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Ie Introduction 

·A force-free region is obtained when the magnetic field 

generated by a current distribution J is everywhere parallel 

to the current. Such a configuration is highly desirable for 

applications where high currents and magnetic fields are 

needed, and where the mechanical strength of the conducting 

material (a superconductor for example) presents a major 

problem. The critical magnetic field for superconductors is 

higher for fields parallel to the current than for transverse 

fields, and the magnetoresistive coefficient of an ordinary 

conductor is lower for parallel than for transverse magnetic 

fields. For these reasons also force-free current configurations 

would be of interest in the design of high-field magnets. 

The basic equation to be satisfied is 

A particular solution of this equation has been known for 

some timel . For a circular cylindrical region, it is: 

-

"- = J (,\It.) ~ + T (A~) u: (2 ) 

o ~ I Y 

A rather abundant literature has 

been devoted to the search for 

other suitable field configurations 

with more general boundaries (e.g. 

surfaces of revolut~on) both for 

constant A2,3 and for the more flexible situation where A is 
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4-7 
allowed to vary from point to point In this note we intend 

to loo~ critically at the simplest version of the problem, 

obtained when the currents are contained in a cylindrical 

volume of arbitrary cross-section, and when A is constant. 

More general structures will be analyzed in future reports. 

II. Z-independent Fields 

Let the currents be enclosed in a 

simpl~onnected region R, and 

depend on the transverse 

( C.) coordinates x,y only. The basic 

equation now yields 

This entails the following equation for ~S 

¢~+~~/~)=" 
while the transverse part of ~ is related to , by

J 
[:1. ~{)tV: (4 ) 

t A ~ $ 

At the boundary, J and ~ ,. must be tangential. This implies 

the boundary condition 

f.. -~~ ~ (<:),
The value of the constant is easy to find. Remember, indeed, 

that ~ is irrotational outside R. The expression for curlit 

shows that "S must be independent of x and y. But this 

constant must be zero because of the required behavior at 

3
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infinity. We conclude that If vanishes on (c) too, or more 

explicitly, that the ~ component of a force-free field must 

be an eigenfunction of (3) with a Dirichlet boundary condition 

{ ,:: (1 ~ (c) 

The proporti~nality constant ~ is obviously the square 

root of the corresponding eigenvalue. An immediate application 

follows: the particular solution (2) cannot represent a self

consistent force~free field except if A satisfies 

J;(~~)=O 

But there is more. Equations (3) and (5) represent a 

necessary condition on If ' but by no means a sufficient one. 

Let us rephrase this in a somewhat different fashion by 

considering the eigenfunctions 
.1 

\j'l fI + A R :0 
"'" W\ 1M 

0- (C.) 

We now ask: does the current distribution 

l =J + l :: X A \i -to c1A-tLd A )C lAd l f t .....,... S ( --- ~- ~ ~ 

really generate a magnetic field'r- J inside R? In other 

""" words, is the solution of the complete problem-
Wn..t t =~ A iA.. -to ---..f.. ft "lA: """~..t~ R 

_ - til' S r --. "" ~ 

e-J. '" :I 0 ~ate R -
~ t"--,&-t' to C-

It. ~~~~~ 

i. ~t1V'-.,AA ~~t~ 
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really i: r? The analysis is clarified by examining the 
A:. 

partial fields generated by I. and J. separately, and by
I t 

writing the first and second equations as: 

1 ~ ~s /(_rr, =F 'L_x ~j
 
l-~{iA 1("-)=[i.~-I.-=>' R


S t' J t - W\ (8 ) 

~ ,.,.o..J. "'-! =0 ~.-(t R 

1-~ (\AI)\ It)-o 

We immediately see that J.J differs from FL by an additive 

constant, but also that this constant is zero because both l~ 

and F/ vanish on the contour. The ~ components are conse
"'" quently taken care of: l~ is indeed ~ j . But the 

i "'" t 
transverse components are more delicate to handle. We can 

look at the problem in two equivalent ways. First, we can 

write 

t.~ = T Jt" +-t 
..... 

and find out whether ~ is zero. We notice that both -t. and J 
t It 

have zero divergence. This means that ~ partakes of the 

same property, 1. e. that there is a function (3 such that 

;; = ""'"~ I~~ 
)( ~

~ 
" ,- p-On the other hand, (7) and (8) imply that cur1 1l.t- = ):""' ~ J.. . 

-This entails curlJ...=o or, equivalently: ~f =0 '1ftinside R. 

If we now consider !he'region outside R, we tan similarly write 

~t =~ \fI )C V=J 
tr'l'~o 

tv- 'f = .f... ~ ..L 
Ja. .. 00 2:r -t. 

where I is the total axial current flowing in the cylinder. 

At the boundary, ~ and 'I' are related by the continuity 

cond i tion on /.. This implies
t 5 
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a. ~ '" 7){J' 

~=~Vr=o 
1)'1' _ ~:=..l- ~A_ 
'()"" ~ 'l ~ ~ 'r\.-

The problem is summarized in 

I Fig. 3. Clearly, c.p and fare 
t..;.... 'I' :: .L ~ 1 
II. .. 0i0 1.Jr ,'" respectively the exterior and 

F\:,.3 interior potentials which 

appear when the cylindrical boundary (c) is covered with a 

charge density ,.= -~ + ~~ Condition;r~o is,- As a matter of fact,consequently, llQi automatically satisfied. 

it will be satisfied if, and only if, ~o is proportional to 

the charge density ~ which appears when the cylinder is 

metallized and charged. (This charge density has the property 

of creating an inside field equal to zero). Our criterion can 

be formulated as follows: 

(9) 

The second way to look at the problem is perhaps more 

illuminating. The transverse magnetic field outside has zero 

divergence and curl. It is tangent to C, and vanishes at least 

like y~ at large distances, where it.:.. lines of force become 

circular.. There is only one vector ~o ' (determined with 

the exception of a multiplicative constant) which satisfies all 

these requirements. This vector is, furthermore, ti )( e ,
j 0 

where e is the electrostatic field outside the charged
o 

metallized cylinder. If J grad Ff x iA: is to be the magnet ic 
A"", .... ) 

field inside C, it must join 

6
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c.' 
smoothly to 8 /..., , where B is 

a suitable constant. This means 

that ~A~ must be proportional
'C\")'\. 

tA: . e , ,:. ~ to "1} , and we 
'" 0 I 

again obtain condition (9). 

III. Realizability of z-independent Force-free Fields. 

The results obtained up to this point can be summarized 

as follows: 

(a) The realizability of a force-free field reduces to the 

search for a contour C possessing an eigenfunction Am whose 

normal gradient is proportional to the charge density '7 . 
(b) The magnetic field outside the force-free region must-
necessarily be a multiply of ~ , where ~ is obtained by 

rotating by 900 the electrostatic field outside the charg~d 

metallized cylinder. The multiplicative constant is determined 

from Ampere's law 

J i. j; =:r :; 11 J tA S =~ H11_ ~ 5 
(,' .s 1 s 

The two conditions appearing in equations (6) and (9) 

involve an exterior and an interior problem, and are normally 

incompatible. The problem has a solution, however, when the 

configuration has the kind of symmetry which automatically 

ensures satisfaction of (9). We are thinking here of the 

circular boundary, for which' is simply a constant, and 

where (9) is automatically satisfied for all f-independent 

eigenfunctions. General statements in other cases are 
8

hampered by the lack of known properties of the charge 

distribution,. The possibility of force-free fields 

7 
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obviously does not exist for a rectangular cross-section, where 

i Ft =A~ ~1T'~ ~. ~ 
'"""" C', T 

whil~ 7.is positive all along 
. . 

the contour and approaches infinity 

at the corners. Qualitatively, we 

feel that any excursion from the .circular 'boundary will destroy 

the possibility of force-free fields of the type we are 

and -ORinvestigating, because 7 will be large, - small, in 
~,.. 

regions of strong outward curvature such as the corCler of a 

rectangle. These views are borne out by Append~s I .. and II, 

where we calculate '1 and ~~' for a small. deformation of the 

circle. Finally, we can also check our statement in the case 

of the elliptic cross-section. Using elliptic coordinates: 
~ r= 1"0 

~f----+---t---x. (10) 

F~,. , 
we easily find that the charge density is 

Qr (~ro- f.oIllC)'4. . 1f 1 
(11) 

where Q is the tota 1 charge in COCA.~ 
D 

W\ 
-I 

• On the other hand, 
9theeigenfunctlons are 

where e and 0 refer to even and odd functions respectively, and 
th

Rand S are m order radial and angular Mathieu functions. The 

8
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normal derivative of A for	 rI:to is proportional tonnn 
I	 S (9 J.. )

~,,-1"'(J _~18)Yz' r~)~ , mil 

The equality of ? and ~= would require that ~~),",(8, ~~) be 

constant f or a11 ~, w lCh i S 0 V ous1y not e case. 10~ h" b i	 th· 

IV.	 Doubly-connected regions 

Consider a current distribution 

with a hollow central region such 

as pictured in Fig. 7. In this-central region, 1t is irrotational, 

which implies that ~t is constant. 

The transverse component "-t: has zero divergence, and can 

consequently be written as .-I-. := ~tMi r }\ ~ 
t . to~· S -

with V '(= 0 because curl i. O. On the other hand j It must 

be tangent to Cl , which requires that ~ be constant along Cl . 

This entails, from well-known results of potential theory, that -
~ ,be constant throughout the central region, i.e. that ~~ 

vanish. Here again we find out that a force-free region does 

not leave any flexibility as far as the external magnetic 

fields are concerned. Inside they are bound to be homogetn~ous 

and parallel to the z-axis, outside they must be transverse -
and a mUltiple of ~. Furthermore, the very possibilty of 

these force-free reglons is open to question. The basic 

differential problem is now, for the region between Cl and C2, 
V1 A + ",l. A :: 0
 

FI =0 ~t4 ~ /'M'~~ to 7 ~ (,,2
 (12)
~A,,= ~t a-.l ~ : 0 "'" c, 

9 
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The boundary conditions on Cl are obtained by expressing that 

grad A ~~l is tangent to Cl • Clearly, the differential 

system (12) is again overdetermined, except for a configuration 

where Cl and C2 are concentric circles of radii band a. In
 

that case, the ~ -independent modes are determined by
 

Ft= J;(XJ&.) -foCI( "'" O~) 
J'o l>to.) +.l ~(>tA)=O 

~ (~&) 1".( tJ,f>.&)=o 
which quantizes ~ and ~ . 

v. z-dependent FIelds 

We now turn our attention to a current distribution which 

is periodic in z with period L. Such a configuration is 

obtained, for example, by "developing" a toroidal region. T~ 

magnetic field can be Fourier expanded as 

{=2 (ft S.M ""11~ + F~~JrJ.) (' ~".~ Ii + ~ ~MTTI) 
~ m L,,... L ... M~ L J"'" l-

where Am' Em, F; and ~ depend on x and y only, and ~and (i~are - . 
transverse vectors. The curl and divergence of h are then 

wJr=I. [...A~l~ x F }~*Tr5;~_~';"''"''1.~.l:l-.~ _s~",1rl(i)C~ PI]
"" S "" L. L. L. , L. ~ PW\ 

... [_~{~I'" ~ )$~ W\1T1 ~ +CM""1T1. ~.'ii xS _CoiW\'JJl ~ If.~~ ]• "" L.' L L ! '" L, ~ . 
J.i" l. :: " [ ~ R +~ F] ~ ~·yrl 'i" [ .. =-L"" B + ~ ~ J~ '" 'TT'1 

"- L.. "" .... L ')¥ "". L' 
"'" 

The expansions we have written are tor the inside region R. 

Similar expansions, with primed coeffcients, can be used for 

the outside region, where curl l.::: c(v,[=o. This entails, for ht;:tJ 

;:; =_ .J:..... ~ RJ 

Jt\ 1M 7T 6 -~ "" -W fJ tw\1T A' . ",=-7 ""'. 
10 
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or, by	 elimination, 

V2R' _ (~1r)1. fI' :0
""	 ... ..... 

Let us	 examine the behavior at the boundaries. On C, h must -	 ,
 
be tangential, Le. ~. F' :-0 oJ\,. 'C)A_ =0. At large distances, 

'" ", - 1)""" - , 

h vanishes a t leE like I~, L e. A' and ~. F1 
(tJ-'l.. ',)11". )IlL . mit.," 1)Jt. 

vanish at least like ~. We are now in a position to apply 

Green's theorem to the region outside the currents: 

ff (( V·( "-('-"'.01 R.:tJ ,15=5S [r='f)1(A~) + (~A.:.)].IS 

J '~R' J L\'= A	 ~ J..< + R' ~n1\ll h.A~ 
<:. MID""" 00 "" '()J'l,... r 

Both contour integrals vanish, which allows us to conclude-that ~ and F~ vanish everywhere. A similar conclusion 

can be reached for ~ and -G~. Turning now to the inside 

fields, we notice that the fundamental equation (1) requires 

that 

~ ~	 + r-~ Fl
M

= ~ (~~ x ~~) 
~ f ",,11" .d 

M -  -r: n~ 

~ (~~)( ~_)~_~ A..... 

By taking the clivergence of the first equation, we find that 

(13) 

Furthennore, h must vanish at the boundary because it vanishes 

outside. In other words, 

A =0-
t1'" (C.)	 (14) 

11
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The OD~y solution of (13) (14) is zero. We conclude that 

there is no self-consistent force-free current dist~ibution 

or, by letting L approach infinity andfor tt¥\ * 0 

replacing Fourier series by integrals, that there are no 

~ -dependent force-free fields for periodic or infinite 

cylindrical current distribution. 

APPENDIX I: Perturbation in the 
Charge Density-

Consider a metallic cylinder 

carrying a charge A c,......e ~_ •• 
This charge� distributes itself 

f� with a density '? ' which is 

related to the potential V of 

the cylinder by the integral 

relation: 

VCP):: lTr~ S1(Q.) -c... ,_ I _ , ~o:. (15) . 
o Co Itf - It. 

The integral is an improper integral, and Q is the integration 

point. The potential must be independedt of t , which means 

that the correct charge distribution must make the right-hand 

member equal to a constant. If we consider a circular 

cylinder� of unit radius cOllered with unit density 1= I , then 

~(Cf) the constant is (with liE;-iEcal=', '~-~I1:___ ~ ~ PZ Q ) equal to 
ur(3
(~I tJ.f =0 

~ d� 21F"i'o JD .2.~I'f-~V.L 
r~~. :J. For a more genera 1 shape, (15) 

becomes an integral equation for i . Let us consider, in 

particular, a cylinder obtained by slightly distorting,the 

12 
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circle. That is, let the equation of the contour be 

~= l-rille() 

More particularly, let 1{~) be Fourier-expanded as: 
00 .. 

{C'f)= l + ~ A ~'W\" + z.. 8 ~ ~'f (16) 
Q I "" I 't"" 

In the limit of very small ~ , we ,write, to higher orders in~.J 

pgp-~I=.z~ 1'P,,;1f1 . [1+ t{('f)+.f t('f,)] 
At =[I ... i it<t) J fA Cf 
If we maintain a total charge equal to the original one 

(1. e. 17T ), the new density becomes 
00 00

i :: I -+ ~ [ f ~ ~~'t' + f ~~ -4w."",,'fJ= 'T i Nt,,) (17) 

If we insert these power series in (15), we find that the 

coefficient of the term in t is 171'" 

,,: I SJ'1I"[ f<r)+ NM] -e... I tA.'f _.!. r[/(")+ !1'f,)]A'f} 
2.1T Eo 1 0 .l 4~ ICf-Cf,!4 1. Jo . 

This coefficient must be independent of ~ We now insert 

the Fourier expansions (16) and (17) in the expression for 

rJ
C and obtain, with = f- ~ UT 

eo r , I 
~ 11"S;, C. = ~ [(ol,.... tt) "'"- ~ +(f.... 8,..),.;.. ....,,]).Goo - 'f (.. .z ~ if'h ,}.'f' 

11r Z 

+[(~ +8 )C004W\~-(~ +R )~""'<f.11~,",,(1'~ I A'I' 
I'M ,... ""''''''' r 0 I .z. ~ <fJs 

_ .". {. _ Tf ~('I,.) 

The values of the integrals are easy to calculate if we remark 

that they are proportional to the potential at <f~o due to 

charge densities cos m'(' and ~ "Ml{' respectively. The 

first integral turns out to be %' and the second one is 

13� 
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simply zero. This gives •. 

~1T~C=-2rrt +I GCJ'O'W'~ [lfell,.. ... 1TA,.._-.rA l+~~)wlf (~-+ 1fJL_TTB 1 
. • I P"'" 'W' "'" I P "loW' 'M 

The requirement that C be independent of c.p immediately yields,� 

by setting the brackets- equal to zero, the 
". 

value of "L and f- .� 
We consequently find the new charge distribution to be� 

00 

'h l<f)= I + ~ L..("",-,) A Co6 """''/ +(M-') B 4";"'"",,'( (18)� 
'/ I "'" """� 

It is interesting to compare this charge distribution to the 

curvature, and check whether high (or low}curvatures imply high 

(or low) charge densities. The curvature ~ is given by 
2 tAA. ~ ~ali r"' 

.1.. It 1"2 (~J -~ 1"f ;: I-~ (f..,.(£).,. .. = I.~l!{")~,.
 
Po [ -'t.1 

... (~l ]1 "'T� .. 
: I ... i·~(~-,) ~ ~ -1 +(~1_,) A"" ~.w.. "- 'f� 

Clearly, the two Fourier expansions are different. Let us� 

investi.gate the correlation on the particular deformation� 

shown in Fig. 10, which evidences an inward and an outward� 

bump. The formulas are� 

e- 'ft'" I 

1(</)= If. 
2('-~T) 2- ~~'f-11'" , ~(...,.-,,) 

00� 
1'Y-1J"' ) "'" - I�

tilf) = 2- ( ,- c..o1 7 ,.,.. ("",1.. Il,) A~"""'<f
 
" 11" I 

:0 

Numerical results are shown in Fig. 10, and are self explanatory.� 

14� 
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APPENDIX II: Perturbation in ~. 
1>'V\ 

For the circular boundary sketched in Fig. 9, the eigenfunctions 

leading to force-free fields are o<{ ('A'l.) , where.( is a 

normalization constant defined by 

lrr .,(~JtJ:O-t)]lJLdlJt=1T~l(:r,(~)r':I 
o . 

and ~ is a root of :r.{~)=o. ·If the boundary is deformed 

as indicated in Fig. 9, the eigenfunction will be perturbed, 

and becomes: 

(20) 

Notice that, to maintain normalization, 

II <jI il. AA. fA'I' =lf .; [:r.. ().'t)]~ AA. .A." +2d 11 T.(>''t) j (~ ")11Mel.,+-- =, 
'-t% ~ -to]: tfoI 

where C is the area of the circle, and ~ the supplementary 

area, which 

vanishes at 

is of order ~ 

It.' , so that 

Remembering that J:,{~~) 

its value in Z is of order !. 

we find that normalization is kept if 

If ~ (~~) j (1t, <f) It hi. ~tf= 0 (21) 

or, 
Co 

in other words, 
• 

if Jl't,ff) is orthogonal to .:t{~'l). To 

proceed with our study of j (IE, If) , let us examine the 

behavior at the boundary. The Dirichlet boundary condition 

entails that 

~ {>. -to }. i ~) ... ~ J[ I + ~ (l et) , cf1 + . .. :: 0 

Using a Taylor expansion, we immediately obtain 

15� 
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• 
The differential equation satisfied by J ('1, et) is: 

r::t (J; ().~) + £ j (It, ,)] + (~2 of- f. t) [J;, (All) + ~ JlJa., Cf)1=0 

Keeping terms in ! only, we find 

'f/i (~ If) + ).~ j ('l., et) =- ,} J; (~~) 

At this point it is useful to Fourier-expand i (Ii, '/) We 

write: 00 00 

J(II.,Y)a 'P.l~) +~ tlIL)e<>-o"""cr + ~ 't(It)~~Cf 

Inserting in (22) and (23), we obtain the differential system 

tA,)p. I tAt:. l 0 ...2. A J 
tAAi + ii:'~ + ~ r. : - ts- J;~",) --.d ~(,);a ~ :r(~)T. (24) 

~ ... 1. cAe.. 1- (f~ ;)r:o
tht." 1. tJJ\ 1. w. 

...IQ~ ... J.. IAQ"", + (f_!t)Q .0 
fAAl J2,. M. ",L 'W' 

Equation (24) is particularly interesting, because it will 

allow us to find ,e2 , i.e. the shift in eigenvalue produced 

by the boundary perturbation. This is seen by writing the 

differential equation satisfied by J; (~'t) : 

l
tA 1'. + 1. 4Il:r.a + ).1.:J:: 0 (27) 
~ Ja, M 

Multiplying (24) by ~ , (27) by ~ , subtracting and' in.t"egratiIY;;J 

yields ,

'[",7 tAlp' + ~ .A. P.. -/I, e Jol.y. _ P- ~] M : _ B1..1 J..1. ~ ~.J 1 
o • tht- • tAA • dILl • c£A.. 0 • 

But the integr~nd is a perfect differential, and one obtains, 

for the left member 

A -:r: ~~ -1. ~ ~]'~ _ ~ll) tIlJ;{~'l.)1 = p (.) ~:r (>.) 
( r.. 0 -;A • tIJt, o· JJ\. • I� 

-I.;'� 

16 
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from which follows that 2� 

81 
.. - ~ [7{\)]

L 1'0 '&.~ 
The new eigenvalue is consequently 

(28) 

Turning now to the value of ': ' we notice that Il. r (~'t) is 

a particular solution of (24). In fact:ti [/I. t l)~)] 1" ~ ~ [II. :1;(>'''>] 1" ~z ['I. :r.{;\,,~ : l >. :r. (>''t.) 

The solution of (24) must then be of the form 

t: :: ]) ~ (XIt.) + Af. "'L 1; (~'Z.) 

17� 
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Normalizing the c#-independent term to be one, we find that ~ 
1� 1>"" 

(30) 

charge 

density. The two are obviously unequal except when the term 

~=I is the only one to be present in the ~xpansion. 

The corresponding deformation is trivial: it ~onserves 
constant curvature, i.e. reduces to a simple translation of the 

initial circle. 

It is worth while checking our calculations on a small , 

elliptical perturbation. Let / be the eccentricity (1- ~/(l)X 
~ For small ~ , and using 

~..-.0.-' elliptic coordinates, we find 

the equation of the ellipse to 

be 
1.� 1. pJ.

J!-'-" &~"y.... s 11" ~ .... ~ ~1 f+"
,::.;,.1/ 2

The small parameter ~ is/, in 

our case, and ~= ~,~=~ 

All other coefficents vanish. The eigenfunctions of the 

elliptic cylinder have been given above, and their limiting 

form can easily be found for small f and /.. (Reference 9 

p.� 1419): 
S (l ~e): I~ Ttl _ t..1.c.o1.9 + ... 

eo ,� t 

Reo� tl, ~e)=Vlf ~ {I. itl)~{t~r)"'i!2~(/..~rw)+--·f 
The values of ( are obtained from the roots of R Usirlg

eo 
the power series for the Bessel functions and relevant recursion 

18 
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formulas, we find: 

e. lo 
~ , 2. ~ J: l~) \ [ ]'" =~ r.,. - ~ f 1 +_.' : "f ' of' /"q +..

8 :r, (~) 

where the ~J~ are, aga in, the roots of J; Furthermore, we 

can go over from the 1"', e coordinates to polar coordinates 11., f 

by using the easily established relations 

~ If = e.-;,B.[, ... i t; ~..:.J-f-+··l 

I.. ~,... • ~'I.. [1-~ of-.l~ ~r-r-'J 
This yields the limiting form of the relevant eigenfunctions: 

).1 l 1 1.f: ~(~J&.) 'to t ~ 8 ~(~It.) +;- ~'L 1;01.)J +i r ~ J.; (~~)~ ~ cf +.... 

The new eigenvalue is easily obtained by calculating the 

1. ~1Laplacian of 'f ' and turns out to be ~ [, - fi ' in 

harmony with (28). The eigenfunctions given above are not 
.L 

normalized, but can be normalized by dividing by [ Jrl~S]~ 

to yield: l 

I [J;,{~'l) _ pl ,..{~~) + t. A", 1;(X'I.)'" t!-,X T()'4.) ~2 rio..J 
'(jf :r, (~) .r;f fit ~ 

which is in agreement with (29) (to check the agreement for 

the c.o 2 Cf term, use the property f J; ('~):: J,;: (>J ). 

19� 
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LIST OF CAPTIONS 

Figure 1: Circular cylinder. 

Figure 2: Cylinder with arbitrary cross-section. 

Figure 3: A potential problem. 

Figure 4: The exterior magnetic field for a force-free region. 

Figure 5: Rectangular cross-section. 

Figure 6: Elliptical cross-section 

Figure 7: Current distribution with central hole. 

Figure 8: Metallic cylinder. 

Figure 9: Slightly deformed circular boundary. 

Figure 10: Perturbation in charge density and curvature 
resulting from a contour distortion. 

Figure 11: Circular contour distorted into an ellipse . 
• 
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