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ABSTRACT

Two basic configurations are considered in this report: (1) a
resonant cavity with a single input waveguide of vanishingly small cross-
sectional dimensions)for which the pressure in the resonator and the
reflection coefficient in the waveguide are investigated. Particular
emphasis is laid on the behavior around "cl resonant frequency of the
cavity. (2) a cavity with an input and" an output waveguide (a "filter'').
The transmission properties of that structure are investigated around

resonance., Scalar phenomena are considered for simplicity.

*AEC Research and Development Report. Research supported by the
U. S. Atomic Energy Commission, Contract No, AT(11-1)-384.
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I. Introduction

The excitation of a cavity by an input waveguide has been analyzed
quite extensively in the literature. It is well known, for exémple, that the
cavity behaves as a reactive load, and that this load reduces to an (£ C )
resonant circuit in the vicinity of a resonant frequency. In this report, we
investigate the resonance phenomenon by methods which are somewhat dif-
ferent frqm the traditional ones. 1 Our analysis shows that the problem can
be fox;mulated in terms of an integral equation, and that the latter can l£>e
solved explicitly in the limit of small cross-sectional dimensions of the in-
puf waveguide., To enhance the simplicity of the mathematical treafment,
and yet conserve all the essential features of the method, attention is
restricted to a treatrhent of the scalar (acoustic) problem. The pertinent
configuration is shown in Fig, 1, where both resonator and input tube have
perfectly rigid walls. The resonance phenomenon is investigated under the
assumption that a pressure wave of amplitude f: is incident in the input
waveguide. Particular interest resides in an evaluation of the reflection
coefficient in the>tu'be and of the pressure in the resonator. The statement
is often made that the pressure becomeé infinite at resonance, and that the
finite value observed in practice is the result of the lossy character of the

wails. This statement is not true in the conditions of Fig. ‘ 1. Here the

pressure in the resonator remains finite even if the walls are perfectly rigid.

3. c. Slater, ''Microwave Electronics' Ch. 4, D. Van Nostrand Co., Inc.

Princeton, 1950,
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| The analysis of the simple structure of Fig. 2 lends support to that asser-
tion. In the "limit" ge'om'etry of Fig. 2b, where tube and cavity have the
same radius, it is found that the pressure at F remains equal to 2 f; in
the whole frequency range from zero to ‘ﬁ: Tr/;_‘ (value which corresponds

to the lowest resonant frequency of the cavity). No resonance effects occur.
However, resonance effects become apparent if the radius of the input tube
is made to decrease from its initial value b. As a decreases, the resonance
curve becomes more and more peaked, and the Q of the resonator becomes
larger and larger. 2 It is our purpose to analyze these effects quantitatively
for the general type of resonator shown in Fig., 1. We characterize the size

of the input guide by a characteristic length & .,

II. An Integral Equation for the Velocity in the Aperture

The normal component of the velocity in the aperture is proportional

°
to ,_é . The actual relationship is

3
jefee 78

where _f: is the mass per unit volume and c is the velocity of sound. An

(o)

integral equation for %a-g (or U§ ) can be obtained by (1) expressing the

pressure in the tube in terms of the vaiue of’?k in the aperture (2) ex-

pressing the pressure in the resonator in terms of the same function (3)

2This is the "loaded Q" of the cavity, as defined, for example, inJ. C,

Slater, loc. cit.
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equating the two values of the pressure at all points of S. We start with an

evaluation of the pressure in the tube. The pressure can be expanded in

terms of a set of ""Neumann'' eigenfunctions ' (x,4) in the following
PN

P32 A )Y (xq)

where the Y 's satisfy

,
VL ¢ +‘ﬁ ‘f’“:o

ety e M e
: (1)

’o_q.f_‘:_". =0 o conbown & ’

2

e
S Y AS=)
s ™™
It is to be noticed that —‘rl_—_ , with eigenvalue zero, is one of the eigen-
S

functions of the set. To determine the coefficients A (;) , use must be
L% )
" made of Helmholtz' equation
Z .
vlr + 4 =0 | (2)

A few trivial steps lead to the expansion

. 4 {3 _
(x - é +J ? (W
P5a3) % T s e t(x/v) @
’: -n W "
r 4t e |
where x = 'kh“ - é . It has been assumed, in the derivation of

Eq. (3), that the operating frequency is sufficiently low for the lowest mode
only to be propagated. This condition is automatically fulfilled in our
problem because the cross-sectional dimensijons of ‘t'he guide are vanish-
ingly small, and the frequency range of interest is centered on one of the

lowest resonant frequencies of the cavity. The quantity K appearing in

-5 -
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Eq. (3) is the reflection coefficient, whose magnitude is equal to one when
the cavity is lossless. Both K and the unknown coefficients HM can be
]
expressed in terms of X4 J= — -t
p 3( l‘a' j Pﬂ fas 3=°
z-derivative of the right-hand member of Eq. (3) equal to 9(1, 7) in the

This is done by setting the

aperture plane., The result is

PE(D‘A’O):Z"-EZ‘—S-SS%(%‘JI)AS Z '”J;(M)‘f (x'y)As
o \———‘f——_—/ h @

| +K

The pressure in the resonator can be obtained by an expansion in

terms of the Neumann-type eigenfunctions of the resonator. Tpese are

" P -0

2.
?‘M P Ly
¢

defined by

e
.__P_ ) Mwﬁww (5)

2

J ¢, V=)

v #f
One of these normalized eigenfunctions is — , and the corresponding

Vv
expansion term is the average value of the pressure in the resonator. We
write
PR)=f, + ¢ (x) | (6)

&(l( oL(sY -((sy

"To determine the expansion coefficients, use must be made of Eq. (2). It

2
is to be noticed, in this respect, that the expansion of V/o cannot be

obtained by termwise differentiation of the right-hand member of Eq. (6).

-6 -
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A separate expansion must be used '
2
V /a‘.: H + Z C-
apy 4oy 4pY
and the relationship between the B's and the C's then follows by an

application of Green's theorem,

"(‘X J4} V/-d\/ er¢ JV+J [ m}ds

v 480 “Pr 0% 2

2
= - | B - Qéuds
é-w “pY S %(sr %3

2
On the other hand, Eq. (2) implies that C is equal to -k B
Apy gy
Equating both values of C gives B and the pressure in the
resonator {ollows as

¢ (~)
J 9(x,9)aAS + > e

Q Z T J¢ §(x,9)AS

The desired integral equation in 1( X, ) is obtained by equating the right-

hand members of Eq. (4) and Eq. (7) for points in the aperture S.

III. The '"Small-Aperture'' Limit

In determining the small-aperture limit of the equations, it is con-

venient to express quantitites such as the transverse coordinates in the
tube, the element of area of the cross section, or the eigenvalues and
eigenfunction of the guide, in terms of the characteristic length & .

Thus '

(7
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x = ¢ X
4 =Y
AS = § A&
2
b K
AN - &l—

‘{_“(1.'1): ;_“ H,;M(x,\/)

where X, )’ , Ad KMM and HMM are dimensionless quantities. In terms

of these new variables, the pressure in the aperture becomes, on the tube

A \ H’M(X,y) j

(8)

- 1} )
= 2 + ¥ 3a,/ +éz _____(_l-fg(xoyo)ﬁ (Xovo)dl,-t—(‘bw-aw i—g

M—

The pressure in the resonator, given by Eq. (7), can be simpiiﬁed
by recognizing that S is a vanishingly small area, over which ﬁ (A~ )
is practically constant for the modes of interest. A noticeable v:r(iation
across the aperture occurs for modes whose resonant wavelength is of the
order of & , but Eq. (7) shows that the contribution of these modes ap-

proaches zero as & -» 0, provided the frequency remains in the neighbor-

hood of the lowest resonant frequencies. For all modes of interest, then

¢=¢(P)+w¢'f:= ¢(f’)+iw¢.R_+--= <P(F)+ QV-F+-~
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where P is a point in S; J" is the radius vector from P, and -R_ is the

vector with projections X and )’ . The pressure in the cavity follows as

L g ¢ ;.) Y - —
b S ey 3 0 D 05 0 (27 e,
° *r’ry L I YL

|
J
|

Fig. 3

Equations (8) and (9), when applied to point P , yield values of the pres-

sure which must be equal at all frequencies. Hence, in the limit of

small & ,
R
¢ (P) ]

|+K=2+—L-M=izjud[-—“"*‘z =p!

[k BV e BBy
)
or, equivalently m
Vo= = |—jki".1‘1-(*)
e R M) (10)

T T IS jREM(E)

-9 -
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for a given frequency. When ¢ is a very small (but fixed) quantity, the

limit of these expressions for £-» 0 is, with € &= S |
¢ sV - _\_/_
l=2® g lh-ikg ] |
AN
- 1
K=1-2j kg (1)

Clearly, low frequencies yield a value of K equal to 1, As the frequency
increasés, the argument of K becomes more and more negative and, from
Eq. (10), reaches the value -9o° at a wavelength of the order of 2 7T \Sz .
It reaches the value - 180° at the frequency for which M (k) = 0. Above

that frequency, M (k) becomes negative, and K is given by

K==l 2jk £M(E) +..

(11)

The pressure in the resonator follows from Eq. (9) and Eq. (10). It is

g 2 2 ¢(P) $(X)
L=_23k i,é[\.,.)ki”(*)][—l{'"*z Y 1 v
A RV sy R*- R, - (12)
IV. Behavior Around Resonance

l L
In Eq. (9), the denominators k— é“(l( vanish at the resonant

frequency of the corresponding mode. This does not mean that the pres-
sure becomes infinite at these frequencies. To see this, notice from Eq. (8)

that the pressure in the aperture must remain finite at all frequencies, as

Juy
2L &2
o | k- By,
must remain finite at the resonant frequency. Assuming for simplicity,

implied by the value 1 of the magnitude of K. In consequence,

that the mode of concern is the lowest one, the finite character of

- 10 =
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1
k-4
9 (‘k ﬁ)m(t)-r(é é)m(&)-«-(‘k &)/g(s).‘.

implies a power series expansion of the form

This expression, upon insertion in Eq. (7), yields
_h J ) m(E)
= 2= Loa(e) (h-f) — () fe- %,
3 Y . ry [M J ]( ) +-

for the pressure on the tube side of the aperture, S1m11ar1y, insertion in

Eq. (8) gives the pressure in the resonator

Pty MO EDE) 2, (&-4.)[’““) 5 __E______p_!.(.Q_m(i)

Fe ) lkl 'ﬁ‘l\/ F! ’,‘:L 4;:(
AL AP, Y l§)
+ ——r)] | |
4)45 (P) ()45 (*)
S 14 (k- tﬁ§-u)[ Jowio|- 2k 3 )
' "(" ' # (ﬁ .({,()
X))@ [ w() w(t)
* L4, e M) %

Equating the two pressures at P gives
y R,
2 P
(P
381 43 )

M(E): -J -L’::li%t

A(8) = - [m6))’
wkt

%(E):

whence the pressure in the cavity becomes

-11 -
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v 6(T) (bt 2 ¢(x)
ee: g¥p) 7 e ﬁr(r)

4b(m) ) < )
- 43()['3”? ) Z# (#-*) (,»;.z,sl‘m))*""]

(13)
2 /2
| : gE PCP)
The pressure is down to $ df of its resonant value when ﬁ: A, *t 5] ¢
It follows that the bandwidth-to~-center frequency ratio is equal to
2 2
€ (f
4 é = s ¢’ ) and that the Q of the cavity is given by
k[ EI %
Q= /
= 4 (14)
S ¢%cr) ,
Similar arguments show the reflection coefficient in the input tube to be
K- for ;AL t-£) |
= |4+ == -—T__ ce-
JR d S ¢ (P (15)

The results of the preceding analysis make it possible to predict
how the argument @ of the reflection coefficient varies as a function of
frequency. We already know that 6 is vanishingly small at low frequencies,
reaches a sizable negative value for wavelengths of the order of E\L , and
subsequently levels off until the first resonant frequency is approached.
Equation (11) indicates that the "plateau' occurs at a value of the argument

slightly below - 180°. The behavior of K in the vicinity of the resonant

-12 -
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frequency is governed by Eq. (15), which indicates that the argument-

reaches a value of - 360° at resonance, and that the slope of the 0 (k)

i
that is, to = .
, tha O_S

curve at that frequency is proportional to _'.‘_
t

-~ 4\

Fig. 4 Fig. 5

The frequency dependence of the pressure at a point in the
resonator can be predicted by similar methods. Equations (12) and (13)
: — PR
show that r( fl-) is proportional to & far away from resonance, and that

A
_f___f{w) » independently of the size of the input
[
|

tube. The width Q)& of the peak is equal to 7 g’ d'zu’) , and is
®

seen to be proportional to the aperture area S,

its resonant value is 2

-13 -
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V. Cavity Filters

The techniques developed in the preceding sections can be extended
to cavities having both input and output waveguides. Let us assume that an
incident wave of amplitude f: exists in tube t, and that this wave produces

Jﬁg ’J k?o
a reflected wave K ’i € in t, and a transmitted wave Tfi e in

to. To evaluate the magnitude of these waves, we introduce two (unknown)

. 1
in S,

3,70

functions: 4(xY)=

Dk, Vxuye -~ 2%
o3 ” in S, and '3(::.’;5,)_ P 930

L
k

Fig. 6

It is an easy matter to express the pressure in the tubes and in the cavity
in terms of g and g'. We shall not give these relationships explicitly in
the general case, but will particularize our equations to guides of very

small cross section. The area of the cross sections can be conveniently
expressed in terms of a length & . We write S= £ and gz ¢ 6, .

The pressure in S is still given by Eq. (7), and the pressure S' is,

- 14 -
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similarly,

ool

g ik de

—z? **(“'\")! 7'()4*/1)8 (XsYo) A&
g/ ~ (16)

Yn

where B and K correspond, in the output tube, to A  and K
n Mo Ao "em

in the input tube. The pressure in the cavity is now

*(4( JPx (17)

We are particularly interested in the frequency band around a resonant
frequency, say the lowest one. The average velocities can be expanded
in a power series of (k-&;)

&
g = 9, + b )m(e) o« (BB )on(e) (- S a(e) e

b

.

The requirement of boundedness of the pressure in the aperture yields the

‘j: + (ﬁ—f!,)m.’(e) +(f2—ﬁ,)2"n’(c) f{é-*,)gA’(s)+._. (18).

condition
S PPy, - 6'4,’ (¢) g, =0

s
Additional relationships between ¢ o 9

o and the other expansion co-

efficients are obtained by equating the expressions for the pressure on
both sides of the apertures S and S'. The calculations are long but

trivial, In the limit of small & , we find

- 15 =
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2
S @
103 —2:) él L¢i ), 2,
| S 4, (f’) +$ 4? [P)
9. = ~2jh) s:lf(P) ¢,(PL)
S (P +'P(P)
e
™m = 4p S:é (P), — |
[SQur) «s'dr)] (19)
p—'3 s er) e (r)
[s'e)es'd’wi]”
s @t

.95k
" DT s ko) es'p 0]

¥ s¢) $(f)
w'= yd 1 2 Fe
[s¢ cerrs'dHe)]

These remarkably simple formulas vividly illustrate how the wave
transmission process takes place. The transmission coefficient, for

example, is given by

’ S
T lg) .y 2804 [1-ith-b) e bt
k S¢(P)+s¢(r’) SPie)rsg1e) [s¢r)e's r))] S20)

Its magnitude is down to —v% of the resonant value at frequencies

S %tp)? Slﬂz(ﬂ)
k=%, + >

In consequence, the bandwidth-to-central frequency ratio is

- 16 -
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2
b SAO <) :
ko £, | (21)

This relationship characterizes the filtering properties of the cavity. The

reflection coefficient in the input tube can be obtained by similar techniques

as
L .
25" ¢ ()

L

s L '-
T ALYy L A2
s$'e)+s'4(r)

_"j(‘k‘kl) 1 T —T
[s$ce)+s'd )]

[s¢°ce)-s'eP)] »

K= |

It is to be noticed that K is smaller than 1 in absolute value, This is to
be expected because some energy is transmitted down the output tube. In
fact, the reflection coefficient at resonance is equal to zero (and the cavity

2 : 1
is matched to the input tube) when S ? (P)= S’ é (*).

- 17 -
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LIST OF CAPTIONS
Resonant cavity with input waveguide.
The cavity volume is bounded by S and S'.
Circular cylindrical cavity with coaxial input-~waveguide.
Coordinates in the aperture S.
Frequency dependence of the argument of the reflection coefficient.
Frequency dependence of the pressure at a typical point in the cavity.
Cavity with two waveguides.

The cavity volume is bounded by S, S' and S'.
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