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ABSTRACT 

Two basic configurations are considered in this report: (l) a 

resonant cavity with a single input waveguide of vanishingly small cross-

sectional dimensions}for which the pressure in the resonator and the 

reflection coefficient in the waveguide are investigated. Particular 

emphasis is laid on the behavior around a resonant frequency of the 

cavity. (2) a cavity with an input and an output waveguide (a "filter tI). 

The transmission properties of that structure are investigated around 

resonance. Scalar phenomena are considered for simplicity. 

*AEC Research and Development Report. Research supported by the 
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I. Introduction 

The excitation of a cavity by an input waveguide has been analyzed 

quite extensively in the literature. It is well known# for example# that the 

cavity behaves as a reactive load# and that this load reduces to an (.t, c ) 

resonant circuit in the vicinity of a resonant frequency. In this report# we 

investigate the resonance phenomenon by methods which are somewhat ~if­

ferent from the traditional ones. lOur analysis shows that the problem can 

be formulated in terms of an integral equation# and that the latter can be 

solved explicitly in the limit 'of small cross-sectional dimensions of the in­

put waveguide. To enhance the simplicity of the mathematical treatment# 

and yet conserve all the essential features of the method# attention is 

restricted to a treatment of the scalar (acoustic) problem. The pertinent 

configuration is shown in Fig. 1# where both resonator and input tube have 

perfectly rigid walls. The resonance phenomenon is investigated under the 

assumption that a pressure wave of amplitude t is incident in the input . 

waveguide. Particular interest resides in an evaluation of the reflection 

coefficient in the tube an~ of the pressure in the resonator. The statement 

is often made that the pressure becomes infinite at resonance# and that the 

finite value observed in practice is the result of the lossy character of the 

walls. This statement is not true in the conditions of Fig. 1. Here the 

pressure in the resonator remains finite even if the walls are- perfectly rigid. 

1J. C. Slater# "Microwave Electronics" Ch. 4# D. Van Nostrand Co. # Inc. 

Princeton#·1950. 
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The analysis of the simple structure of Fig. 2 lends support to that asser­

tion. In the "limit" geometry of Fig. 2 b. where tube and cavity have the 

same radius. it is found that the pressure at F remains equal to 1. ~ in 

the whole frequency range from zero to /t.:. ,%, (value which corresponds 

to the lowest resonant frequency of the cavity). No resonance effects occur. 

However. resonance effects become apparent if the radius of the input tube 

is made to decrease from its initial value b. As a decreases. the resonance 

curve becomes more and more peaked. and the Q of the resonator becomes 

larger and larger. 2 It is our purpose to analyze these effects quantitatively 

for the general type of resonator shown in Fig. 1. We characterize the size 

of the input guide by a characteristic length ~ . 

II. An Integral Equation for the Velocity in the Aperture 

The normal component of the velocity in the aperture is proportional 

to The actual relationship is 

where f is the mass per unit volume and oS is the velocity of sound. An
• 

integral equation for!J (or V:J- ) can be obtained by (l) expressing the'Ot () 
pressure in the tube in terms of the value of ~ in the aperture (2) ex­

'1>f 

pressing the pressure in the resonator in terms of the same function (3) 

2This is the "loaded Q" of the cavity. as defined. for example. in J. C. 

Slater. loco cit. 
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equating the two values of the pressure at all points of S. We start with an 

evaluation of the pressure in the~. The pressure can be expanded in 

terms of a set of "Neumann" eigenfunctions e.r (:I.,~) in the following 
""''''' 

manner 

where the r' s satisfy 

(1) 
'a\(....... : 0 . ,.,.. ~ c.� 

J{)"l"\.�

51.(2. ~s::: I 
S ~'" 

It is to be noticed that ~ ~ with eigenvalue zero, is one of the eigen­

functions of the set. To determine the coefficients A (3") ~ use must be 
"""'V' 

made of Helmholtz I equation 

\Jl. r .,.. ~2.r :: 0 (2) 

A few trivial steps lead to the expansion 

-rj*r t ... ! 
e of- L. A e.. 'r (", d) (3)""","'~". ~". 

where .. It has been assumed, in the derivation of 

Eq. (3), that the operating frequency is sufficiently low for the lowest mode 

only to be propagated. This condition is automatically fulfilled in our 

problemJbecause the cross-sectional dimensions of the guide are vanish­

ingly small~ and the frequency range of interest is centered on one of the 

lowest resonant frequen'cies of the cavity. The quantity K appearing in 

- 5 ­



10 

MURA-637 

Eq. (3) is the reflection coefficient~ whose magnitude is equal to one when 

the cavity is lossless. Both K and the unknown coefficients A_... can be 

expressed in terms of ~ (;x, 1 h=..!.-. !t I . This is done by setting the 
Pt, ~"5 3:0� 

z-derivative of the right-hand member of Eq. (3) equal to d(~' 1) in the� 

aperture plane. The result is 

(4) 

The pressure in the resonator can be obtained by an expansion in 

terms of the Neumann-type eigenfunctions of the resonator. These are 

defined by 
2­

Q2.c) + -k ¢ =0 
J.~r ~~'I ~(J( 

'() <tet = 0 Ak t:J... ~IVW (5) 
11"" ~ 

J f-. 1 

d.V"JtII ~ 
IOne of these normalized eigenfunctions is -, and the corre sponding

'IV 
expansion term is the average value of the pressure in the resonator. We 

write 

(6) 

.To determine the expansion coefficients, use must be made of Eq. (2). It 

is to be noticed~ in this respect, that the expansion of V~ cannot be 

obtained by termwise differentiation of the right-hand member of Eq. (6). 
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A separate expansion must be used 

and the relationship between the B' s and the C's then follows by an 

application of Green's theorem. 

c =J 4> V'r,tV" Jr V'~ .IV-!-J [~ ~ -,.~ ]"<,S
.J..~t	 "J..(~r "d./J( S~S' .J.pr'V,.. -?,.. 

:: _kl B _ j 4> ~ ~5
 
J..~' .,{f t oS .I.~( 1) t� 

On the� other hand, Eq. (2) implies that C is equal to - k' B 
~~6	 ~~1 

Equating both values of C. gives B and the pressure in the 
el.(6( ,,/.~'( ) 

resonator follows as 

(7) 

The desired integral equation in ,(.x., j) is obtained by equating the right-

hand members of Eq. (4) and Eq. (7) for points in the aperture S. 

III.� The "Small-Aperture" Limit 

In determining the smaH-aperture limit of the equations.. it is con­

venient to express quantitites such as the transverse coordinates in the 

tube, the element of area of the cross section, or the eigenvalues and 

eigenfunction of the guide, in terms of the characteristic length ~ . 

Thus 

- 7 ­



Ii 

MURA-637� 

:)c. :: lX 

d -== iy 
~ 

""$ = ~ tAli 

-� _'11\�-i/-_... 
k2. 

~.. 
tf,.~ (X, '1 ) = ~ ~"" ( 'Yo..1 Y) 

1. 
where X, Y, fAd ,K and Il are dimensionless quantities. In terms 

~'Y\ """""" 

of these new variables, the pressure in the aperture becomes, on the tube 

side, 

(8) 

The pressure in the resonator, given by Eq. (7), can be simplified 

by recognizing that S is a vanishingly small area, over which tf (ii:') 
"'~'( 

is practically constant for the modes of interest. A noticeable variation 

across the aperture occurs for modes whose resonant wavelength is of the 

order of ~ , but Eq. (7) shows that the contribution of these modes ap­

proaches zero as i -+ 0, provided the frequency remains in the neighbor­

hood of the lowest resonant frequencies. For all modes of interest, then 
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where r is a point in S, ! is the radius vector from r, and R is the 

vector with projections X and Y. The pressure in the cavity follows as 

Fig. 3 

Equations (8) and (9). when applied to point P, yield values of the pres­

sure which must be equal at all frequencies. Hence, in the limit of 

small ~ , 

J 
or. equivalently 

1- j Ie i·l1-(~)
 

1T SIt t' .M. ( -12 ) 
(10)� 

K::: ­
l-j~4(.~.M.(.) 
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for a given frequency. When ~ is a very small (but fixed) quantity. the 

limit of these expressions for ~ ~ 0 is. with i,2.d::.s • 

~~ :: 2 ~~ f [,- i k r -to.­ o. ] 

K :: 1- 2~ k ~ (11) 

Clearly, low frequencies yield a value of K equal to L As the frequency 

increases. the argument of K becomes more and more negative and. from 

Eq. (l0). reaches the value - 90
0 

at a wavelength of the order ofl 7T" V . 
oS 

0
It reaches the value - 180 at the frequency for which M (k) =O. Above 

that frequency. M (k) becomes negative. and K is given by 

(11 ) 

The pressure in the resonator follows from Eq. (9) and Eq. (l0). It is 

] 
. (12) 

IV. Behavior Around Resonance 
l. £.)... 

In Eq. (9), the denominators ... -~~( vanish at the resonant 

frequency of the corresponding mode. This does not mean that the pres­

sure becomes infinite at these frequencies. To see this. notice from Eq. (8) 

that the pressure in the aperture must remain finite at all frequencies, as 

implied by the value 1 of the magnitude of K. In consequence, ~o....J 
kl._ k~( 

must remain finite at the resonant frequency. Assuming, for simplicity. 

that the mode of concern is the lowest one, the finite character of 
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implies a power series expansion of the form 

This expression, upon insertion in Eq. (7), yields 

for the pressure on the tube side of the aperture. Similarly, insertion in 
. 

Eq. (8) gives the pressure in the resonator 

"""CO "At i) ] ~ -~ ..... /~(lJ- --­
[ £. ilL 2.. 

~ I I 

Equating the two pressures at P gives 

whence the pressure in the cavity becomes 
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tP, (ii) 
of·· • 

fP,~(P), 

(13) 

~i.2 ~~P) 
The pressure is down to ~ a of its resonant value when It= Is ± -~.2~-'"---

It follows that the bandwidth-to-center frequency ratio is equal to 

tJk _ ~f.2 4>/(~) 
and that the Q of the cavity is given byT- ., 

(14) 

Similar arguments show the reflection coefficient in the input tube to be 

(15) 

The results of the preceding analysis make it possible to predict 

how the argument 9 of the reflection coefficient varies as a function of 

frequency. We already know that 9 is vanishingly small at low frequencies, 

reaches a sizable negative value for wavelengths of the order of ~ , and 
.s 

subsequently levels off until the first resonant frequency is approached. 

Equation (11) indicates that the "plateau" occurs at a value of the argument 

slightly below - 1800 
• The behavior of K in the vicinity of the resonant 
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frequency is governed by Eq. (15) ~ which indicates that the argument· 

reaches a value of - 3600 at resonance~ and that the slope of the Q (k) 

curve at that frequency is proportional to 1 ~ that is~ to 1 
t2. s 

_--------t---•
\ I� 
\ I� 
\ I� 
\ I� 
\ I� 
\ I� 

~ -1'" \ 1� 
' ..... -----~ I�" \ I� ~ \ I� 

II , I� 
r" \,Q) 

II 

- 2.". -- --- ----\
\ 

o '-------t----. It 
\ i,I 

Fig. 4 Fig. 5 

The frequency dependence of the pressure at a point in the 

resonator can be predicted by similar methods. Equations (l Z) and (13) 

. - ,
show that ;(11.) is proportional to t far away from resonance~ and that 

. ~(~)
Its resonant value is..t' ~ independently of the size of the input 
. .. (r) 
tube. The width tJlt. of the peak is equal to ~ 6 t 2. Q,ll P) ~ and is 

seen to be proportional to the aperture area S. 
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V. Cavity Filters 

The techniques developed in the preceding sections can be extended 

to cavities having both input and output waveguides. Let us assume that an 

incident wave of amplitude r exists in tube t, and that this wave produces 
~flr • - -j#f3"o 

a reflected wave k ~ e in t, and a transmitted wave T p. e. in 

to. To evaluate the magnitude of these waves, we introduce two (unknown) 

functions: ...~ in S . ~ I ' 
v,o 30.. 0 

Fig. 6' 

It is an easy matter to express the pressure in the tubes and in the cavity 

in terms of g and g'. We shall not give these relationships explicitly in 

the general case, but will particularize our equations to guides of very 

small cross section. The area of the cross sections can be conveniently 
t ,~ , 

expressed in terms of a length ~ . We write S~ "d and ~:: i. 6 . 

The pressure in S is still given by Eq. (7), and the pressure S' is, 
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similarly, 

~ • - 1,. ~: - ~ L \t·,y)1,,/ (x:,,:) B~,. ('1; y~) ~ ~: 
Po j .....,..........."" ~I (16)� 

where Band R correspond, in the output tube, to A and I(
""""'" ~... """... -."" 

in the input tube. The pressure in the cavity is now 

We are particularly interested in the frequency band around a resonant 

frequency, say the lowest one. The average velocities can be expanded 

in a power series of (It --',) 

~~: ~o+ (1t-.,)~U)'t'(Ii-.')~(~)T(* ..~,f~C~)-r ... 
, ) J..L' .LL~' .Ll 1 , (18) . 

~cw : ~o of" (~- 11',)"",- (() T (l( - fC,) 't'\ (t) 1" (TC-lf,) /,) (I) ...... 

The requirement of boundedness of the pressure in the aperture yields the 

condition 

, 
Additional relationships between ~o I and the other expansion co­'0 
efficients are obtained by equating the expressions for the pressure on 

both sides of the apertures Sand S'. The calculations are long but 

trivial. In the limit of small i.. , we find 
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S q,l.(p) + Sf <P,L(pj 

S <If (f) ~ (pI) 

S t12. (p) + Sa'<p'J.(fl)
I I 

S ~2.(P) 
~	 - It L- JC, [S <?,l( f) + ~ '<;'t(fj] 1 (19) 

S 4>, ( f') f.P, (pi) 

~ - - f i ~, [s tP,l.(f) +S/~(f')J~ 

, J. s c;, (P) <p, (f:,) 
.)l\ '= f d'� ", 

[s ~2.(f).,. 5'<;/'(f;J 2­

These remarkably simple formulas vividly illustrate how the wave 

transmission process takes place. The transmission coefficient. for 

example. is given by 

Its� magnitude is down to ~ of the resonant value at frequencies 
2. a. 

.s <P, CP).,. ~I <P, (pi) 

.l.. 

In consequence. the bandwidth-to-central frequency ratio is 
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2. I 2­Sq, (r) .,.. ~ ~ (r'J 

fe, (21) 

This relationship characterizes the filtering properties of the cavity. The 

renection coefficient in the input tube can be obtained by similar techniques 

as 

It is to be noticed that K is smaller than 1 in absolute value. This is to 

be expected because some energy is transmitted down the output tube. In 

fact. the reflection coefficient at resonance is equal to zero (and the cavity 

is matched to the input tube) when .s ~1.if): S ~ l.(f'). 
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LIST OF CAPTIONS 

Fig. 1. Resonant cavity with input waveguide. 

The cavity volume is bounded by Sand S'. 

Fit. 2. Circular cylindrical cavity with coaxial input-waveguide. 

Fig. 3. Coordinates in the aperture S. 

Fig. 4. Frequency dependence of the argument of the reflection coefficient. 

Fig. 5. Frequency dependence of the pressure at a typical point in the cavity. 

Fig. 6. Cavity with two waveguides. 

, " The cavity volume is bounded by S, Sand S . 
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