In more careful measurements
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on the MURA spiral sector electron accelerator the estimated space
charge limited current is generally greater than the measured value
by a factor of the order of three, 15

The above elementary treatment exemplifies the usual discus-
sion of transverse space charge effects. 2,3 Refinements can be made
such as considering different shapes for the beam croes section, effects

of ionization, and longitudinal bunching of the beam; but these are not

very important with regard to the following investigation, 13,14



I, FUNDAMENTAL EQUATIONS AND INITIAL ASSUMPTIONS

A, Preliminary Considerations

The elementary treatment of transverse space charge effects in
the preceding chapter raised questions concerning its validity in some
situations; the basic difficulty appeared to be that no allowance was
made for the change of the beam with time, Conceivably the single-
particle approach could be modified accordingly but that would seem to
be pushing the method rather hard. Furthermore, since such a modi-
fication would require a more detailed description of the beani's behav-
ior, one might as well drop the single-particle approach and start from
the beginning with a more fundamental approach based on describing
the behavior of the beam; i,e., & many~-particle approach. The general
Boltzmann equation for the beam is considered first, By using some
simplifying assumptions this equation is reduced to a one-dimensional,
collisionless Boltzmann equation for the transverse space charge ef-
fects., Additional assumptions are made to obtain relatively simple
equations for the external force and the space charge force, In Chap-
ter IV the reduced Boltzmann equation together with the force equations
are transformed into an infinite sel of moment equations. Then, by
assuming the forces are linear functions of the transverse position and
utilizing a suitable approximation for the space charge force, a finite
closed set of moment equations is obtained which describes the behav-

-40-
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ior of the beam,

Let the beam be described by a distribution function G (%, B, t)
such that G (¥, B, t) d3 ¥ da‘ﬁ is the number of particles in volume
element d3 7 located at ¥ in posifion space and in volume element d3
located at P in momentum space at time t. In other words, G is the
density of particles in a single-particle phase space, the T P - space.

G must satisfy the conditions:
GE B t) 20,

and
fd3? ABGE B = N,

where N (t) is the total number of particles at time t in the system.
N (t) is finite except in some idealized situations, Furthermore G —» 0
as |B|—» o and also, when N is finite, G — 0 as [Tl — 0@, G can

be normalized to unity by dividing it by N 8o that
3 32 G _
a° R —_ = 1,

The function G/N can then be considered a probability distribution
function,
With suitable assumptions, some of which are mentioned below,

G satisfies the partial differential equation,

T't_ On F (23)



20, 2
known as the Boltzmann equation, 6,20, 21

Here, ¥ is the velocity cor-
responding to momentum B, T is the gradient operator in F-gpace, |
and @‘p is the gradient operuter in P-spsce, It is assumed that the
forces acting on a particle can be seperated into twe parts; one iz a
mecroscopic force representing long-range effects snd the other is a
force representu;,g short-range effects such as close collisioms between
particles, Fin equation {23) is the macroscopic force acting em & par-
ticle at the point T P in the phese space at time t. In gensral,

F=F (@ ¥ t). The short-range effects are in the term (:-%%i 1
which is defined such that @%}wu d3 ¥ a3 dt iz the net increase
the number of particles in d° ¥ d%F in time dt due to collisions, More
generally tbis term also icludes effects auch as the removal of particles
from and the addition of particles to the system by absorption procsases
and injection or creation processss.

In genersl, F and (%%)wn are functionally dependent on G and
appropriate expressions for them must be obtained, For the present
purpesss, assume thers are »® absorption and injection processes and
that the beam is in a perfect vacuum. The latter assumption means
that collisions with the residusl gas sre ignored. In addition, sssume
that collisions between particles of the beam may be ignored., Then
the right-hand side of equation (23) is identically zero,

The only forces now acting on the particlgs are macroscopic

ferces produced by the externsl electromagnetic fleld of the machine
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and the internal electromagnetic field created vy the particles. One

assumes that ? can e written
?zqﬁw‘%?:ﬁ (24)

where E and B are the macroscopic electric and magnetic fields,
respectively, and are functions of T and t, in general. q is the charge
of the particles, The term Vp . (ﬁ G) in the Boltzmeann equation can

be written
-t
¥. vaJvap«? |

and with the assumed form (24) for ¥ it is easily shown that 3}‘ N 0,

So now the Boltzmann equation is

G 1 -

W+$eﬁs+pe§pc-o. (25)
Put

F = F,+Fy (26)

where ?e i the external force and al?‘i is the internal force (i.e,, the
space charge force). It is assumed that the external electric field is
zero and that the external magnetic field is known and constant in time,
Then i": is known and does not depend explicitly on t. Hereafter,
there will be little need to use symbols to designate the external elec-
tric and magnetic fields and unless otherwise stated, E and B are used

to designate the internal electric and magnetic fields created by the beam.



Then

¥y = qE+ 3¥xE. (27)

The fields E and B are taken to satisfy Maxwell's equations

(in Gaussian units with electric current measured in statcoulombs/sec, ):

GoEaump , FxB. 198,

(z8)
ﬁeﬁao s ngsg;f+%%$,

where Io is the charge density and T is the elsctric current demsity in
the beam. (c is the speed of light.) © mnd T are defined as follows,
The integral of G over all P-space is the density of particles in ¥-

space; therefore ‘a is taken to be

p= qjdsﬁG. (29)

The integral of ¥ G over all P-space is the particle current denaity;

so 7 is taken to be
T =q gda'ﬁ'\?G. (30)

The set of equations (25) to (30) with ¥ being known form a
closed system which determipes the behavior of G, That the forces
can be separated as described and the above system of equations de-
fined depend on some tacit assumptions which are net given here but

are briefly discussed by Drummond. 22 These equations are far too
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complicated to solve in general and additional assumptions are needed
to get a simpler system of equations.

B. | Simplification of the Boltzmann Equation

The asystem of equations (25) to (30) is broad enough to include
transverse effects, longitudinal effects, and the coupling be‘ween both
effects. Since this investigation is concerned with transverse effects,
simplification is obtained by obtaining a Boltzmann equation for the
transverse behavior which is decoupled, in a certain sense, from the
longitudinal motion, The decoupling will not be complete because some
aspects of the transverse motion depend on the longitudinal motion,

Let the coordinate system be the x, 8, z coordinate system
defined in Chapter II relative to one particular equilibrium orbit. Let

&, 3’, and Gz be the unit vectors corresponding to x, s, and z, and

put

o= x8 428,

for the position vector in a transverse plane. One also has
V= veegtvgly+v, 6
with vy = dx/dt, vg = ds/dt, and v, = dz/dt, and

-

B =@ +pg8g+py &, = mYV

where YV = 1/4/1 - pzand Fa% Put

i = vy &y + Vg €, and'ﬁ* = p, & +p; &, .



In addition, write

g

-d ? L=
FesFe x * Fo %FQZZBF@&”'Fes@_m

and similarly for ¥; and ¥,

Let the distribution functionbe G=G (® , B, , =, p,, t). This
is periodic in 8 with period L (L = the length of the eguilibrixm orbit
used to define the cecrdinate system) since whenever s is increased
by the amount L, the same point in the beam is sgein obtainsd, The

Boltzmann sqguation {(equation (25)) can now be written

.é_%-t—'\ie §G¢VS=§%+§; . @m(}«rﬁ"%% = 0 (31)
where
o 3
ARLS A -
P | P
§m§ %m‘} GZWZ
Defins
)
Gl 8 Gl @a ﬁ&a 8, t) = j\dpea {32)
'Dw

and integrate equation (31) over all pg:

mgﬁ jdp’ ° G + j;pg Ve %%; + Jdpg % a §P¢&. G
+ 5@1% Fg 5%% = 0, {33)
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The particles in an accelerator are usually distributed over a

narrow range of p.. For simplicity assume
G = Gy § (P - Pao)

- where pg, is a definite momentum and f is the Dirac f -function,

Then the second term in equation (33) may be written

-3 -t
Jore - B0 Bteu - paod = - By

where 7 is Y evaluated for Pgos }3 is still dependent on p_ and

' p,; however, it is also usually true that lpxj and |pz| are much less than
Ipg. so assume that the dependence of ¥ on Py and p, may be ignored.
Then Yo is a constant, |

The third term in equation (33) becomes

}Gl G

52 | an, ;,X(p,ap,o)-myo 3- sij;”

where vg, is the value of vy corresponding to Pgye The fourth term
L 3
in equation (33) is

jdp, §<p, Peo) * Uy, Gy ’§Lo°§p4,61

where F is T evaluated for p_ = p_ . The fifth term in equation
Lo A . 8 80 .

(33) is

é = &F
Gy jdps Fg W; o {pg - P”) = - Gl (—;«S:)p ‘ o
B8
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The magnetic part of Fg depends on pg through Y. For example, a

typical ternm. of Fg would be

(. . qpx B
FS"'ngBz"'"———\z ._1-
m ¢ y
and
dF; apxBz 1 Y _ Yy Fg
Jd Ps mc Y2 9Ps drs Y

Thus, if the longitudinal magnetic force is zero or very sinall,

dF /dpy may be ignored. The assumption that all particles have

Ps = Pgo carries with it the assumption that g = 0 for otherwise pg
would vary. Assume therefore that the longitudinal electric and mag-

netic forces are small enough to ignore their efiects. Then

AFS) .
dps Ps = pso

and, putting the above results together, equation (33) becomes

aGl 1 - 3(31 -
+ VGt + F - G, = 0,
T AL S A R FU PRI AL (34

It is possible to develop an equation a little more general than
equation (34) by using definition (32) for G, and defining average

quantities, < '\7‘_) and € ?J) , such that

G1<'§/1) = jdps.\iG
-
6 <R - Sdps;j_a.
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Assuming the dependence of Fg on pg is negligible, equation (33) can

then be written

oG

This is quite a bit more difficult to use than equation (34); one would

- - P}
. ((VJ.> G1)+ VPJ.. ((i":_) Gy =-?; dpg vg G. (35)

U

need some way of estimating the average quantities and the term on the
right-hand side. If this could be accomplished, it would give a way of
estimating the influence of longitudinal effects on the transverse mo-
tion, Suppose the particles are distributed with some spread in pg.
Since Fg is negligible, there is just streaming motion in the longitu-
dinal direction., After a sufficiently long time in which the particles
have made many revolutions around the machine, the longitudinal dis-
tribution becomes smeared out so that it is uniform, Then G is inde=-
pendent of s so that @G/ ds = 0 and the right-hand side of equation
(35) vanishes, In addition, if G may be written as a product of G, and
a function of Pg» equation (35) can be put in a form quite similar to
equation (34) but without the term vg, 8G;/ ds. For simplicity the
analysis hereafter is based on equation (34) and the assumptions which
go with it,

The x, 8, z coordinate system was defined relative to an equi-
librium orbit, Let this orbit be the one corresponding to momentum
P = P, with p, = pg,. Although thig stipulation is not required at the

moment, it will be convenient later for calculating the external force,
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The particles are all moving along the longitudinal axis with
velocity vg,. Let the point 8 move along with the particles; i.e., let

8= Vgyt. Let G, be the value of G; as the point # moves along.

80
Then
GZSGZ(?&'p_L't)zglq‘B‘."‘t)
8 = Vgo t
=G @ .8 . vet. )
and
3G, 3Gy s = 9G,
= +
It ds stvmtw t 8=Vt
3G 3G,
=vs°§__].‘ + »
g s=v t dt 8= vt
or
oG, 4G, Gy
= -V 3 . (36)
S‘t B=vg,t St a0 8 ] ='v&°t

Evaluating equation (34) at s = vy, t and inserting equation (36), equa-

tion (34) becomes

o | .
T AL PR A on
0

where ?.Lo is alsc evaluated at s = v t. This is a Boltzmann equa-

tion applied to a transverse slice of longitudinal width ds which is
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moving longitudinally with the longitudinal velocity of the particles.
Then G, ds is the density of particles in the '11 31. - phase space for the
particles in the slice. No particles enter or leave the slice so the total
number of particles in the slice is constant.

The assumption that all the particles have the same longitudinal
velocity so that no particles enter or leave the slice will be referred to
as the ''slice'’ approximation, Ignoring the transverse space charge
force, there are two factors which influence the validity of the "slice"
approximation. One is that the magnitude of the momentum of a particle
is constant and therefore, if the particle is performing a betatron oscil-
lation of some amplitude, its longitudinal momentum or velocity will
vary, The second factor is that the particles cannot all be injected in~
to an accelerator with the same energy or total momentum and conse-
quently, even if there were no betatron oscillations, the particles have
different longitudinal velocities.

To investigate the influence of betatron oscillations assume that
the particles have the same total momentum and, for simplicity, that
the equilibrium orbit is a circle of radius R. For particles starting on
the equilibrium orbit at 8 = 0 and t = 0, the radial motion is approxi-

mately
r = R+ A gin y&:0

where r is the radial coordinate and A is the amplitude of the betatron
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oscillation with A (¢ R. Let S be the path length along the particle

orbit, The longitudinal velocity is

dS

. ds _ d - de avr

vs--d-t--a,(-(RO)-RaT=RaT
- &
de

where v = gTS = the total velocity which is the same for all particles,

Here
ds 5 dr 2 1/2
@ - [" ' (ac)]

= [RZ+ 2 AR sin ), 0 + A% sin? v, @
1/2
2.2 2
+ \)x A” cos \’x 0] .
Expanding by the binomial theorem and keeping the lower order terms

gives

=

1 1 A 1 A2 1
g—‘;-ﬁ- I-H-sin)JXO--z—zsm ;)xa-z RZ CcCOB8 xO

Then

2 )2 a? '
-~ _A -lA 2 _1 2
Vl’V[l i—sin\)xﬂ 2?sin ;)xe -Z—g-z-—cos JxG .

Averaging this over many betatron oscillations, the contribution from
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the second term in the brackets is negligible and the long-time average

longitudinal velocity < vs)l is
{v ¥ v 1-1A2(1+‘VZ)
) TR0 %
At time t the particle's position 8 is
8 = <v93 t,

Let As be the difference in s for a particle having A 3 0 and a par-

ticle having A = 0, Comparing As with 8 evaluated for A = 0 gives

2

s ~ _ 1 A 2

=15 a+ \)x).
-3

Typical values are A/R=5x 10 =~ and ), =5 giving

|As |
8

~2x107%,

As a criterion for the validity of the '"slice' approximation take

JAsj<< A = —%— = the wavelength of the betatron oscillation where

X
L is the length of the equilibrium orbit,

Then

lAs| L
= «« v
or ’

8 1
L« Vi 14

where s/L is the number of revolutions over which the ''slice' approxi-



mation is valid, Using the typical values above gives
5 103,
T <<

On this basis the approximation is valid for approximately 100 revolu-
tions,

The above estimate is based on a long-time average; however
there is another effect included in the expression for v,. Over a short
time the second term in the hracket is more important than the third
and fourth terms in producing variations in v since A < R. Averag-
ing over the interval 0 < @ {7 and ignoring the third and fowth terms

in the brackets, the short-time average longitudinal velocity <"a>s is

2 A
<V3>’§ V(l'—"—'—zﬁ-] .
Let As be the difference in position of two particles after a half-cycle
of oscillation where one has amplitude A and the other has amplitude

~ A, The two particles take approximately the same time t to make a

half-cycle with t %2, Then

. 4 A 40 A

br@ vt SRR LT

As a criterion for the validity of the "slice” approximation take
As N,

Substituting for As this becomes
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4 A
— 1°
N 14 Vx R <«

Using the typical values cited above, the left-hand side of this is approxi-
mately 10”3 which satisfies the criterion. A similar analysis for the
vertical motion gives the same result,

Now consider the effect arising from the particles not having the
same total momentum, Assume the particles are on their equilibrium
orbits with no betatron oscillations. Consider a particle with velocity
v and momentum p. In time t it travels a distance s along the equi-
librium orbit given by

B=Vt='2—t"
mY

The corresponding value of 8 is

2MWs _27pt

8 = .
L mLY

A second particle of momentum p + dp with an equilibrium orbit of
length L + dL will have "angle" 8 + d@ in the same time t, Using the

above relation for € one obtains

ySp - dY
P Y

where

& = g %-L‘ = the momentum compaction factor,
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It can be shown thatz

m

of

Vv

Using this and the relations between p, Y, and the kinetic energy Ek'

the above expression can be reduced to

92:(_17- 1) Y 4P
) + 1 )
e/ Y E,

As the criterion for the validity of the ''slice' approximation take

R |d6] = #_ |def << A= —Ij .
X

With the above expression for d8/@ this criterion becomes

ZO &« ‘1’ 1 Y+1 ’ Ek ,
mw X 1 - 1 Y
EZa "

where 8/27 is the number of revolutions over which the "slice" ap-
proximation is valid. A typical value for dE;/Ey at injection is
5x 10”3, Suppose ¥:=1 and ) = 5. Then the right-hand side of the
inequality is approximately 80 indicating that the ''slice” approximation
is valid for about 10 revolutions,

The above numerical estimates for the situations considered
indicate that the ''slice" approximation is valid for approximately 10

revolutions and that the energy spread of the beam is the dominant

factor, In other situations the approximation may be valid for longer
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periods of time and the betatron oscillations may be the dominant factor,
Actually, the criteria used above are much more stringent than required.
The time rate of change of the number of particles in an element

a% dz'p:_ of the moving slice is determined by

Sdps vg = Vgo! -g—g

where here vgg is the velocity of the slice, This rate of change of ‘~e
number of particles not only depends on the distribution in pg but also
on dG/ds. Thus, if G does not vary much with s, the "slice" ap-
proximation will be valid for longer periods of time than estimated by
the criteria used above. With these remarks for justification it is as-
sumed that the "'slice' approximation is valid and that therefore equa-
tion (37) may be utilized,

Further simplification is obtained by making idealizations so
that the radial and vertical motion can be studied separately. The beam
in an accelerator usually has a radial width greater than its vertical
width. To study only the radial motion, assume for a model that the
beam has an infinitesimal vertical width, that it lles in the median

plane, and that the vertical forces are zero. Take

G, = Ggx, px, t) §(z) §(pp) . (38)

Insert this into equation (37) and integrate over all z and p,. The re-

sult is
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3G oG oG
3,1 3+ F. 3., (39)
d t +m7° Px 37 X dpy

where F, is the x-component of iio evaluated for z = p, = 0, Let

N, = 5dx dpy G3. (40)

N_ is the number of particles per unit of longitudinal beam length in

3
the moving transverse slice; it is constant in time since no particles

enter or leave the slice, Define a probability distribution function

fx (X, Px, t) by

de dp, fx (x, Py, t) = 1.

Substituting the above expression for G3 into equation (39) and dividing

by Ng gives
of, 1 3f§ If
EY; m Y, Px dx X drx

To investigate the vertical motion separately assume the beam
has some vertical width which is small compared to its radial width,

Let
oo

G4 = G4 (x: z, Pz: t) = Sdpx Gzo (42)
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Worlte cquation (37 w terme of components where P'x and ¥, are the

—3

e wndd s=components of F.LO:

R AN 2 G G G G

T B £t i p, oGz, Fy 2%, F, -Q—-:-g:: 0.(43)
gv w7, " dx mY 9z 3Py 2,

Integrate this over all p ., The first term gives P (.'54/ dt. The second
L gves

1 3 | .
== x| 9Px Px G2
m Y, &x
Deiine ¢ py} such that

ﬂ
Gy (p) = )dpx Py G (44)

Then the second term can be written

= v

: 'f; (Gy <px ) )

m 7y

The third iterm gives

1 o 1 dGy
Py ~ dp, G, = p .
m Y, Z gz V( x ~2 mY, * 2z §
Consider the integral of the fourth term., Fx has a dependence on py
through ¥, in general, but it was assumed that the dependence of

en p, is negligible, So F, can be taken outside of the integral and one

gets W
Q(" Px = @&
¥, (l dpy 3,.;..5 = Fy [GZ} = 0,
v Px = -0
o~
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since G, 0 as |py| —» @ . Similarly, for the last term, ¥, can

be taken outside the integral with the result:

J d Gy
2 dp. G, = F .
Z ?pz px 2 FA ; [

Thus equation (43}, after integration, becomes

3 : + — _YO ax (04 <px>) + o .yo Pz a Z + FZ Py = 0, {45)
Agsume

D, &G‘; ) < Px>

—5—;(G4 <pxd) = PE3 <px> + Gy J x = 0. (46)

One way of accomplishing this s to assume G4 is independent of x in-
side the beam. Then dG,/dx = 0. This and definition (42) imply

2G,/2x =0 since G, 2 0, Hence, by definition (44):

3<Px> o1 G _
J x h Gy dpxpxj_xi..

So relation {46) is satisfied and equation (45) becomes

oG G DG
at m“fg Pz P Z 9Pz ’ (47

Since G 4 is assumed to be independent of x, let the var,iable x be

suppressed and write G, = G4 (z, pyg, t). Let

e
NS
L]

Sdz dp, G4" (48)
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N 4 is the number of pasticies per unit of longitudinal beam length and
per unit of raedial bear: widih; it is constant in time. Define a probability

distribution function f{, {z, p,. t) by

j\dz dpp g = 1.

Substituting the above expression for G, into equation {47) and dividing

80 that

by N, gives

21 1 at, of
- % + F = 0, 49
Et ¢ m Yo Pz oz Y Pz (49)

Equations (41) and (49} are the basic Boltzmann equations for
the remainder of the imveatigetion,

C. The Space Charge Force

it is nbw necessary to obtain suitable expressions for the space
charge forces to be able to get information out of the reduced Bolizmann
equations developed in the iast section. These forces are determined
by the fields E and B setinfying Maxwell's equations (28}, Assure the
propagation time for the fleids is megligible, i.e., that the fizlds may

be considered to be quesistatic. Then pguations {28) becume
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- I
65};:4‘&:5 Vx&E =0
’ {50)
= - . =
V.30 , TxB=ATT,
[ o4

with

Agaune also that the effects of charges and currents induced in the
vacuum chamber walls are negligible; i.e,, that {here i8 no vacuum
chamber and the beam is in free apace.

Consider first the case for radial motion ouniy, Let F,, be the

spece charge part of ¥y, From equation {27), the force equation is

Fi, = qEx+ 3 (vg B, = vy By

By the definition of Fy, it is evaluated for vg = vg,, and it was assumed

that the beam is flat in the median plane so that v, = 0, Then
Fix = q Bx + 3v,B,, {53)

where, for brevity, vp replaces vy, since Pgo = Poe Also F; is to be
evaluated with the chaugs ¢f variables 5 = vp t; hence, this same change

is made in evaluating &, 2ué B,.
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Ey and B, are {0 be evaluated on the median plane at the longi-
tudinal position of the moving transverse slice. Assume that the gen-
zral curviture of the eguilibrium orbit in bending around the machine
cen he ignored and thet the variation in curvature cauased by sectors can
be iguored. Then the cocrdingte system can be treated as a rectangu-~
lar coordinate system and the beam as an infinitely long beam in this
coordinate system, Asgsume ihe number of particles per unit of longi-
tudinal beam length is constact. Then {ue wvariation of particle density
is caused by variationg in the transverse distribution with lopgitudinai
position and time. Simce & large pert of the fields at the slice is gen-
erated by the particles i the longitudinal vicinity of the alice, assume
that the variation of the transverse distribution with longitudinal posi-
tion i8 small enough that it can be ignored for calculsting the fields,

Then the charge density f} in the slice is

{ . f oo . ,
P fd*"ﬁamqj 3By, pe. 00 $02) Floy) §lpg - Pgo

= g 5(2)5@,‘ Gglx, peo t) = N, § (z dep" fe X, Py, th

Dy (x, t) =

Ny
[
e

pa

_Dx fx %xn Px. t)e

=3

£ = g NgDefx, th §tad {55



The current density T is

32 = 3 <
qfd 3¥a %jd p-g-(}

#

n_n.*

%ffd?"ﬁ 3 Px & + Py €5+ P28,) Gy bx, Pr 1§ @) §(p2) §(Ps - Pao)

..._9.._8(2) [Qx fdpxpra + Ngpgo Dy (x, 1) 3,]
m Y,

L

ix € + s €5 .

Since {py| is small compared to |[pgyl for the particles, the contribution

of jy to B, is assumed to be negligible; so take as an approximation
?: jﬂéﬁ = q N3VODX(X’ t) 8(2)33. (56)

The beam may now be considered as a distribution in x of in-
finitely long line charges and line currents. The line charge density

per unit length at x' in dx' is
T&') = q Ng Dy (x', t)dx' | (57)
and the line current at x' in dx' is
ik') = q Ngvg Dy (x', t)dx'. (58)

The contribution to Ex at x in the median plane from T(x') is
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Integrating over all x':

Ex = 2q Ngjﬁu'w . (59)
Let )

by fx, t) = f ax 21, (60)
Then

Ex = 2q N,by (x, th \ (61)

The contribution to B, at x in the median plane from i (x'} is

2i@) 294 N3vo Dy, ®)
- : - -— !
dB; = CQXDX'BS Py " dx
and
2q@ Nav
Bg = - wzj—'g hy (x, t) . (62)

Then, by equation (53},

2q2 Nev?
Fu:ZqZNth- zsol&
c

= 2g® Ny(i- 8hhg tx, 1) (63)
where @ = vo/c. Let I be the beam current:

I = gq NavosqNsc 30. (64)
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Fix ©an now be written

where

2ql(1- 8%  2ql
- 2
¢ Bo ¢ o Yo

Now consider the case for vertical motion, Let F., be th

Cx = 242 N - g5 = (66)

space charge part of F,. From equation (27), the force equatior s

This ig to be evaluated for vg = vy, Since it was assumed that jpyj and
ipgl are much smaller than gpsoi , Bg and vy are small so that the

contribution from vy By i8 negligible, Then
¥iz = qEp - Jvp By (67)

Again let the same assumpticns be made as for the case of radi-
al motion tc calculate the fields; i.e,, the beam is treated as an infi-
nitely iong beam in a rectangular coordinate system, the number of

=]

particles per unii longiiudinal length is corstant, and longitudinal varia-
tions in the transverse distribution at a given time are ignored, In
addition, assume the beain is much wider radially tha: vertically such

that, at a point x well inside the beam, the beam can be treated as

being infinitely wide radially. Recalling the definition of G4 and that
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it was assumed to be independent of x inside the beam, the charge

density is
f = qfd?"ﬁ G = qfdpx dpg dpz G, § (Ps - Po)
= qfdpz Gy lz, pz, t) = q N4j‘dpz fz (z, pz, t).
Let
D, (z, t) = j‘dpz fg (2, pz, t). (68)
Then
f=aND,(z 1. (69)

The current density is

- - -«
j= qjd%va = %1—§d3'5-$ G

_grﬁ' d3'§-)_1;.(px€x+pssg+Pzgz)G2S(Ps“Po)

. ~
_1;5%0 ydsz‘; {px) ey + ;—37; pc,‘Sdpz G4és + n—;ﬂs;; dp, sz4€z

jx8x+jsé‘s+jz€z.

Since |py} and [p,| are relatively small, the main contribution is ige As

an approximation take
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]

Using

= - 3 JEg  JE
V’E=_z£;x_.+_;.;s+-ﬁ=4ﬂf

and that dEx/dx = JEg/ds = 0 by symmetry, one has

9 By 47TP = 4 D. (z, t)
5z C TP = 4ma N Dy (0.

Integrating gives
zZ
Ez = 4vrq N4 S‘ dz' Dy {z', t) + const,
- o

Assuming the vertical width of the beam is finite, symmetry requires

E, at z = - o to be the negative of E; at z= + 00 , Also using the
fact that
o o oo
jdz' D, (z', t) = Sdz' jvdp'z f, (z', p‘z, t) = 1,
-~ o -00 -0d

one obtains
Z
E, = -271rq N4+ 4Trqg N4 ‘Y dz' D, (z', t) .

-of
This can be written

(=]
Ez = 27Tq N4 jldz’S(z-z') Dg (z', t) (71)

-00
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where S (z - 2') is a step function such that

S{(z-2'y) =1, for z-2z') O
s -1, for z-2' < O,
Let
20
h, {z, t}) = {dz’ S (z-2") Dg (z2', t) . (72)
&
- o
Then
E; = ¢Tq N, b, (z, 1), (73)

From the equation

¥« 4T

and symmetry, there results

OB 47T
X

= 2 e Ve L) , ).
dz s — 9 Ngvo Dy (z, 1)

C

Integrating and proceeding in the same way as for E,, one cbtains
Bx = Zﬂq N4 @G hz (Ze‘, t} @ (74)

Substituting equations {73) and {74) into equation {67} gives

Fiz

2
27 g% N4hzn2‘n’q2 N, @, hz

2mq? Ny U - @5y (e, 1) (75)
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Letting W be the radial width of the beam, the beam current is

1 =qgNgvogW = qW Nyc 8. (76)
Fj, can then be written

Fiz = Cy hz (z, t) (77)

where

29rqi(l- &3): 21ql

— . (78)
We ﬁo W c poyo

. 2
C, = 27 q? Ny- g =

D, The External Force

Besides the space charge forces, suitable expressions for the
external force produced by the accelerator's magnetic field must be
employed, Let Fgo, and F,, be the x- and z-components of the ex-
ternal part of Fyx and F,, respectively, for the two cases being con-
sidered. It is assumed that Fey is independent of the z-motion and
that Fg, is independent of the x~motion, It i8 also assumed that Fex
is independent of p, and that Fg, is independent of p,, Then
Fex = Fex {x, 0) and Fegz = Fez (z, 8) where 9 = 27rs/L. In part of
the discussion in the next chapter these forces will be considered as
general functions of x or z and 0, but later it will be assumed that it
is sufficient to use the linear approximations.

Consider Fex. It was seen in the elementary treatment of

Chapter II that a force Fg is related to its corresponding term in the
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equations of motion after changing from the variable t to the variable
2 )

@ by a factor m Yy vo /RS Le.,

2
m v
= ——Z—%—& x corresponding term,
R
R is the equivalent radius of the equilibrium orbit. It will be conven-

ient to keep this factor separate because it will cancel out later. For

the idealized magnetic field of the machine, the linear approximation is

2
m Y.V
Fex = ....__.‘.39,__2._ Ky (8) x
R

where Ky (8) was defined in the discussion of betatron oscillations in
Chapter Il. When field and gradient bumps are also present, the line-

ar approximation becomes

2
Foy = _ITL.E.%_V?m {bx(e) + [- Kx (8) + gx(O)J x] (79)

where by (8) and gy (@) are due 10 the field bump and the gradient
bump, respectively, and are periodic in @ with period 27, by and
gx are usually small, As was done in Chapter II for an approximation,
it will be assumed when desired that the ripple in the betatron oscilla-
tions may be ignored and therefore that Ky (8) may be replaced by an
effective constant, namely, Vil

Similarly, the linear approximation for Fe, is

2
m Y,V
Fer = "—;'927""‘0“‘ {bz {8) + ["‘ Kz (8) + £z (O')J Z} (80)
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where b, and gz are due to the field bump and the gradient bump,

2
respectively., K, (8) will be replaced by an effective constant ‘)z as

an approximation when desired,

E. Summary of Assumptions

Varjous assumptions were made in the previous sections

which are now summarized, In the preliminary considerations it was

assumed that

1)

2)

3)

4)

the beam can be described by a distribution fuaction which
satigfies the Boltzmann equation;

absorption, injection, and collision processes may be ignox;ed;
the fields and forces satisfy Maxwell's equations and the
Lorentz force law with the charge and current densities
suitably defined in terms of the distribution functien;

the external electric field is zero and the external magnetic

field is constant in time,

To obtain a simpler Boltzmann equation it was assumed that

1)

2)

3)

4)

the longitudinal forces are negligible and the longitudinal
momentum of the particles is constant;

Ipx| <¢ [Pgol » | Pz} << §Pgol . and the dependence of Y
on px and pz is negligible;

for studying radial motion, there are no vertical forces on
the beam and the beam is flat in the median plane;

for studying vertical motion, the beam's vertical width is
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much less than its radial width and the distribution is uni-
form in x,

For calculating the space charge forces the assumptions were that
1) the propagation time for the electromagnetic field is
negligible and the effects of charge and current induced in
the vacuum chamber walls are negligible;
2) the coordinate system may be approximated by a rectangular
one;
3) the longitudinal variation oi the number of particles per unit
of longitudinal beam length is negligible;
4) variations of the transverse distribution with longitudinal
position at a given time may be ignored;
5) for studying vertical motion, the radial width of the beam is
much larger than the vertical width,
For calculating the external forces it was assumed that
1) the force in a given {ransverse direction is independent of
the motion in the other transverse direction and of the mo-
mentum in its own direction;
2) the linear approximation may be used when desired;
3) Ky (8) and K, (8) may be replaced by J}f and g);‘ ,

respectively, when desired,
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F., Summary of Equations

A set of basic equations was obtained in the preceding sectious
for radial and vertical motions separately, The radial-motion equa-
tions and the vertical-motion equations are structurally similar, For
brevity the two motions will no longer be distinguished except when nec-
essary and the same set of equations will be used where possible for
either motion. Let x now represent either the radial coordinate or
the vertical coordinate, as the case may be, and p represent the cor-
responding momentum, [etthe x~ and z-subscripts be dropped; it
being understnod which coordinate motion is under investigation.

A transverse distribution function G (x, p, t) (not to be confused
with the original G )} was obtained such that, for radial motion, G is
the density of pﬁrticles in the x p-space per unit of longitudinal beam
iength and, for vertical motion, ii is the density of particles in x p-
space per unit of longitudinal beam length and of radial kwidtho A prob-

ability distribution function f {x, p, t) in x and p was defined such that

G = Nf (81)

jdx dpf = 1 (82)

where
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number of particles/unit of longitudina! beam length,

e
]

‘or the cuse of radial motion

uumber of particles/unit of longitudinal beam length/unit
of radiul beam width, for the case of vertical motion,
Each of the reduced Boltzmann eguations, (41) and (49), can now be

writien

af.Lp o f ,Df_
e L TR (®3)

where F is the iransverse force in the direction represented by x and
F = F_, + F; (84)

with Fe and ¥; being, respectively, the external and internal (or
space charge) parts of F.

The internal force ¥, is given by

F;i = Chix, t) (85)
where
a0
h{x, t) = J‘dx’ Q (x, x'}) D (', t) (86)
- 00

and D, Q, and C are defined as follows:

D(x, t) = fdpf (x, p, t) (87)

and, by relation (82), D has the property



-Th~

LI‘dx D=1, (88)

D (x, 1) is the probability distribution in x. Q (x, x') is

1
x-x' 7

Q (x, x") for the radial motion (89)

S (x - x"), for the vertical motion (980)

where S is the step function:

S{x-x') = 1, for x-x')>0

= ~1, for x~-x'"0, (81)

The constant C is

@
n

2 _ a%y 2ql . )
2g“N{(1 ﬂo) = C—j‘i—yj , for radial motion (92)
o

27 q2 N (1 - poz) = —-—Z—F—‘LI-—Z , for vertical motion (93)
We B

where W is the radial beam width in the latter case and I is the beam

current, ¢ is the charge of the particles and

= Yo _ 1
po..__,\/o- (94)

V1 - poz

where v, is the longitudinal velocity of the particles.




The external force Fe = Fe (x, 8) is, in general, a function

of x and 8. In the linear approximation:

2
Fe = in_.i_:;‘l. b (8) + [-x(on g(O)] x} (95)

where K (9) is due to the ideal magnetic field of the machine, b (9) is
due to a field bump, and g (8) is due to a gradient bump, m is the mass
of the particles and R = L/277 is the equivalent radius where L is the
length of the equilibrium orbit, As an additional approximation, when
desired, the ripple in the motion produced by K (8) will be ignored and
then K (@) will be replaced by an effective constant %Z .

It will be convenient later to compare the beam behavior with
the betatron oscillations and, therefore, to use the variable 8 instead
of t, In all the functions above which depend on t, change from t to @
by the relations 8 = vg t = R 8. Let the same symbols be used to rep-
resgent the new functions after the change of variable as before; e. g.,

f (x, p, t) becomes f (x, p, 8) , h {x, t) becomes h (x, @), etc. The

Boltzmann equation (83) becomes

2f . R df , R p df - ¢ (96)
20 3';1)'37 Vo P
where po=m\6vo.

This last equation and the equations giving F; in terms of f

form the basic set of equations to be solved for f or from which in-
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formation roncerning [ is to be obtained if f cannot be obtained exact-

ly. A technique for doing the latter is developed in the next chapter.



IVv. THE MOMENT EQUATIONS

A, The Method of Moments

The problem has been reduced to one of solving the equation

of R af R df
LA E AR T A o
for f (x, p, 9) with
F = Fe + Fi (98)
where F; is related to f by
F, = Ch(x, 8), (99)
oo
h(x, 8) = S‘dX' Q (x, x) D (x', 9), (100)
- 08
- -]
D(x, 8) = Sdp f(x, p, 6}, (101)
- 00

and where F, and Q are known functions as described at the end of
Chapter III. A method is now presented which allows information con-
cerning f to be obtained even though an exact solution for f cannot be
obtained; it is based on what :s known as the "'method of moments.'" An
infinite set of moment equations is obtained which is equivalent to the
Boltzmann equation. These equations are in terms of "moments' which

are defined later. A finite number of the equations do not, in general,
-79-



-80-
form a closed set which can be zolved for the unknown "moments, '’ A
finite closed set of moment squations is obtained by means of two ap-
proximations, The firsi approximetion is the assumption that the

forces are linear., The second approximation is & "'best’ linear approxi-
mation for the space charge force which is shown to depend on cnly two

¥

of the "moments." The resulting clused set of momeunt equations forms

the busis for the analysis of the beam behavior which is presented in
the next chapter.

The ""method of moments" is8 10 multiply the Bolizmann equation
(87) by x3 pk G, k=0, 1, 2, -} and integrate over all x and p. If
¥ can be expressed as a power serieg in X, the integrations can be
performed and there results, for various values of j and k, a sequence
of differential equations for the 'moments’ which are now defined, Let

f (x) be a function of x (for the present { is any function; it need not be

the f in equation (¥7)). The quantity M , defined by
o9
M, = édx:.z’kfix}, k = 0, 1, 2, o00 , {102)
- 05
is called the "k™ moment” of I with respectto x. If f{x) is such
that
x
j dx!  {x')
)

is & never decreasing function of x and is bounded for all x and if f (x)

satisfieg cther suitable conditiens, then all the moments My , if they
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exist, completely determine f (x); i.e., if all the M, exist and are
known, then one can determine f (x) in principle. Z3 1t is assumed in
what follows that the functionsl for which moments are used are deter-
mined by their moments. If f (x) is also a function of another variable,
say O, then M; is a function of 8, in general,

Suppose f (x) is a probability distribution function such that

f(x)>0, f(+a)=0, and

[ -]
def(x) = 1,
- 00

Then M =1, M, is the average or mean value of x, MZ {s the mcan
value of xz, etc.
In general, the value of M; depends on the location of the origin

of the coordinate system. The central moments le are defined by
o0
c k.,
M = de (x - M) f (x). (103)
- 00

If the origin of the coordinate system is such that M; = 0, then

Mf = Mk . In particular, no matter where the origin is located,

2

M = 0 and M; = M, - M, . (104)

The above concept of moments can be extended to functions of

two variables. Let f (x, y) be a function of x and y. The quantity
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® o0
My, = [J.dxdyxjykf(x, y); 5, k=0, 1, 2, «v0 , (105)
Cw -0

is the jkm moment of f with respect to x and y. If f also depends on
a paranieter 9, then Mjk is a function of @ in general, With suitable

conditions, [ :is conipletely determined by a knowledge of all Mjk and

this is assumned to be true in what follows,

In particular now, let f be the probability distribution function

f (x, p, 9) in equation (87) and define its moments with respect to x

and p by
™
MJk = dXdprpkf(x; P, 9); j: k = op i, 2, - -(106)
-ty — 00

Consider the first few rnoments.
Mo,o = S‘dx dpf{ = 1 (107)
by equation (82).

M) 4 = dx x dpf = dx x D (x, 8) = mean value of x . (108)

»

x ()

X (@) gives the mean position of the beam as a function of 0 ,
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o o o
M 2 - 2
20 = J‘&xx fdpf- J‘dxx D
- &0 - -0
2 the mean value of x% = ;’- ®) {(109)
o @ o @
MO,} = j’dx J‘dppf = fdpp fdxf.
-00 ‘-0 - ~o0
o
Since 5(1: f is the probability distribution in p,
- OF
Mg | = meanvalueof p = PO, (110)
P (9) is the mean transverse momentum in the beam as a function of @,
/‘\
Similarly,
MO,Z = mean value of p?- = p2 (9) , (111)
and
Ml,l = mean value of xp = Xp (9). (112)

Let central moments with respect to x be defined by

o oo o0 o
C ke . =1k
Mk= S‘dx S‘dp(x-M1 O) f = jdx ‘fdp(x-x) f

[
= jax(x-'i)kn(x, 0, (113)
- OF

—~ having used equation (101). Central moments with respect to p will
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not be needed. In particular, Mic = and

- )

M, = MZ,O-Mf’O = x2-% . (114)
M; gives a measure of the spread in x about ¥ for the beam. JME:
is the root-mean-square width of the beam in the x-dimension; for

brevity hereafter, it will be referred to as the "width" w of the beam.

Thep
w = YMs =V x-%°. (115)
Since { (x, p, 8) 2 0, it follows that
M 2 0, for both j, k = even integers , (116)
and
le >0, for k = even integer . (117)

A relation which will be needed later is now derived., Consider

or @
J () = S‘dx fdp(x+dp)zf
-00 -o60

where & is real, Since (x + a p)* 20 and f >0, J(&)> 0. Ex-

panding the integrand:

[
1"

Lfdx J‘dp(xz‘izdxp«& azpz)f

Mz,0+2a My | + o(ZMO,Z (118)



5.

The value of & which minimizes J is given by

aJl
¥ < IM tzaMy, =0,
or
(Z::-E_l.l}...
Mg, 2

Substituting this into equation (118), the minimum value of J is

AV

_ Mhl >0 si y> 0
Jmin = Mz - =2 since J (&) 2 0,
Thus
M M, M (119)
1,1 = "2,0 Mg, 2"

This is the desired relation, Using equation (114), this relation can be

written
M%,l <My, (My 4 M%,O)
or
f"‘z_g;;é =’;;>j(w2, + T4, (120)

As stated before, the method of moments 1s to multiply the
Boltzmann equation (97) by x3 pk and integrate over all x and p. If F
is known as a power series in x, the integrations can be carried out

and one obtains, for various values of j and k, a sequeunce of differ-
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ential equations in 8 for the moments Mjk; i.e., a set of 'moment”
equations, which is equivalent to the Boltzmann equation, If the set of
differential equations can be solved, then the Mjk are known and, hence,
in principle, { can be determined. FEven if the set cannot be solved, if
information concerning the mean position X and the width w as func-
tions of 6 can be obtained, then this tells one quite a bit ahout the be-

havior of the beam,

In using the method of moments, integrals of the form

o o
S k 9f
Lg = dx | dpxdp I (121)
- - ®
and
V) r.“’ .
ij = fdx j dp xJ pk%% (122)
-0 T oo ’

need to be evaluated., From the definition of the probability distribution
function f, it has the property that { —» 0 as |{x]—» ®@ or |p] —» ce .
Agsume, in addition, that f —» 0 as |x|-» @ or |pl—» o® faster than
any negative power of x or p; i.e., xXXf — 0 as |x}—» a0 and

pKf — 0 as |p|—» 00 for all k 20. Also assume that the order of

integrztion may be interchanged. Then, integrating by parts,
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i

H

1}

i

00 P
t .
dppk | axxd 9L
\g PP J dx x 3%
4 - a0
o0 o0 o
dp p¥ dx ~2 (x B - j j-1
3;' )‘J d.XXJ f
Py -0 \_'_w
o0 o e~
ydppk [xjf] - dexj‘lf
-0
- o0 - 0F
” w
-] (dx S‘dpxj-lpkf
o
- 00 - a0
jMJ"l K *
o0 L
dx xi | dp k.a__‘)f
- - 0f
o as oo
jdxxJ {S‘dp%(pkf)-k 5dppk lf}
- O .4 - 00
4 ‘ oo P
dx xJ {[pki] -k Sdppk 1f}
- o - 00 - O
(,N 00
-k h) dx ¢ pk'l f
- 07 . 00
5?;Mj, k~1-

-87-

(123)

(124)
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B, Generai Moment kquations

The method of moments will now be used op the Boltzmann

equation to obtain a set of moment equations, Put

R R .-
Ky = = ., 125
1 m ;Q i0 p() ( )

Using this and relation (98), the Boltzmann equation (97) becomes

of : af R (. of _ .

Fe i8 & function of x and 8. Assume it can be expanded in a power

series in x uabout the equilibrium: orbit and write

o
B Fe =) Anx® (127)
o n=o

where the An are known functions of 8, By equation (99), F; is a
function of x and 8. Assume it can be expanded in a power series in

x about some point x_ which may be a function of 8; i,e., X5 = xq (8).

()
Write
@ [+ -] 43
Rp = E B (x - x. ) = § E“}s IS TR Lk RE e (128)
Erdll Sl “n Xl = : “n i (s} e
o] n=o n=0 1=0

where the B, are functions ¢f 8 and the C? are the usual binomial
expansion coefficients, Consider equation (99) more closely. 1t con-
tains h (x, @) which depends on D (x, 8). D (x, 8) 18 comnpletely deter-
mined by its moments with respect to x. But, by equation (101) and

the definition of Mjk , the moments of I are the Mj o- Therefore,
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the By are completely determined by the Mj,05 i.e.,, each Bp is, in
general, a function of the Mj,o with no explicit dependence on 6. The
@-dependence of the By, arises from the dependence of the Mj,o ca @,
Substituting equations (127) and (128) in equation (126), multiplying by

xi pX, and integrating over all x and p, gives

. 4 oo

- i k+1 df E' j +
(dx g‘dp xka.gig+K1xJp * -g—x.+ nAnxJ npk_g_fﬁ

v
+Z By CP (-1 71l P! k%i} 0, (129)

-00 -0
n,1

where it is understood that the sum on n is for all n > 0, and that the
sumon n and i is firston i from 0 to n and thenon all n > 0, The

first term on the left is

o o

j pk éf = 4 ipkf = M.

S\ S‘dpx P 3% dx \dp xJ p* f M;)k
-0 -0 L

where the prime indicates differentiation with respect to 8, Using this

and definitions (121) and (122), equation (129) becomes
}
M * Ky Ly ket *2 ::An Ji+n,k
n

+ z Bn Cf (-1 I x0T = 0, (130)

n,i

Substituting relations (123) and (124, the above equation can be written
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1
Mo 3K My k41" an:An Mjin,k-1

E n n-i n-i

For the various values of j and k, this gives the set of moment equa~

tions.

For j= k =0, the above equation reduces to Mt'),o = 0 which is
to be expected since Mo,o = 1, Therefore, this particular equation can
be ignored hereafter,

Consider j=1 and k = 0; equation (131) then gives

i
My, 0~ K1 Mg, =0,
or
¥ =KPF= —— F. (132)
m ¥, Vo

If one makes the transformation back to t by the relation v, t = R8,

this becomes

m Y, =P. (133)

28

Thus, if X is considered as the motion of a particle, then P is its mo-
mentum, keeping in mind that this result is dependent on the approxima-
tions which have been made, A cloger look shows that it depends on the

assumption that the dependence of ¥ on p may be ignored; in general,



P is not the momentum of a particle with motion X.

Now consider the case j= 0 and k = 1; equation (131) becomes

! n n-i n=-i
Mo’1 -;‘An Mn,o -an Ci (-1) X, Mi,o = 0, (134)

or
7 =ZAn;5+ E B, Cf (-1)° 1 i, (135)
n n,l
where
xk = Mk o = the mean value of xk . (136)

Suppose X is the motion of a particle with momentum p. Then equation
(135) is the equation of motion for the particle and the structure of the
equation shows that it depends on the detailed behavior of the beam.
Suppose there were no space charge forces (i.e., all B, = 0). Then

equation (135), after transforming back to t, is

a9 - VOZA xn
dt R n n
If it were true that x" =¥" for all n, then by equation (127) this could

and one could say that the motion of X is that of a particle under the

force Fo. But x" = ¥0 is true only for n=0, 1. Thus, if Fe is linear
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in x, equation (137) holds when the space charge force is ignored. Now
let Fg be linear and inciude the space charge force., Again, since

;r—n# ¥ in general, one has
dp - M - _ n .
FB# Fe (%, 6) + EQ;B“ (X - xo)" ;
but, if the space charge force is linear (i.e., B, =0 for n ) 1), then

%:P‘eﬁ’°)+%[Bo+B1(§°)(o)]‘

Xo is an arbitrary function of 8; let x, =X. If B, =0, then

9 -
dt Fe(iao)-

Thus, if Fe and F; are linear in x and F; is zero at X (B, = 0), then
X behaves like the motion of a particle under the external force F_ in-
dependently of the space charge force Fj.

In general, the moment equations (131) are coupled; an equation
for Msk is usually coupled to one for higher values of j and k. Some
approximation is needed to obtain a closed finite set of equations so that

they can be solved for the lower-order moments. The number of equa-
tions must be small if they are to be handled analytically. Assume Fg
and Fy are linear in x (A, =B, =0 for n > 1} and put x4, =X = Ml,O'
Equations (131) become
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M:'lk-jl{l My g x+1” K [(Ao + Bg - By My o) Mj k-1

+ (Ay + By) Mj+1’k_1]= 0. (138)

Consider the set of equations (138) for j and k satisfying
1< j+ k €2, Using the fact that M, 5 =1, one obtains the following

system of equations.

MI

1,0 K1 Mg, =0 (139a)

My 1-Ag-Bo-A M =0 (139b)

L) . - ; - .

M, 2K M, =0 (139d)

¥
MO,Z-Z(AO+BO-B1)M1,O-Z(A1+Bl) Ml,l - 0. (1399)

The A, are known functions of @ and the Bj are functions of the Mk,o .
If By and B; were functions only of My g and M; o, then the system
(139) would be closed. In particular, Ml,O =X and MZ,O = x—2 could be
obtained, thus giving considerable information about the beam behavior.
Also, if B, were small enough to ignore, equationg (138a) and (139b)
would form a closed system which could be solved for Ml, o and MO, 1
and these could then be used as known functions in the remaining equa-

tions of the set (139).
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Intuitively one feels, if the distribution of particles in position
x has a certain amount of symmetry about x = X, that By, would be
small, Furthermore it would seem reasonable that B, would be deter-~
mined essentially by the width of the beam,; i.e,, to a good approximation
as some function of w =M ¢ - M%,O =Y xz -¥2 . Therefore an
investigation is made of a linear approximation for the space charge
force Fj and the dependence of the corresponding B, and By on the
moments Mk,o .

C. Linear Approximation for the Space Charge Force

A method is now developed for approximating the space charsc
force Fj by a polynomial of finite degree in x and then applied for a
linear approximation, It will be found that the linear appreoximation
depends almost entirely on Ml, o and MZ,O and thus, to a good approxi-
mation, the set (139) becomes a closed set. The pertinent relations
needed are equations (99), (100), and (101). Let the variable @ be sup-

pressed for now and write for these equations:

F;, = Ch(x), (140)
[~}

h (x) = ng' Q (x, x') D (x"), (141)
Z oo
o0

D (x) = gdpf (x, p), (142)

- 00




-95-
where Q (x, x') is given at the end of Chapter II. D (x) is the proba-
bility distribution function in x for the particles. Instead of dealing
directly with Fj, let h (x) be the function which is approximated since
C is just a constant.

Let hy (x) be the function which is to be used as an approxima-

tion in place of h (x) and let it be a polynomial of degree n;

n
ha G0) = ) by« (143)
J=o

where the hj are the coefficients of the polynomial., The criterion for
choosing the hJ to give the 'best' approximation is taken to be tlat the

hy make the quantity

a0
2
J = fdx [h (x) - hy (x)J D (x) (144)
- 0

a minimum, Since D (x)2> 0, J2 0. J is zero only if h, (x) = h (x),
Hence, the smaller J is, the better is the approximation, Using D (x)
as a weight function makes hy (x) a better approximation in the regions
where there are more particles than in the regions having fewer par-
ticles, This seems to be a reascnable procedure to use for studying
the over-all behavior of the particles. A figure of merit L] for the
quality of the approximation is n = (J /{;Z) ./"where -{1-2 is the average
value of hl(x) with respect to D (x). | is a sort of fractional error of

the approximation. Since ha approximates h, let h be replaced hy hy
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in the definition of ® for the sake of simplicity; i.e., take

7= (J/I;Z) % where
2 = fdth(x)ncx).
J is a function of the hj; the condition for a minimum is
—g-'}i—k=0; k =0,1, 2, ¢«+, n, {145)

Substituting equation (144) into equation (145) gives

oo
SdX[h(x)-ha(x)]g;:iD(x)-—-O. (146)
- of

From equation (143), dhg/dhy = xX, Putting this and equation (143)

into equation (146) results in

- -]
de [h (x) - Zhj xj] xX D x) = 0
j

- o0

a0 -
dexkh(x)D(x)-Z:kﬁdexj+kD(x) =0, (147
- e

But by the definition (142) of D (x) and the definition of the moments,

oo

o0 «w
fuxl+knu)= jdx Sdpx3+kf(x.p)= M4 k,0 -
-af - 09

- oo



-97-

Rearranging terms and using this last result, equation (147) can be

written
00
%:hj Mjip,0 = dexkh(x)D(x)
- 00
or

n R
Z tL‘iMj+ko=Hk; k =0,1,2, s, n (148)
j=o0

where, using equation (141),

L oo oo
Hy = dexkh(x)mx) = 5ax5 'xX Q (x, x') D (x) D (x"). (149)
-0 .00

With suitable restrictions, an arbitrary D (x) can be written as a uni-
versal function of its moments in terms of Hermite functions. 24 It
follows then that for a given Q (x, x'), Hg is a universal function of

the moments for arbitrary D (x). If the Hy can be found, then the equa-
tions (148) give the hj as universal functions of the moments for a given

Q (x, x').

From Chapter III, equations (89) and (90),

Q(x, x') = 1 - for radial motion (150)
X=X
= S{x - x'), for vertical motion (151)

where
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Sx-x') =1, for x - x')>0
(152)
= -1, forx-x'"€0.
For either type of motion Q (x, x') has the property:
Qx, x') = -Q &', x). (153)

By equation (149),

@ oo
Hy = S‘dx de' Q(x, x)"D()D (x').

-00 =~00

Interchanging x and x':

o0 o0
Hy = jdx’ deQ(x', x) D (') D (x) .
-0 T o
Inserting relation (153):
¢ ) oo
Ho = -fu'Squ, x') D (x") D {x)
80 o
o0 o0
= -j\dx de'Q(x, x)D({x)D{x") = - Hp .
- of - 00
Thus Hg = 0 .

Consider Hy for radial motion and k » 0, Equations (149) and

(150) give
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dx \ dx' xK D (x) D (x')
x - x'

k
xk = Ex-x')er']k = E Ci((x-x')k"ix'i
i=o

where the C¥ are the binomial expansion coefficients, Then

K .
H = 2 C?de jdxv CX“X')R-IX“D(X)D(X')
- ; x - x'
1=0
5dedx' x-x)* "1 1y p ) D )

+5“S“' DMP@)
X ~X

By interchanging x and x' it is seen that the last integral is - Hy .

Solving the above equation for Hjy and putting

-1-
(x - x k i-1 2 :Ck i-1 1)k-i-rn-1xmx'k_i_m_1
gives
k-1
k - 1
=%§ i‘z C, (1)k L-m- };xjdx xMxk-m-1pu)p (x)
i=o m=
k-1 k-i-1

1? ' .k k-i-1 k~-i-m-1]
3-2- (:1 Cm ("‘1) Mxn,o l\'ik‘rn"‘ 1.0 . (154)
=20 m
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In this case it has been possible to work out a general expression for

the I-Ik in terms of the moments, In particular, for radial motion,

: = 1 -

Consider the linear approximation, n = 1 and equations (148)

give
ho + ) My o = 0

b, My gt h My g =

V3

If the origin of x is shifted so that X = M, , = 0, then the moments in

these equations are central moments Mf (cf. equation (113)) and the

equations become

ho = 0

hy My = 1 h, = —&
1 M2 =3 o©Or 1 = c
2 M,

Shifting the origin of x back to its original position, one obtains

hy &x) = —— (x-3). (156)
M,

In general, in a power series for h, in non-negative powers of x - X,

the leading term is not zero except in the linear approximation,
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As an example, suppose D (x) is a parabola in the interval

- d ¢ x { d and zero outside this interval. Let

3 2

D (x) T d 1-—2—) for -d<{xd{d

for |xy ) d.

L}
o

C

- - Y
This has Mg o= 1, M; =0, M, g=M,=2d". Then

o~

5 5 - -—
h (x) = X = (x - x) since X=0,
a 2 ¢° 2 d?
Also,
1-3
h (x) = i(—-l —d ) 2x
d X d
1+'&

J cannot be determined exactly but an estimate can be made and it is
-3,,2 -2
found that J 2 9 x 10" °/d“ and n=8.5x10

Consider now the case of vertical motion, Equations (149) and

0 o
de ju'xksm -x")Dx) D (x'). (157)
-0 -

It does not appear to be possible to develop a general expression for

(151) give

Hy, in terms of the moments as in the previous case, Examples have

been worked out to determine the approximate dependence of h, and h;
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on the moments., Consider the linear approximation with n=1, Equa-

tions (148) are
ho Ml,d + hl MZ,O = Hl .

Shifting the origin so that X = M, = 0, these equations become

ho = 0
1
. H, (158)
hl MZ = H1 or hl»':"""o
M,
Shifting the origin back to its original position, one has
- _ Hj
ha(x)zhl(x-x)z——c-(x-'i). (159)

M3
Shifting the origin in the above manner is permissible because H; is
invariant under a change of the origin,
Consider the linear approximation for some examples now,
The details of the calculations are not given; only the results are quoted.
In each example H; is calculated and then expressed in terms of Mg.

This is an approximation since H, depends on all moments in general,

Let
1
D (x —_— for ~df€xCd
)=Zd <x<

= 0 for |x} ) d.
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This is a uniform distribution inside - d ¢ x { d and has

-"-‘-0, M =-dzo

Myg=1, M 2,0

0,0 1,0

Inside the interval, h (x) is exactly linear:

h(x) = X,

o

In this case the linear approximation is the same as h (x). One finds

1

hg (x) =-1-x =

| ..
4 /T M
1
= (x-%x. (160)
VRS

Also, J =0,

For another example, let D (x) be a parabola as used before:

D (x) = i(x-"z) for ~d{x<{d
4d 4z

= 0 for |x] > d.
It is found that

ha (x) = (161)

— x-D
75 Y™ '
J¥2.7x107%, and nar 9x 1072,

Finally, let D (x) be a triangular distribution:
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D =% x for 0<x<d
d
= 0 for x {0 or x)>d.

i is found that
2 V2 _
h, (x) = - x-%), (162)
5 VM,
J=1.36x10"% and 9 2.1x107",
From equations (160), (161), and (162), the constants of

proportionality are

or

These differ from one another due to the fact that the constant of pro-

portionality actually depends on higher moments as well as M But

c
Z.
the examples show that the dependence on higher moments is rather in-
sensitive and the constant depends essentially on Mg . ABS an approxi-

mation for the vertical motion, take

0, 57

x) = (x - X). (163)
RSV
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Equations (156) and (163) will be used now for linear approxima-
tions for h (x), Replacing h (x) in equation (140) by its linear approxi~

mation, F; can be written

Ck -
Fy = —— (x-%) (164)
1% ~a |
where
w = 4/MS = the width of the beam,
and

k = 0,5, n= 2 for radial motion
k = 0,57, n =1 for vertical motion,

Comparing equations (128) and (164) with x, =X,

Rw" Wt

B, =0 and By = (165)
where

. (166)

Relations (165) will be put in the moment equations (139) for the linear

approximation,

D, Approximate Moment Equations'

A closed set of approximate moment equations is obtained from

the set (138) by using the linear approximation for F; developed in the
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preceding section and the linear approximation (95) for F,. The
quantities B, and B, have just been determined, Comparing equations
{93) and (127),

and
AL = Kq [-x«n;m] (168)
where
- Pg - 1
Kg = = cf, (128)). 168
s= @ gl a2 (160)

To eliminate using the double subscript notation for the moments, let
the following notation be adepted.

X= M g, F=M,
=T ox M, v-’.;’-u“'z (170)
= = M, = nf..+l(‘z’.!2+w2.

Using this netation and relations (165), (167), and (168), a set of approxi-

mate moment equations is obtained from the set (139) which can be
written:
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¥-KB=0 | (171a)
P +Kg(K-g)%-Kzb = 0 (171b)
u'-K1v+K3(K-g)(!Z+wz)-szZ'n-.K:,b'! =0 (171c)
(w¢ +%%)' - 2K, u = 0 (171d)
v'+ZK3(K-g)u-ZKZ—‘3;-1+ZKZ%-Zxabﬁ= 0 (171e)

where K, b, and g are functions of 6.

This is a closed system of equations in the variables ¥, B, Xp,
;2, and w where the prime denotes d/d8. The first two equations are
closed and give the motion ¥ as the motion of a particle under the action
of the external force alone as discussed earlier. These approximate
moment equations form the basis for an analysis of the behavior of the

beam presented in the next chapter.



V. BEHAVIOR OF THE BEAM

A, Stationary Solution

The approximate moment equations (171) obtained in the last

chapter will be used now to determine the behavior of the beam. They

are

X -Kip=20

P +Kz(K-g)X-Kyb =0

u'- Ky v+ Kg(K-g) &+ wd) - K, w' " -Kzb¥ = 0
(w2 +¥%)' - 2K, u = 0

v'+zx3(1<-g)u-zxzv‘:1+zxziw,g-zxpp = 0

(171a)

(171b)

(171c)

(171d)

(171e)

where K, b, and g are functions of @ and a prime indicates d/d®. K

is the focusing term of the external magnetic field, b is the field bump,

and g is the gradient bump, as defined in Chapter III. ¥ is the mean

position, P is the mean momentum, u=Xp, v= p7, and wl =

The constants are

Vo Ck .1
= R » K3_K_]:’

where C is given by (82) or (93) in Chapter III. Also
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2

- g2,
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k = 0,8, n 2 for radial motion

1 for vertical motion,

k = 0,57, n

A stationary solution of the Boltzmann equation is a solution for

which df/dt is identically zero. In the present case this corresponds

jk
vanish identically. Putting all derivatives equal to zero in equations

to having df/ 39 identically zero, or equivalently, to having all M

(171) will then give the necessary conditions for a stationary solution,
With ¥' = 0, equation (171a) gives P = 0. From equation (171b) with

P' = 0, one obtains
(K-g)X =b

which cannot be satiafied by a constant X, in general, when b y# 0. So
assume b= 0, Then X = 0 satisfies the above condition, Putting the
derivatives equal to zero in equation (171d) gives u= 0. v' = 0 in equa-
tion (171e) is consistent with u =X =P = 0. The conditions so far ob-
tained and equation (171c) give, after multiplying by K; and using

lesﬂl,
Klzv = (K-g)wZ-Kl szz'n.

Since K and g are functions of 0, this relation cannot be satisfied by

constant v and w, Even with g =0, a stationary solution is not possible,
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Assuming g 2 0, an approximately stationary solution exists if one as-
sumes that the ripple in the betatron oscillations may be ignored. In
this case K is replaced by an effective constant J: as described in
Chapter III which for brevity will be denoted by Ky; i.e., K, = J:‘

where

) is v, or V), as the case may be. Then, in this approxi-

mation, the above relation becomes

2 Kg 2 ;
K1v= (Ko-;n—)w {(172)
where
Kg = Kl K,. 173)

v and w must satisfy this relation to have a stationary solution. Re-
versing the arguments show that these conditions are also sufficiént in
the sense of the approximations. Hereafter, these conditions will be
used for the stationary selution with the approximation being under-
stood. Summarizing, the conditioms for a stationary solution are b, g,

X, and u vanish identically, and
Klzv = (Ko-éla)wz (174)

where K, = \)oz.
Since w? is the mean value of (x - ¥)2, it follows that w2 > 0
aﬂw-‘/v;zzo. Similarly, v 2 0 since v is the mean value of pZ,

The quantity Kg = K, K2, since it contains C by definition (166), is a
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measure of the space charge force or, more precisely, the space
charge effect for a fixed w, It is directly proportional to the beam cur-
rent or the number of particles, In the limit in which space charge ef-
fects are negligible, Kg = 0 and equation (174) gives a non-zero value
for v. Since P =0, v gives a measure of the spread in the transverse
momentum. As the beam current is increased while holding w fixed,
Kg increases and (174) shows that v must be decreased to maimain
the condition for a statiomary solution. I K, is made large enough,
(174) would give v < 0. But v € 0 is not possible, hence (174) can no
longer be satisfied. The limiting value of Kg for a stationary solution

is the value which makes v = Q0 in (174):
Ks = K, wh (175)

For values of K, greater than this, no stationary solution is possible.
The limiting value of K for a stationary solution occurs when the
space charge defocusing force just cancels the effective focusing force
due to K, resulting in a net transverse force of zero.

The maximum value of v for a stationary solution occurs when

K' = 0 and is given by

kv W

Vmax 2 2 .

Comparing v/%_ with the longitudinal momentum,
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po Kl pO R

For the MURA 50 Mev electron accelerator and for radial motion at in-

jection, Vx =4,4, w=1.5cm., and R = 128 cm. which gives

v -
max . gy10°%,

B. Reduction of Equations

The set of equations (171) can be reduced to two differential
equations in ¥ and w. Differentiating (171a), substituting (171b), and

using K; K3 =1, gives
T +(K-g%=0b. (177)

Although not necessary for obtaining an equation for w, it is assumed
for simplicity now that K may be replaced by K,. Then by differenti-
ating (171d), eliminating u' with (171c), differentiating again, eliminat-
ing v' with (171le), eliminating u with (171d), and finally eliminating P
with (171a), one obtains

(w2)'"' + 4 (K - g) (W?)' - Kg (4 - n) “":'"- 2 g wl
w

= - (22)"'-4(1<O-g)(12)'+zg'§2+6bf'+zb'i. (178)

The initial conditions are specified by giving the initial values

of X, ¥, w, w' and w'. From equations (171), the last two quanti-
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ties can be written

K - 3 7!
w' o= LU X% (179)
w
2 2 2
K -
w' = 1 v _ Kl3u +Ks Wl n-(l%_g)w
w w
2K uE®  ®)P | @x)?
+ . - - - (180)
w w w

intermsof X, X', w, u, v, and g.

C. Motion of the Center of the Béam

By definition let ¥ be called the ''center' of the beam. The equa-

tion of motion for the center is equatior (177):
' +(K-g%X = b, (177)

Here K is the focusing term of the external magnetic field, g is the
gradient bump, and b is the field bump. This equation shows that the
motion of the center is independent of the space charge effects and is
the same as the motion of a single particle under the influence of only
the external forces. This result has been previously conjectured but
now the above derivation brings out the assumptions that are needed.
These assumptions are that the forces are linear in x and that the
space charge force depends only on X and w as described in Chapter IV,
Since equation (177) can be handled by the usual methods of the orbit
theory for betatron oscillatibna, there i no need to discuss it in detail;

the behavior of X is just like that for betatron oscillations.
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b and g are functions of @ of period 27 and can be written as
Fourier series. Furthermecre, in the construction of an accelerator,

b and g are made as small as poasible, Suppose g is zero and write
b=z:bmeime; m=0, +1, +2,---,
m

For a particular value of m, if by, # 0, equation (177) has a rescrance
if V) = m. Thus the poasible resonances are integral resonances w"ich
are not influenced by space charge effects; i.e., the tune for the motion
of the center cannot be put on an integral resonance by space charge ef-
fects. Since the operating point of an accelerator is designed to be n.un-
integral, such resonances do not occur to create difficulty. Then the
effect of the bump b is to produce a small variation in X which is usual-
ly ignorable since b is small,

Suppose now b is zero but g is not necessarily zerc. If the
beam is launched so that X =¥' = 0, then equation (177) shows that ¥
remains zero thereafter. Since generally this condition cannot be sat-
isfied exactly, there exists the possibility of hali-integral resonances
which are independent of space charge effects. Since these resonances
are also avoided in design and g is small, such resonances do not oc-
cur and the result is to produce a small variation in X which is usually
ignorable.

Thus, in summary, it is seen with regard to the motion of the

center of the beam that transverse space charge effects do not produce
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integral or half-integral resonances,

D. Elimination of the Field Bump

The field bump b can be eliminated from the equations in the
following manner., Ignoring the space charge force, the equation of mo-

tion for a single particle can be written
x'"+K(@)x = b(8) + g(0) x + A (®) x°% + B(O)xs'_ + .ee (151)

where nonlinear terms AxZ, Bx3, ... have been included. There
exists a periodic solution x, (8) of equation (181) with period 277,

"~ Let this orbit represent a new equilibrium orbit and define a new trans-
verse coordinate y with respect to this orbit by x = x5 (0) + y. Sub-
stituting this for x in equation (181), using the fact that x, (8) satisfies

equation (181), and dropping the nonlinear terms in y gives

y'+ Ky = (g+2Ax°+3onz+---)y

for the linear equation of motion in the new coordinate system,

The new equation of motion does not contain a field bump but
does contain a new gradient bump, g + 2 Axy + 3 BxO2 + ¢+« , which
is the original gradient bump modified by additional terms. Replacing
the symbol y by x and letting g represent the modified gradient bump,
the entire analysis giving the final moment equations can be repeated
with respect to the new equilibrium orbit with the result that the field

bump b is removed from the equations, With the understanding that
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this has heen done, the field bump b is now dropped from all equations
(i.e., b =0)and g is taken to represent the modified gradient bump,

Equations (177) and (178) become

T+ (K-g) % = 0 (182)
and
W'+ 4Ky - @) (WD) - Ky (4-n) ) -2 g w2
= -@)" -4 (K- E) +2g' X2, (183)

E. Linear Theory of Free-Beam Behavior

Equation (182) shows that, if the beam is launched so that
initially X = X' = 0, then ¥ remains zero. Generally, this condition
cannot be satisfied exactly and thus X contributes a driving term in the
right-hand side of equation (183) for w. Furthermore the presence of
g in the left-hand side of equation (183) makes the behavior of w more
complicated. To consider the simplest behavior of w, assume that
there is no gradient bump (i.e., g = 0) and that the beam is launched
so that ¥ vanishes identically. In this situation let the beam and its be-
havior be described as ''free,'' For the free behavior of the beam,
equation (183) becomes

w2+ 4K, w2 - Ky (a-m) D) 2o, _ (184)

wl
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Equations (179) and (180) become

Kiu

w

"o, 1 2 - _K 2 _Kfuz
w' o= — K v (Ko ;-g-)w] 3 . (186)

w' = (185)

w
A possible solution of equation (184) is (w2) =0 or w=a
constant which requires w' = w'' = 0 and hence, by equations (185) and

(186),

and

Klvz-(Ko-E%)wz = 0,

w

These relations just state that u and v must satisfy the conditions for
a stationary solution (cf. equation (174)). K Kg is larger than the
limiting value given by equation (175) for a fixed w, then these condi-
tions cannot be satisfied and w = a constant is not the solution. The
limiting value of Kg for w= 0 is Kg = 0 and therefore, since Kg > 0,

w # 0 cannot be a solution.

The differential equation for w is nonlinear. Let
)
y=w2 or w=ylt, (187)

Equation (184) can now be written
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y'”+4KQY'-Ks(4-n)—5E=O' (188)
y

For small perturbations about a stationary solution, a linearized ap-

proximation can be developed as follows, Let

2
Yo = W, = a constant

be a stationary solution and put
y =JYote

with |e} {({ yo. Substituting for y in y'“/ z, expanding this in a power

series in e about y,, and keeping terms only up to first order in e,

glves
2
1 _ .1 _.n_ Y
Z L d
yn/Z y:/?‘ 2 yg+

Inserting these relations into equation (188) and retaining terms only up

to first order, one obtains

Kg (4 - n) ‘
e'”+4Koe'-———7——-8 e’ =0
y&/?

or

e+ NPe' = 0 (189)

where
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2 Kg (4 - n)
n - 4 I(O - R (190)
y(?; 2

Integrating equation (189) once,
e + .ﬂze = ¢ = a constant (191)

where c is determined by the initial conditions. If (F » 0, (191) is
the equation for a simple oscillator driven by the constant c. For

.{f‘ < 0, the solution is exponential. The solution can be written

C

e=W+Esin(ﬂ9+a) (192)

where E and a are constants, Then w is given by

Y
e\ %

% /3
w = + e) = (1 +
o Yo Yo

and, to first order in e,

./l 1
W =y, +'z-—-,,—z-= wgy +

¢ E
+ +

o
Z_(fwo Z wo

Assuming .ﬂ.z > 0, L1 is the frequency of oscillation of the beam

= w sin ( f10 + a) . (193)

width w. With K, = \)OZ, equation (180) gives

Kg (4 - n) 2
= -7
N=2) [1 e o ] : (194)
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If the space charge effect is negligible (Kg = 0), the frequency N is
2 \)o; i.e., twice the betatron oscillation frequency. As Kg increases,
{] decreases towards zero and, for large enough Kg, {1 becomes
imaginary giving an unstable solution for w. However the value of Kg
which decreases {1 to zero is greater than the limiting value of Kg for
a stationary solution, as given by (175), by a factor of 4/(4 - n). This
means that the situation is far from a stationary solution and so (194)
is applicable only for Kg less than the value given by (175), If the
limiting value of Kg for a stationary solution is inserted in (192), the
result is {l= n 2 V., or 1= /2 ‘}o for radial motion and {1 = )}0
for vertical motion,

The above result points out an aspect of the beam behavior which

did not show up in the elementary treatment of Chapter II; namely, that

the beam width can oscillate. Let equation (193) be written
w = w°+ A1+ Azsm(.(l9+a).

Differentiating twice and evaluating the various expressions at 8 = 0

gives
wi = w0+41+ Azsina

w, —ﬂAZ cos a

2
wy - 0 4, sina
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where the subscript i indicates the initial values of the variables,

Solving these for A, and 4,:

1 n

A = wi-wy 4+ Wy (195)
ﬂZ

47 = 25 [ o2+ wp? | . (196)

Suppose that before 8 = 0 the solution is stationary and the perturba-
tion is applied at 8 = 0, The values of wi and w'i' are given by (185)
and (186) with u and v equal to their new values, u; and Vi, just after
the perturbation is applied, Assume w; = w, and N2 \)o. Before
the perturbation, u= 0 and v is given approximately by (176). Suppose
the perturbation is such that u is unchanged and v is doubled so that

the change Av is (using (176)):

Ay PEVE ¥
RZ

Then from (186),

2
W'i'z K av

Now (195) gives

2 2 2
- WS T WoZ
w -~

and, using K, = R/po,
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A
w

o]

w -

Similarly A, is about the same. In this case then w oscillates with
an amplitude of about 25% of w,. Equation (186) indicates that when
{l is decreased by space charge effects, a given change in u or v in-
duces a still larger amplitude of oscillation.

F. Nonlinear Theory of Free-Beam Behavior

‘A more complete theory of the free behavior of the beam than

the linear theory is developed in this section. After substituting (187):
, ,
y = w-, (187)

equation (184) for w transformed into equation (188):

y'"' + 4K y' - Kg (4 - n) T 0. (188)
Define
Y =y (197)
and
I (198)

Then Z' =y''', Substituting these relations into (188), the resulting
equation and the definitions (197) and (198) form the following set of

three first-order equations:
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y' = Y (199a)

Y' = 2 (199b)
' Y

Z'+ 4K, Y - Kg (4 - n) = 0, (199¢)
y.n72

Using (199a), one can write

4
de

"
iz
' o
"
[«
I
<
(=W

(200)

or

> =2z, | (201a)

d
dy

Doing the same to (199c) gives

4z . ) Y
YA Y -Ke 4 n)-yWE 0

or, after dividing by Y,

4z, 4 - 4 - __7_1 =0,

Rewriting and summarizing, one has from equations (201a) and (201b)

the following two equations:
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T ot = 202a
2 4y (Y<) Z ( )
dz i 1

Equation (202b) can be integrated to give Z as a function of y, After
substituting this for Z in (202a), a second integration can be made to
obtain Y as a function of y. In integrating y'n/ 2, the case of n= 2
is different than when n has any other value; so the cases of n= 1
and n = 2 must be treated separately.

Consider first the case for vertical motion with n=1. Equa-

tion (202b) becomes

iz ., 3Ky _4x,. (203)
Integration with respect to y giveé

Z =D +6K y®-4K,y (204)

where D; is a constant of integration, Substituting this into (202a) re-

sults in
%%(YZ)=DI+6KSy‘2-4xoy, (205)
and integrating, one has

P=23Y = E +D;y+4KgyR-2K,y? (206)
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where El is a constant of integration and, by definition,

P = Ye, (207)

1
2
The constants of integration, D; and E;, can be found by evaluating
equations (204) and (206), respectively, in terms of the values of the
variables at any'point 0.

In analogy with particle mechanics, consider y as the position
of a fictitious particle, Y = y' as its momentum, and P = YZ/Z as its

kinetic energy. Then equation (206) can be written

E, = P+, (208)

with

3
Uy = -D,y-4K,y2+ 2K, y2. (209)

Equation (208) can be interpreted as an energy equation of a particle
moving in a potential energy well U; with total energy Ej. Since
Kg? 0 and K, 2 0, U; can have the forms shown in Fig. 6 depending
on the sign of D;. (209) applies only for y > 0 since physically
y= ws > 0. Fc_)r the situations shown in Fig. 6, y oscillates between
the values y; and y,. The stationary solutions occur when E; equals
the minimum value of U; so that y, and y, coincide.

The allowable values of D; and E; are restricted as will now

be shown. From the definition of Y and (185),
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Ul A
. D;>0
—
171 Y2 | y
Iw__ﬂ____l
U}
1
D, 0
.
y

Figure 6. CURVES OF Uy




Y=y =(wd) = 2ww = 2Ky u

Y = ZKlu.

Similarly, from the definition of Z, (185) and (186),

Z =Y =y' = 2(ww") = wa"+2(w')2

N
i

e (e )]

From (204) and (206),

[}
%
D, = Z-6K;y%+4Kyy

1 : :
E|; = 3 YZ-Dly-4KSy%+ ZKoyZ
Substituting (212) in (213) gives

E, = Yz-yz+zxsfh-zxoﬂ

oof -

e

= - Y2-w2zZ+ 2K wd - 2K, wh,

[z

Substituting (210) and (211) in this gives
E; = ZKlz(uz-va).
From Chapter IV, the inequality (120) with X = 0 is

u? ¢ v w?
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(210)

(211)

(212)

(213)

(214)

(215)



~128-

or

ul - v wl £0.
This and (215) imply
E, €0. (216)

Thus the behavior of y is as shown in Fig. 6 with E; on or below the
y'-a.xiS.
Let U, be the minimum value of U;. Then, since Y23 0,

Uimin £0 -

Putting (208) in this gives

3 2
-Dyyo-4Kgy i+ 2K, y5 €0

where y, is the value of y corresponding to U, ... Since y, ) 0,

the above inequality can be divided by y, and rearranged to give

> 2K 4 7

Dy 2 oYo " 4Kgyo" .

The minimum value of the right-hand side of this relation occurs at
[}

yo/z = K /K, and consequently

2K

K,

2
D;2 - & . (217)
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By differentiating equation (209) for U; it is easily verified that the
above value of y, minimizes U; when D; is given by the equality in
(217); hence the equality in (217) can actually occur.
The values of D; and E, for a stationary solution y, can be
evaluated from (212) and (214) by using the fact that Y = y' = 0 and

Z=y' =0, Then

[}
D = 4Ko yo - 6 Kg¥g2 (218)
3
E, = 2K, Yo¥- 2 Ko ¥ (2189)

for a stationary solution y,.

The behavior of y can be described by trajectories in the phase
plane of Y = y' versus y as shown in Fig. 7. Y as a function of y can
be obtained from (206)., The trajectories are symmetric about the y-
axis, The expression for Uy, (209), shows that the only effect of in-
creasing Ky is to lower the curve of Uy as y increases but eventually
the yZ term dominates and U, becomes positive. Hence the motion is
always bounded since E; € 0 and the beam never blows itself com-

pletely apart no matter how large the space charge effect is,

Since Y = y' = dy/de,

1 dy
| -
- s [/
\ 4 [El +D1y+4xsy’¢-xoy2,”—

dﬂsglz
Y
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E1=0

D, <0

&,

In each case the physical region corresponding
to E; £ 0 lies on or interior to the curve for E; = 0,

Figure 7. PHASE PATHS
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from (206). Let A® be the change in @ as y goes through one oscil-
lation, Integrating the above expression and using the fact that the tra-

jectories in the phase plane are symmetric about the y-axis,

Y2
dy
Ad = \/E'S 3 . - (220)
; 2 /2
y1E31+D1y+4Ksy zxoyZJ

The frequency of oscillation () is then

N =z (221)
1t is possible to express A® in terms of elliptic integrals of the first
and third kind but these are of little use for the present purposes. For
the case where D, <0 and E, =0, 49 can be evaluated exactly with

the result fl = ‘)o .

Now consider the case for radial motion with n = 2; the treat-

ment is similar to the above, Equation (202b) becomes

dz _ 2Kg _ .,
dy y o

and integration gives

Z

D2+2K'1ny-4l{oy (222)

where D, is the constant of integration., With this, (202a) becomes

1
'?:%(YZ) = Dp+2Kg lny-4K,y

and integration gives
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P=z=-Y =E,+(D;-2K)y+2Kgylny-2Kgy? (223)

where E; is the constant of integration, Considering E; as the total
energy and P as the kinetic energy of a fictitious particle, this can be

written

E, = P+, (224)
where

U, = -(D,-2Kg)ly-2Kgylny+ 2Koy? R

is the potential energy. The shape of the U, - curves have the .o
general characteristic s as in the previous case, In the same manucr

as the previous case'it can be shown that
E, <0 (226)
and
D, 4K -szln(Kﬂ). (227)
8 'R'(')

The motion is again always bounded. For a stationary solution y,, the

values of DZ and EZ are
D2=4Koyo-ZKslnyo (228)

E; = 2Kgy - 2 Ko y& - (229)
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An integral for A® can be written but it appears to be nonintegrable,

The above nonlinear theory for the free-beam behavior shows
that the beam width oscillates if the conditions for a stationary solution
are not satisfied. Furthermore, the oscillations are always bounded.
It is also apparent that the amplitude of oscillation may be quite large,.
This could result in the loss of particles either by making the ampli-
tude of oscillation for single particles large enough (i,e., exceed their
stability limits) that their betatron oscillations are unstable or by
directly driving the particles into the vacuum chamber walls,

G. Linear Theory of Resonances

A linear theory of beam resonances driven by the gradient bump
is now developed. For simplicity assume the beam is launched so that

X % 0, After putting
y = wz , (230)
equation (183) becomes

YA, - QY -Ke(4-m) Lo -2g'y = 0. (231)
y

Now linearize the above equation by considering small perturba-

tions about a stationary solution, Assume that

Yy =y te (232)
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where yo = wc‘,)' = a constant is a stationary solution and je} < < y,,
and also assume g and g are small of first order. Substituting (232)
in (231), using the first-order approximation for y~n/2 given in

Section E, and keeping only terms up to first order, one obtains

e''' + ﬂze' = Z)'o g’ (233)
where
4 ) L
N=2y |1-3820 (234)
4 ;)oz wg

is the free-beam oscillation frequency as obtained in the linear theory

of Section E. Integration of (233) gives

e + _(Lze=2yog+c (235)

where ¢ is a constant of integration. This is the equation of a driven
simple oscillator. The gradient bump g can be written as a Fourier

series:

g=) Ene™% mo=0, £1, £2, 0. (236)
m

Then, if f) is an integer m and the corresponding g, # 0, the oscil-
lator is being driven on a resonance and e will contain a sinusoidal
term having an amplitude which grows linearly with 0. Thus reso-
nances which cause the beam width to grow can occur when f] is equal

to an integer:
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{) =m; m=20,1,2, -, (237)

When the space charge effect is negligible (Ks = 0), (234) gives
=2

A and (237) becomes 2 \/0 = m. This is the usual relation for

half-integral resonances obtained from the single-particle theory when
space charge effects are igr.mred. When K is retained in (234), then
L) decreases as the beam current is increased and a resonance is ob-
tained when f) has been decreased to an integral value. This result
agrees qualitatively with that of the elementary treatment of Chapter II
where the effect was to put each particle onto a half-integral resonance,
In this linear theory the beam grows indefinitely on the reso-
nance because { is constant. Eventually it must stop growing because,
by loss of particles, the beam current is reduced thus taking () off the
resonance. Another mechanism for stopping the growth of the beam
width may exist. Expression (234) for ) is based on the linear theory
but, in the nonlinear theory of the free beam, a preliminary examina-
tion of L1 in terms of integrals such as (220) indicates that £ is a
function of the amplitude of oscillation. Therefore it is possible that
after a certain amount of growth 1 will be removed from the resonance
thus stopping further growth. A nonlinear theory based on equation
(231) is required to determine how serious the resonances are, An at-

tempt in this direction has been made but with no success. In the next
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chapter an approach for a nonlinear theory of resonances is sketched
out which may be successful in the future.

H, Summary

The following results have been obtained for the behavior of the
beam. The motion of the center of the beam is independent of the space
charge forces as previously conjectured; it is the same as the betatron
oscillations of a single particle under the influence of only the external
forces. Space charge effects therefore cannot put the center of the
beam on an integral or half-integral resonance,

An approximate stationary solution exists for the free-beam be-
havior. If the conditions for a stationary solution are not satisfied
under free-beam conditions, the beam width oscillates; however, no
matter how strong the space charge effects may be, the oscillations
are stable (i.e., bounded). The amplitude of oscillation may be large
enough under appropriate conditions to cause the loss of particles.

A linear theory for resonances driven by a gradient bump indi-
cates that resonances exist in qualitative agreement with the half-
integral resonances predicted by the elementary treatment of Chapter 1I.
The seriousness of these resonances cannot be determined from the
linear theory and the solution of this problem awaits the development of

a more complete nonlinear theory.



VI. CONCLUSION

A, Limitations of the Theory

A theory of transverse space charge effects in particle accel-
erators has been developed in the preceding chapters which is based on
~ several assumptions, Therefore, there are limitations on the theory
depending on how closely the assumptions are satisfied in actual ac-
celerators. Some of the limitations are not discussed at all or in de-
tail because to do so would require the solution of problems which have
not yet been solved. The theory may be extended by dropping assump-
tions in order to remove some of the limitations but it may not be clear
how to obtain an adequate solution. Some of the possible extensions of
the theory are briefly discussed in this section but the more immediate
extensions are sketched out in more detail in the next section,

In the last chapter a linear theory of resonances driven by a
gradient bump was developed. Since it applies only to small perturba-
tions about a stationary solution, it does not tell whether the beam
width continues to grow indefinitely or not. To remove this difficulty
a better method is needed to investigate the solutions of equation (231),
An approach which may be useful is discussed in the next section,

Consider the assumption that the longitudinal variation of the
transverse distribution at a given time is negligible for the calculation
of the internal force. If the transverse distribution in every transverse
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slice is initially the same, then the free behavior of each slice is
identical; each slice oscillates in synchronism and there is no longi-
tudinal variation in the transverse distribution. But, if the initial
transverse distribution varies longitudinally in the same manner as the
transverse distribution varies in one slice while the slice is moving
longitudinally, then the assumption requires Aw << A where Aw is

the variation in w and
2 . .
A= a R = the wavelength of the beam oscillation,

Using {1 =2 ‘)o for the maximum value of f1, the requirement be-
comes

Aw I
< I

For values of Aw of interest, this criterion is usually satisfied.
Another assumption for the calculation of the internal force was
that the longitudinal variation of the longitudinal distribution at a given
time is negligible. Supposae the beam is bunched longitudinally by the
accelerating electric field, Let £ be the longitudinal length of a bunch.
Then, for a transverse slice well away from the ends of the bunch, the
above assumption requires w <<_.£. In many cases this will be satisfied
but then the space charge factor K must be calculated on the basis of

the local beam current, not the time-averaged beam current.
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A third assumption for the calculation of the internal force was
that the propagation time for the electromagnetic field is negligible. I
the fields created only by the charge near the slice are considered to be
important, then the assumption requires that the time to propagsate the
field over the width of the beam be much less than the time for one

oscillation of the beam width; i.e.,

fNv,
or, putting £ =2 V,,
¥ T,
R ‘)o Po

Even for Fo = 1 this is usually satisfied, However, if fields produced
by the charge as far away a8 A from the slice are important, then the
propagation time is comparable to the time for one oscillation unleas
F o {<¢ 1. So for relativistic energies there may be impbrtant effects
which have been ignored.

Now consider the assumption that the external toi'ce is linear in
x for one-dimensional motion. The single-particle theory of betatron
oscillations (ignoring space charge forces) indicates that, if the non-
linear forces are included, the oscillations are unstable when their
amplitudes exceed the stability limit, Hence a criterion for the linear
assumption is that the beam width be much less than the stability limit

which, in many cases of interest, is not satisfied. One way of possibly
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removing this limitation approximately is to assume that the particles
are instantly lost from the beam when their amplitudes exceed the sta-
bility limit, This would result in dealing with a Boltzmann equation in
which the number of particles is not constant and is discussed in the
next section, A more exact approach would be to include the nonlinear
forces in the force term of the Boltzmann equation and, similarly,
higher order terms in the power series expansion for the space charge
force could be included.

Two idealized models of the beam were assumed for studying
the radial and vertical motion separately, Each model is equivalent to
assuming that the vertical extent of the beam is much less than the
radial extent. In general, this assumption is poorly satisfied. One way
of approximately removing thia limitation would be to use the two-
dimensional Boltzmann equation (37) and define average quantities by
integrating over‘ the position and momentum of one transverse direction
to obtain a one-dimensional equation for the other transverse direction,
Some method of approximating the average quantities would then be
needed, A better way would be t0 use moments with respect to the posi-
tion and momentum of both transverse directions and apply the method
of moments to the two~dimensional Beoltzmann equation,

The validity of the "slice' approximation has been discussed in
Chapter III, The removal of this limitation would require considerable

modification of the theory., The general Boltzmann equation (25) would
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have to be used. If suitable approximations could be made, some sim-
plification might be attained by reducing the general Boltzmann equation
to two coupled Boltzmann equations, one for transverse motion and the
other for longitudiﬁal motion, The first equation would be obtained by
integrating the general Boltzmann equation over the longitudinal mo-
mentum, The second equation would result from integrating the gener-
al Boltzmann equation over the transverse position and momentum.
Without carrying the program through in detail, it is difficult to tell
how far this approach would get,

Finally, consider the assumption that the number of particles
is constant, Let N be the density of particles as defined in Section F,
Chapter 1II, and let AN be the change in N in the time of one turn or
revolution around the machine., The longitudinal rate of change of N
is AN/L where L is the length of the equilibrium orbit. A criterion

for satisfying the above assumption is that

AN N . NN

L((-:\- ===
or

AN

E—((ﬂ .

During the time of a multiturn injection process, this criterion will not
be satisfied, at least not during the earlier turns of injection, Conse-

quently, the oscillations of the beam will be influenced by the rate of
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injection. This aspect of the beam behavior can bg included in the
theory by modifﬁng the one-dimensional Boltzmann equation (83) to
allow for changes in the number of particles.

B. Some Extensions of the Theory

In this section some extensions of the theory are sketched out
which, in the future, may allow the investigation to be carried out far-
ther than it has been., In Chapter V a linear theory of resonances was

obtained by linearizing equation (231):

y"'+4(Ko-g)y'-KS(4-n);nx7'.E-Zg'y=0 (231)

where y = wé and g is the gradient bump, Instead of linearizing, a
different approach is needed to investigate how serious the resonances
are, With the definitions Y =y' and Z = Y', equation (231) is equiva~-

lent to the following system of first-order equations:

y =Y (238a)

Y' = z (238b)

Z' = 2gy+Kg(4-n X _-4(Ko-g VY. (238c)
7

For g 2 0 equations (238) are the same as equations (199) for
the free-beam behavior and, for this case, it was possible to find two
integrals of the system, For the moment consider the case of vertical

motion with n= 1, The two integrals are equations (204) and (206)
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which contain the constants D; and E;. Let D; and E; be replaced,
reapectively, by variables § and « in equations (204) and (206) and
consider these equations as the definitions of the new variables P and

o
z=P+6x,y"‘-4K°y (239)
%YZ=¢+fy+4KBy,/"-ZKoyz. (240)

Transforming from the variables y, Y, Z to the variables y, o, [

equations (238) with n = 1 become

y' = Y . (241a)
o« = -y p' (241b)
p =4Yg+2yg, (241c)

where Y is a function of &, P , and y by equation (240). H g =0,
equations (241) give o = P. = 0 or « and p are constants of the mo-
tloh corresponding to the constants E; and D,. Equation (240) for
various fixed values of o and P specifies a family of trajectories in
the y-Y phase plane, A point in the phase plane can be specified by
giving the values of &« , P » and y. With the perturbation g applied,

of and P will vary with @ as determined by equations (241),
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Similarly, for the casg of radial motion with n = 2, the inte-
grals (222) and (223) can be used to define new variables « and lﬂ by
replacing E, and D, by & and F , respectively., Equations (238)
then transform into equations (241) as before, the only difference being
the functional dependence of Y on e, /’ , and y through equation
(223) with E; and D), replaced by & and A - In either case Y is a
function of & , ﬂ , and y: Y=Y(¢t,F, y).

An "angle'" variable Y is now defined as follows, Let

y
= = d{ :
® ®(¢'f’ y) j T2, p B (242)

and

n _{'),(ot.,:) 2 Y(“aF-E) (243)

where the latter integral is taken over one complete circuit of the
trajectory in the phase plane specified by o and (3 . Then VY is

defined by

Y= N®. (244)

This relation can, in principle, be solved for y as a function of &« ,
P , and Y which can be used to eliminate y from equations (241) to

obtain equations for o, F , and Y . These new equations can be
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written in the form

«' = ala,g,Y,0 (2452)
g = Ble,f,Y,0 (245b)
Y =D, pr+cla, g,y 0 (245¢)

where A, B, and C are periodic with period 2 in both ¥ and 6.

These equations can then be written

o = Q) Ay, Y Y (246a)
m,n
p = Z p__lmY-nd (246b)
m,n
Y'=0n+ Z: Cmn ol(mY - n@) (246c)
m, n
where the A

mn’ Bmn’ and C, . are functions of & and F . Suppose

the system is near a resonance being driven by the Fourier components

+ i(mY -no)
ot

where m and n are fixed, Transforming to a new variable

the Fourier components which are not driving the resonance become
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rapidly fluctuating terms compared to those driving the resonance, It
is assumed as an approximation that the rapidly fluctuating terms
average to zero and may be ignored. Then, after transforming to _)_’

and dropping the rapidly fluctuating terms, equations (246) take the form:

o« = acos(mY+ 3‘1) (247a)
F' = bcos(mY + SZ) (247b)
_)’" =ﬂ-%—+ccos(mz’+33), (247¢)

where a, b, c, and J1 are functions of « and g 81, Sz, and
8 3 are constants.

The system (247) is to be investigated for stability, It may be
possible to do this by an extension of the Moser technique, 25 Moser's
method applies only to Hamiltonian systems. To illustrate, suppose

there were just two equations:
d' = acos (mY + 81)
Z' =ﬂ-% + c cos (mY +83).

where a, ¢, and (1l are functions only of o , If fl = 83 - g— and

.1 da
m Ju '

function of the form

c= then the system is Hamiltonian with a Hamiltonian

H(a,Y ) = F(x) + G(a) cos (mY + 83)
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which is a constant of the motion; i.e., independent of 8. Using polar
coordinates with o being the radius and )_’ being the angle, constant
values of H (&, ¥ ) define trajectories of the system. By means of
these trajectories and transforming back to the original variables it is
possible to determine the stability of the system. Moser's method con-
sists of finding the transformation from the original variables to the
new variables which results in a Hamiltonian function which is a con-
stant of the motion, The transformations from equations (238) to equa-
tions (247) is, in fact, Moser's method except that a constant Hamilton-
ian is obtained,

The equations (247) are not Hamiltonian, An extension of
Moser's method would be to find a function of &, g » and Y which is
a constant of the motion, If this could be accomplished, then trajecto-
ries of the system could be obtained with which to determine the sta-
bility, If a constant of the motion cannot be found, it may be possible
to investigate the stability by a topological study of equations (247).
From these equations one could determine trajectories in the o 'G ‘).’ -
épace along which ot' =0, P' =0, or _Y_' = 0, From a study of these
trajectories and equations (247) it may be possible by topological argu-
ments to show when system trajectories are stable. If none of the
above methods work out, one could investigate solutions of equation

(231) numerically with computer studies,
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Now consider the extensions of the theory which are obtained
when nonlinear forces are allowed in the one-dimensional Boltzmann
equation with all the other assumptions still retained or by using the
two-dimensional transverse Boltzmann equation. If the space charge
force is allowed to be nonlinear, an approximation for its dependence
on some of the higher moments may be needed. If the two-dimensional
Boltzmann equation is used, then moments with respect to position and
momentum in both transverse directions are needed., In all these cases
a closed set of moment equations could be obtained if appropriate ap-
proximations could be made but there would then be a larger number of
moment equations than before, This set of equations would probably be
too difficult to handle analytically but a numerical investigation with a
computer could be made.

Finally, consider the situation which results when the assump-
tions in the previous chapters are retained except that the number of
particles is allowed to vary, Equation (83) is then replaced by the fol-

lowing one-dimensional Boltzmann equation:

G P  9G, g 3G =
_a_f_+mY0 7Y+ 37 H {248)

where G (x, p, t) is the distribution function and H (x, p, t) deter-
mines the time rate of change of G due to the injection or loss of par-
ticles; i.e., H (x, p, t) dx dp dt is the number of particles added to

the system in time dt in the element dx dp of the phase space at the
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point x, p. Let
G({x,p,t) = N{t)f(x, p, t) (249)

where

N‘(t) = fdx dp G

S‘dxdpf = 1,

N (t) is the same as defined in Chapter III but now it may vary in time
and f is again a probability distribution function., Substituting (249) in

(248), dividing by N, and rearranging terms gives

df, p df4Fpdf=lpg-1dVg
It

Changing from t to @ by the relation v, t = R8 and using the same

symbols f, N, and H after the change, the above equation becomes

of of R of R 1 N'
2 + K + I F = —~ - H-~- f 250
3e RPN tTEFS T wwE Y (250)

where N' = dN/d9, This equation is the same as equation (126) from
which the moment equations were obtained in Chapter IV except that

now there are additional terms on the right-hand side of the equation.
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So the moment equations will be the same as before except there will
be additional terms on the right-hand side and the factor K, (cf. (166))
for the space charge force will be a function of 8 through the depend-
ence of K, on N (8), Let Lk be the jkth moment of the right-hand

side of equation (250):

- R 1 iokyg- N
ij Vo N fdx dp x/ p~ H E‘Mjk
= 1 - N
= = ij Tq- M]k (251)
where
Hy = .‘.,f_‘_gdxdpxj pXH, (252)
. o

The moment equations (171) are now modified by placing ij with the
proper values of j and k on the right-hand side. There must be added

to these the equation for j = k = 0 which is
. 1 - N
Mo’o = N Hy, 0 X M 0
or, since Mo,o =1,

]
N = Ho,o-

The new set of moment equations can be used to investigate the
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effects of the injection process. In this case H (x, p, 8) is a specified
function, Equation (253) can then be solved for N (8) which can then
be inserted in the remaining moment equations. The quantities ij
are known and the modified moment equations still form a closed set.
This set of equations would probably be too difficult to handle analyti-
cally but computer studies could be made,

The new moment equations perhaps could be used also to in-
vestigate the effect of the loss of particles when their amplitude of
betatron oscillations exceeds the stability limit. As an approximation
assume a particle is lost instantaneously when its position x becomes
equal to X; or X, where X1 and X, are fixed positions on each side

of the equilibrium orbit. It can be shown then that

H(x, p, 8) = 2 pr[S(x-X)+S(x-X)] (254)
m Yo 1 2
and that consequently
ij = 2K; N (O)Z;Xi J‘dp pk+ 1 f (Xi' p, 8). (255)

In general, the ij are functions of all the moments and hence the new
moment equations do not form a closed set, Perhaps it may be possible
to approximate the ij by assuming a definite form for f in (255)
which depends on.only the first few moments so that the set of moment
equations becomes closed. This would certainly be crude but might

give useful qualitative results.
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Some insight into transverse space charge effects in particle
accelerators has been obtained in this investigation but there are
several limitations which were pointed out above, Thus there is a
strong need for the theory to be extended and it is hoped that this is

accomplished in the future,
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1. p. 105: equations (165) should be

K
B, = 0 and B; = 2 Gk o 72
vo W1 wh

2, p. 105: equation (166) should be

Kk, = RCE

Vo

.

3. p. 108, line 14: the expression for K, should be

K, = RCk
Vo
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