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ABSTRACf 

The calculation of electromagnetic eigenvectors and eigen

values in linear accelerator type cavities containing drift~tubes, 

whose meridian-plane cross sections are piece-wise simply 

describable, can be accomplished by solving finite difference 

approximations to the wave equation$ The resulting eigenfunctions 

and ei.genvalues allow quantitative determination of particle 

dyna~llic and electromagnetic phenomena occuring within C.~n 

operating linear accelerator. The development and method of use 

of these finite difference relationships are examined. Pre

liminaZ'y results computed from these relationships agree \{~rith 

known information. Computer programs have been written for 

cavities whose shapes are applicable to low energy proton-linear 

accelerators. 
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I. INTRODUCfrON 

In order to substantially increase the final energy 

of proton linear accelerators above the present levels 

of 50-70 Mev, it seems mandatory that close attention be 

paid to the relative merits of the proposed configu

ration. Such careful attention will assist with the 

selection of the configuration which best combines high 

duty cycle, high intensity, low POW&P dissipation, and 

simplicity of construction o 

To date, many of the calculations done in connection 

with linear accelerators have been done in a semi

rigorous analytic fashion; only recently has use of 

large, modern, high-speed, digital computers been made. 

The primary aim of the present endeaYer is to adapt to 

and solve via digital computers som& -of the problems 

associated with linear accelerators. 

The finite mesh approach to th~ calculation of eig2G

functions and eiger'rnlues, as developed herein, has th~ 

property that the only error, that due to the finit0 

difference approximation, tends to disappear as the mesh 

is refined by including more mesh points. This fact 

coupled with the immense data handling capabilities--,:r 

digital computers indicates the desirability and practic" 

ability of this approach. 
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Analysis directed toward computer calculations of 

eigenfunctions and eigenvalues of rotationally symmetric 

geometries, whose meridian plane cross-sections are 

bounded by piece-wise combinations of straight lines, 

circles, and ellipses, are included herein, as are con~ 

siderations of some of the pertinent electromagnetic and 

particle dynamic phenomena occuring within operating 

linear acceleratorso 
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II. SURVEY OF PREVIOUS CALCULATIONS 

Many of the electromagnetic field calculations 

previously attempted in connection with the design of 

linear accelerators have been either of an approximate 

or empirical nature. Recently, however, techniques 

whose errors due to approximations vanish under certain 

conditions have been attempted; in fact, the present 

endeavor attempts to enumerate a few of these techniques. 

Some of the earliest calculations carried out with 

respect to rotationally symmetric resonant cavities were 

those of Hansen(l) and Hahn.{2) Parameters pertaining 

to electron linear accelerators, in which disk-loaded 

wave quides are suitable accelerating cavities, have been 

calculated by Brillouin, (3,4) Chu and Han6en, (5) 

Walkinshaw. (6,7) and Bell. (7,8) 

Approximate calculations pertaining to proton linear 

accelerators, in which drift-tube loaded cavities must 

be used, are to be found in the works of Walkinshaw, 

et al.,(9) Wllkins,(lO) Christofilos,(ll) and Taylor. (12) 

The latter reference contains an empirically based con

sideration of drift tubes whose corners are rounded 

with radii of non-vanishing size. 

The principal approximation inherent in most of 

the above mentioned calculations involve assumptions 

concerning the field components (the unknown quantities) 

3
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and about the matching conditions to be employed at the 

intersection of the two regions in which the fields are 

to be expanded 1n sets of orthogonal polynomials5 Further

more, application of these methods to cavitie~ whose 

meridian-plane boundaries are not rectilinear· i6 diffi 

cult if not impossible. Accordingly, the present endeavor 

was undertaken to pre6ent a more satisfactory treatment of 

the problem. 

4
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III. FI ELD CALClJ4ATION~ FOR CAVITIES:',~OF REVOLlITION 

A, General Relationships 

Derivable from Maxwell's electromagnetic field equations 

for non-conducting,' charge free media, 

(3.1a) 

\l x H=-: ;)0 (3.1b) 
~~ 

V- t5 =0 (3.1c) 

v-8 =0 , (3.1d) 

are the vector wave equations 

(3.3)-VX'i!xH i" v(v·ii) = 'ill-Ii =/,,-" ~~ . 
If the E or ~ wave impinges upon a perfectly conducting 

surface. the boundary condition which must be obeyed is 

(3.4 ) 

It is easily shown that in rotationally symmetric cavities, 

two possible azimuthally independent mode types existe The 

5
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choice of which mode type to consider 18 depend.nt upon the 

necessity of having I non-zero compon.nt of t in the Ix!.l 

direction so as to permit acc.l.ration of plrtlel.l. 

Let both ~ and R b. divided into two compon.nt., one 1n 

the azimuthal direct1on, and one in the m.ridian plant, SUCh 

that 

Similarly, divid1ng the 'X operator into two componentt, one 

in the azimuthal d1rection, the other 1n the .eridian plane. 

~xw.ll'6 equation. (3.1.) Ind (3.1b) dem.nd thlt 

-
;,IfA, 1, -f, i, II}A IIII , (3.7) 

... ,'MJ*G, -'-IIJI EA/ , 

Noting that ~ lC&;) -0 Ind (9f "'/Tf ) -0, equations 

(3.7) and (3.8) yi.ld. for the meridian plan. components, 

6
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(VJlXEf)+(~xEJ4)1I: i.4JA#~ ,
 

(UM'f. if) -t (flH'f.ilH) .-ii4)~ & · (3.10)
 

Now, substituting each of equations (3.10) and (3.9) into the 

other for t m and Hm. re~pectively, it follows that 

-
-i.,*(V" ~~)+ ~ )C('~" Hf) +VN Ktv;, I(~) .= /I)"':.." 1IJ1 , (3.ll) 

(3.12) 

Also noting that, for azimuthally independent mode6. the terms 

VM ~(~xilH) and "N)({~xF",) vanish, there result') 

-I.IJ#- (VII 't£,) + VH ~(~ " iii) & Il) ":... * ~ , (3.13) 

tlv~ (~y.iI,) + VH ~ (Vil kG,) • _~e Ei4 • 
(3.14) 

Thu~. for azimuthally independent mode~. the meridian plane 

field components are expres$able in term~ of the azimuthal com

ponents of E and H. two distinct mode types exist, one with 

vanishing -Elf the other wi th v.nishlng -Hf . 

Upon expanding Maxw.ll'~ equations (3.1a) and (3.1b), for 

azimuthally independent mod.~. two 6ets of relationships 

connecting the field components appear. 

7
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- Jf:= (3.15a)"'I4JA Hr 

(3.15b) 

(3.15c) 

and 

(3.16a) 

(3.16b) 

(3.16c) 

The requirement for acceleration of particles (that the 

axial component of -E not vanish) allows selection of those 

modes for which Ef vanishes. ~In this event, H and Hz alsor 
vanish, cf. equations (3.15a), (3.15c). and (3.16b), and the 

vector wave equation (3.3) becomes a scalar wave equation 

(3.17) 

where the eigenvalue ...Pc is related to the frequency to and 

the wavelength A by 

8� 



The boundary conditions which H~ must obey is found from 

equation (3,4) with the assistance of equation (3.1b) and 

numerous vector identities as follows. 

~_ /r- -) - ~ fS - /;- :T )
eR(M)(E' "h)C~ = It 'K{VXHf =~. (3.19) 

But. since Hf = H4>(r.z).~f' t 

VXPtfi", :-¥liir-l-+~(;~') ~t- = 

7[~r~"r'" ¥rfl)«a]r.;;. t[V (r#,) KifJ. (3.20)JJ: 

Thus it folloWG that equation (3.19) becomes 

And since (n oUf) vanishes, the boundary condition becomes 

In view of this boundary condition, it appear6 that the 

quantity rH ~ is of con&iderable interest. In fact. computer 

calculations are most easily done employing F = rH~ as the 

dependent variable rather than Hf • The scalar Wqve equation 

(3.17) becomes. upon introduction of the quantity F, 

tt:-- I ~ + ~"F .J1.F =('). 
~ '7)~ ~.L 

9� 
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Henceforth, the primary concern of this endeavor will be 

directed toward the solutions of equation (3~23) valid in any 

meridian plane of a cavity of revolution and for azimuthally 

independent modeso Solutions will be sought for meridian plane 

geometries whose boundaries are piece-wise simply describable. 

B. Exact Solutions of the Wave Equation 

Exact solutions to the wave equations (3.17) and (3.23) 

can be found in the event that the boundaries of the geometry 

in question are coordinate surfaces in some coordinate system, 

and in the event that thi6 coordinate system permits sepa

ration of variables. 

A degenerate case of· rotati"onally symmetric cavities for 

which an exact solution may be found is the hollow cylindrical 

cavity. Here the general 601ution of equation (3.17) is: 

However, inclusion of the axis in the region of field pene

tration demands that, for all nand m, Bnrn = O. Furthermore, 

application of the boundary condition, equation (3.22), at 

r = R (the outer radius of the cavity) demands that 

10� 
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Similarly, application of the boundary condition at Z = + L/2 

(the ends of the cavity) demands that 

(3.26) 

Hence the most general solution to the hollow cylindrical 

cavity problem is a double infinite sum of modes 

(3.27) 

where the eigenvalue A for any n,m mode is given by 

(3.28 ) 

Note that the modes dilcu•••d here are commonly known as the 

TM modes. In particular, the lowest mode, i.e. that mode onrn 
most easily excited in I hollow cylindrical cavity. i6 the 

TM010 mode 

In some instanc•• , computer calculations are compared with 

results obtainable from equation (3.29) for the hollow 

cylindrical cavity. 

Co� Variational Principle Approach to Approximate Solutions of 
the Wave Equation 

If the geometry in Question does not permit separation of 

variables and satisfaction of the boundary conditions, exact 

11� 
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solutions to the scalar wave equations (3.17) and (3.23) cln 

not be found. In this event, approximate solutlon6 for both 

the eigenfunctions and the eigenvalues must suffice, As shall 

be seen, a convergent iterative proce66 exists whereby a par.. 

tlcular eigenfunction and the corresponding eigenvalue may be 

calculated. This i6 accomplished by alternately refining the 

field and a trial eigenv.lutt 

Consider, therefore. an arbitrarY function (field diit .. 

ribution), existing in a cavity of revolution and satiefying the 

boundary condition (3.22), IS a sum of orthonormal eigen

functions of the cavity, 1,e, 

(3.30) 

If the eigenfunctions ~~ •• tlafy a scalar wave equation 

(3.31) 

and also the boundary condition (3.22), it follows that 

equation (3.30) b.~~m.s 

(3.32) 

Upon forming the appropriate scalar product <'4>/~;'>' and 

noting that if k1 16 the lowest of the eigenvalues, it follows 

that 

12� 
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In the present instance. for TM modes in cavities of 

revolution, the operator ~ and the function ¢ may be 

identified via the scalar wave equation (3.23). The par

ticular scalar product applicable for azimuthally independent 

modes in a cavity of revolution is indicated in MURA-481. (13) 

There results, therefore. from equation (3.33) 

(3.34) 

Thus, it is possible to find an upper bound of the lowe6t 

eigenvalue k1 if the function in the domain of F is a linear 

combination of eigenfunctions. 

It is also demonstrable that the variational principle 

leads to a convergent iterative process. Toward this end, 

suppose the function ; is expressable as the sum of a par

ticular eigenfunction ~~ and a remainder, i.e. 

(3.35) 

Thus, calculating the quantity 

(3.36) 

via an expansion in ~ such as 

(3.37) 

13 
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it follows that 

(3.38) 

and 

The numerator of equation (3.39) vanishes. providing the 

operator ~ is self adjoint, since in this event 

(3.40) 

The numerator of equation (3.39) thus become6 

14� 



MUAA-622� 

Combining this result with equation$ (3.37) and (3.38) yields 

It is thus seen that although the function , may differ 

from an eigenfunction f. by an amount pro,ortlonal to ) 

the calculations of the quantity J (,\ ) differs from the 

1 2� \ 2.eigenvalue ~n by an amount proportional to ~ Thus a 

convergent iterative prOC.S6 is realized if, alternately, the 

function ~ is made to approximate an eigenfunction more 

closely, and an approximation to the eigenvalue i~ calculated 

via equation (3.36). 

D.� Approximate Solut1on$ of the Wave EquAtion For Cavities 
Containing Square Cornered Drift-Tubes, 

As indicated in $ome of th~ references li~ted in Chapter 

II, an approximate solution of the wave equation (3.23) may be 

obtained for linear-accelerator type cavities containing 6quare 

cornered drift-tubes by making certain assumptions about the 

field components and the matching conditions at the junction 

of the two regions indicated in Figure 1. While this approach 

can produce some uleful reeultG. it i6 not applicable to 

cavities containing non-&quaxe cornered drift-tubes. Con$e

quently, a alternative .pproach is de$ired. 

With the advent of modern, high speed. digital computers, 

an alternate approach to the $calar wave equation (3.23) has 

l~ 
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become possible. This is the finite-difference, mesh approach. 

The solu~ion	 is relatively easily accomplished for the case of 

rectangularly� piecewise continuous boundaries, but may be 

extended to other simply describable piecewise continuous 

boundaries. 

To accomplish this finite-difference approach for a rect

angularly bounded region, (see Figure 2) superimpose a finitely 

spaced square mesh upon the region such that the boundary of 

the region everywhere coincides with mesh lines. Then con

sidering a typical mesh point (i,j) in the interior of the 

region, it follows that the one dimensional Taylor series 

expansions of the function F at this point are 

(3.43) 

;;1.F"" 1,"I;'~i ~ 't . (3) (3.44)FiJi-I = Ai-� ()r + ) r~ T"',,· - 0 IfM 

~l.R ' k"L~F:t' ~Fi+I. i :: Fl.; +� ~~ + )aa..
·d ~ +.,,, -of 0(1. 3) (3.45) 

)F;II1 ;,""RiFiplJI r:: Fi i-� hI. 
0(113

)
~~ + ) &la.� T-+ .. ~·- (3.46) 

3where h is the mesh spacing and O(h ) is the order of maximum 

error size occuring due to neglection of further terms in the 

expansion. Adding and subtracting equations (3.43) and (3.44) 

yield in turn approximations for two derivatives 

16 
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Similarly~ adding and subtracting equations (3.45) and (3e46) 

yield approximations for the other two derivatives 

(3.50) 

Substitution of equations (3.47), (3.48), and (3r49)~ into the 

scalar wave equation (3.23) yields 

(3.51) 

4
Note here that the resultant error is of maximum order h , and 

that as the number of points in the mesh increases, (i.e. as h 

decreases), the relative error vanishes. 

In order to employ equation (3~5l)J omitting the term 

O(h4 ), ~2 must be known. Equation (3.34) gives an 

17� 
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approximation for the lowest eigenvalue for the cavity of revo

lution~ Inserting equations (3.47), (3e48), and (3.49) yields 

(3.52)
" 

may be accomplished t in the event that the point (l,j) falls 

on the boundary, by merely reflecting the function F at the 

boundary. For example, if the point (i,j) falls on the top 

boundary, (see Figure 2) the factor F. '+1 in equations (3051)
1,J 

and (3052) should be replaced by the factor F. . 1 a fter which 
1 f J-

combination of the remaining terms is permissible. 

The relative ease of application of the boundary condition 

of F = rHf is the principal reason for its employment as the 

dependent variable in the preceeding and following analysis. 

Details on the iteration process employing equations 

(3051) and (3.52) follow in Chapter IV. 

E.� Approximate Solutions of the Wave Equation for Cavities 
Containing Round and Elliptical Cornered Drift-Tubes 

The aforementioned finite-difference method of solution of 

the scalar wave equation (3.23) may be extended and modified in 

order to handle drift-tube loaded cavities whose meridian plane 

cross-sections are bounded by circular and/or elliptical arcs 

18� 
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as in Figure 3. 

To see how this can be accomplished, in the case of 

circular arc boundaries, let the scalar wave equation (3.23) be 

transformed into plane polar coordinates via the transformations, 

(3.53) 

The result is such that 

(3.54) 

Similarly the expression for the eigenvalue, equation (3.34) 

becomes 

(3.55) 

Now, establishing a plane polar mesh in the neighborhood of the 

circular arc boundary, such that the boundary coincides with a 

mesh line (see Figure 3), expanding the function F in Taylor 

serie s expa n s ions, 1n the rna noer of eqJaticns (3.43), '3.44 ~, (3.45), ard 

(3.46), adding and subtracting the resulting expansions to find 

19� 
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approximations to the detlvatives~ and substituting these� 

derivatives into equations (3.54) and (3.55) yields� 

~I'~{h; +~(rct~J1 +~-IJM{*-~~~:;~J}+ 
" 

+&._{~-;ij1~:=.>] +Ft·~~+d;Urc+~J} + 

(3.56)+Ii.. E¢-f:~j =0 , 

and 

Similarly for the case of elliptical arc boundaries the 

transformation equations are 

(3.58) 

where the quantity c is related to the eccentricity and the 

semi-major axis of the ellipse by 

20 
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c s a.e. (3.59) 

In this case the scalar wave equation (3.23) and the eigenvalue 

expression, equation (3.34), become 

+ 12.,F = 0, (3.60) 

and 

(3.61) 

Furthermore, the finite difference approximations for equations ... 
(3.60) and (3.61) become, for a typical interior point (l,m), 

21� 
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r"

and 

(3.63) 

Analogous to the case of square mesh considerations, the 

boundary condition, equation (3.22). may be applied by merely 

22� 
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reflecting the function F at the boundary. e.g. replacing 

Fl_~,m by Fl+~.m if the point (l,m) falls on an appropriate 

boundary. 

The method in which these expressions, equations (3.56), 

(3.57), (3.62), and (3.63), are used in the event of circular 

or elliptical arc boundaries is explained in Chapter IV which 

follows immediately. 

23� 
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IV. ITERATIVE SOLUTION OF FINITE-DIFFERENCE EQUATIONS 

oA General Feature6 

Two possible modes of operation of a low energy proton 

linear accelerator exist, one in w~ich at any given instant, the 

axial E fields are in the same direction in each gap between z 
drift-tubes, the other in which the axial Sz fields are 

oppositely directed in adjacent gaps. The first mode is commonly 

known as the 21r mode, the second as the" mode. In order 

for the r mode to exist, however. actual m.tallic walls must 

exist across the cavity at the midpoints of the drift-tubes. The 

present calculations are applicable to either the " mode or 

the 2.". mode. 

The present treatment of the cavity problem neglects non

uniform spacing between and unequal size of drift-tubes, i.e. 

effects caused by In~r.a.lng particle velocity. The re6ulting 

periodicity of the drift-tUbes permits the application of the 

boundary condition along transverse planes at Z = 0, t L/2, with 

a consequent confinement of attentlQn to the region in the 

meridian plane (~.~L,4l, ~~,..~. ). . 
In order to obtain a solution of the scalar wave equation 

(3.23) by instead employing the finite-difference equations (3.51) 

and (3.52), for a rectangularlY bounded region. (see Figure 2). 

a two step iterative approach must be employed. An initial set 

of values of F is loaded onto the two dimensional mesh depicted 

24� 
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,-...,.� 

,. 

in Figure 2. such that one value of F is assigned to each point 

of intersection of a mesh line with another or with the boundary. 

Calculation of a trial eigenvalue, for the resulting linear 

combination of eigenfunctions, via equation (3.52) is carried out. 

With this trial value for the eigenvalue, the two d~ensional 

array of F values is improved via formulas derived from equation 

(3.51) and explained below. Repetitive calculation of trial 

eigenvalues, improvement of the array of F values, etc., proceeds 

until a stationary condition 1s reached wherein no further 

significant change in either the array of F values or trial eigen

function occurs. 

With appropriate modifications, also expallned below, the 

cases of circular or elliptical cornered drift-tubes may by 

handled. In this case, however, interpolation between two over

lapping but not necessarily coincident meshes must take place, 

with a considerable addition to the degree of complexity involved. 

B. Mesh Refinement 

Derivable from the finite difference equation (3.51), iG the 

Liebmann four-point algorl~: 

~r~ nt6.{~·(~a...')+J[F:.j.,(l-};)+F.~j~(I"i)+~i-~:-7.i1) , (4.1) 

where it is assummed that the mesh 1s traversed in a regular 

manner, such that upon improving the quantities Fi_1,j andFijJ 

25� 
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F.. 1 have already been improved upona Note here that the 
1 t J < 

present traversal of the mesh is designated by the superscript 

n + 1, while the one just previously completed is designated by 

the superscript n. 

Relationships similar to equation (401) can be derived for 

the plane polar coordinate mesh and the elliptical coordinate 

mesh, from equations (3.56) and (3060), respectively. These are 

[:~:..o({5.~bF~-li- R~~'·{~ r~·ill+ 

+~{~-~~~~~)+6:~f~-ik~+~..;J}+ 

+61=,[~+#5rt:;;.)]J} ~ (4.2) 

and 

Fi~F;· &~{&.~flrJ+(~~~)[~Mf4+i-jG.-fl+C~Y~~)~ 

+~::i~-iL~~..,· -~}+ ~l{~-i;~ ..~j'-

Application of the boundary condition yields, for example, 

in the case of equation (401) t on the top boundary where F. °+11,J 

26� 
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is to be replaced by F.. l' the following reduction,
l,J

(4.4) 

Other reductions may be effected for other types of boundary 

points, both for the square mesh algorism (4.1) and the polar 

and elliptical mesh algorisms (4.2) and (4.3). 

The factor 0<. appearing in algorisms (4c1), (4.2), (4.3) 

and (4.4) is the over-relaxation factor. If ~ = 1, these 

algorisms are rigorous. By judicious choice of ~ ~ 1, 

accelerated convergence may be obtained. Although some attempts 

have been made to calculate the optimum value of ~ for 

algorisms derivable from Laplace's Equation, little information 

is available in connection with wave equations such as (3.23). 

An estimate of the order of magnitude of the optimum value of ~ 

for various numbers of mesh points is found experimentally to be: 

No. of mesh points 55 200 700 1600 4300 

Optimum ol 1.40 1.63 1.79 1.82 1.85 • 

Co Eigenvalue Calculation 

Concurrently with or in juxtaposition to the process of 

mesh refinement, the continual improvement of the trial eigen

value must occur. This requires the employment of relationships 

derivable from equations (3.52), (3.57), and (3.63), ioe. for a 

27� 
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rectangular mesh 

for a 

etc. Note here that all F values from the nth traversal of the 

mesh must be used; consistency with the variational principle, 

equation (3.34), is thereby maintained. 

In the event of circular or elliptical boundaries, the 

problem of the calculation of the tDal eigenvalue becomes one 

of assigning proper areas to the various mesh points. Obviously 

an interior point of the square mesh requires area ~S .. = h2 ;
1.J 

a point on a rectilinear boundary requires As .. = Y2h
2 

For
1J 

points near a curved boundary the assignment of areas may be 

accomplished by approximating (for this purpose alone) the curve 

by a polygonal line whereupon the area to be assigned is just 

that of a trapezoid of area 

(4.7)ASli =(Sfj) ~~, 
28 
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where ~ is the lesser of the two rectangular distances to the 

(,urve from the point (i,j). 

In the event of circular or elliptical boundaries the use 

of relationships of the form of equation (4.6), etc. is 

restricted to the calculation of the braced quantities in the 

numeratoro Interpolation between these quantities ~ the polar 

mesh points to a square mesh point allows assignment of areas 

according to (4.7). 

In accordance with equations (3.35) and (3.42), it is found 

experimentally that the trial eigenvalue converges more rapidly 

than does the array of F values. Accordingly it is possible to 

decrease the frequency of calculation of the eigenvalue as the 

iteration process proceeds. 

Do Interpolation Between Meshes 

As indicated above, upon considering regions partially 

bounded by circular or elliptical arcs, it is often n,cessary to 

interpolate between two overlappin~meshes. In order to be con

sistant with the amount of error outstanding in equation (3.51) 

for example~ consider a two dimensional Taylor series expansion 

for the F function at a point (i,j) on the square mesh with 

respect to a point . (1: .. -- 1 j + ,). 0 ~ .JII6. 1. Dropping the 

subscripts (i,j) for convenience in favor of (O,O), it follows 

that 

29 ,. 
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Similar expansions can be written for the points (0.1), (100), 

(101), and (A,B), the latter point being at a distance ~ h 

from the point ( ~, ~ ). Normally the point (A,B) should be 

chosen as the fifth nearest point to the point (01..) ~ ). 

Multiplying each of these equations by an unknown parameter ~H 

it follows that upon combination 

(4.9) 

.... G~ -~~d.r-~) -~36-4p +A.(I....){/~) .... ,\~(~B-~~ ~z.. r:;: + 

'~"... A (1_')1. ~ ,I., \ {I-f»J. ~ (B~~~J.. ?J'tF-t- +iJ.F".. +O(~!) = 
+ r"2 + ~ ~ .. 3T • It+ ~ 1" S '" -J ~ or a. r 

Comparing and identifying the terms in equation (4.9) with those 
3

of equation (3.23), and omitting the error term O(h ) in (4.9), 

it follows that two conditions apply. These conditions 
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are 

E = A, Fat> +A,.Fcl +),.lP'tJ TA..F;, + >."FIr$ , (4,,10)
o(~ A, + ~2 + ~3 + A +AS -.It."l....4 

and 

-al-.~ -~h r'-JJL {I-~k (A-4~ ), 0 

-~~ 6-~)~ -pk (,,.)~ (B-~~ _1-
t, . 

d.."L Z. '1. 

~hl. It-"") l.l'" (, •.0 2 hl,. (A·i4l~~ ~ 
).. -~ d- ~ ~ ~ ~ - , (4.11)+ 

'. 

~~hl. _«(,~)l,1- -(I-~~~ O--¥I-~ki'rA-Ua. 0 
1"""""' 

'I. (,.A)~~ i~~ (J-N1.~ 1 f!£J.~l,.l~"a. ~ a ~ 

Solution of this matrix equation for,~~, etc. allows the deter

mination of F.~ via equation (4.10). 

Results similar to equation (4.11) may be obtained for the 

of F_,value within a p~ldr mesh square. Note in this case 

( fA, P ) is an abbreviation f9r t1". ~ • m +1 ). In this 
.. II' 

instance, being consiste'nt wi th equation (3.54) , it follows that 

equation (4.10) is valid providing the A's are determined 
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from 

-- •� 

o 

, (4.12) 

r~ I� 
In this manner values of F may be interpolated between the 

square and polar meshes. The same may be done with quantities 

calculated from the numerator of equation (4.6). 

E. Normalization 

In order to meaningfully compare eigenfunctions of two 

slightly di5s~ilar geometries. it is neccessary that uniform 

excitation of the cavity be maintained. A convienient quantity, 

to which the mesh values of F may be normalized, is the stored 

energy per unit valume. For the hollow cylindrical cavity this 

is known to be 

(4.13) 
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The boundary condition, equation (3.22), insures that 

(4.14 ) 

or , (4.15) 

Thus the stored energy per unit volume becomes 

(4.16) 

Now, since Fo = RHo via: 

(4.17) 

it follows that 

(4.18) 

When calculating the eigenfunction for a hollow cylindrical 

cavity, it was decided to initially load the mesh with the 

function 

so that F =,fR = 2.405 amp.eres. Thus: o 

(4.20) 

This� value of WR2/V is maintained throughout all computer cal

culat,~,ons• 
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It is also noted that the quantity WR2/V is invariant to an 

expansion of the mesh, i.e. the inclusion of more mesh points in 

the same region. In £ini te me.sh form, WR2/V takes the form 

"> >rl;.~{.]~~. 
IN rt= ~R'I.~~'V'I 't ,.,.,F,,"J... 
V a f f rf~S'1 

(4.21) 

Upon increasing the number of mesh points, letting r be the 

ratio of increase in the number of points in either direction. 

and indicating the initial quantities by the subscript 0. it 

follows that the conditions which hold are 

(4.22) 

and equation (4.21) becomes 

(4.23) 

Moreover, if the value of Fo deviates from its prescribed value 

during the iteration process, renormalization becomes necessary. 

This may be done by comparing the final and initial values of 

WR2/Vand, in view of equation (4.21) dividing the F.. 's by the 
~J 

square root of the ratio. 
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V" ASSOCIATED ELECTROMAGNETIC AND PARTICLE DYNAMICAL QUANTITIES 

Some of the more important auxiliary quantities to consider 

in the optimization of linear accelerator parameters are defined 

as: 

Stored Energy Per Unit Volume 

(5.1) 

where V= volume of cavity 

and S = meridian half plane. 

Power Lost to Cavity Walls 

where S' = surface of cavity 

and 1 = perimeter of meridian half plane. 

Q Factor 

, (5.3) 

where V, S'. 5, and 1 are as defined above. 

Average Axial Accelerating Field 

~... tJ~.fo.I~)J~ =~Li~(~~)D,.J~ ·� 
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Shunt Impedance 

Transit Time Factor 

(5.6) 

\ 

Note here that the quantity Tlo is just the amount of 

energy gained per unit charge and per unit length by a 

synchronous axial particle. 

Coupling Coefficient 

Note that in order to calculate the last four of these 

/-' IF)quantities, the quantity (7 tr .,iI must be known. This may 

be determined by noting that, sinze E must remain finite everyz 
where, the function F must have an r, z dependence expressible 

at every point 1n the form 

(5.8) 

Thus the required quantity for calculation of the latter four 

quantities above 1s 

(5.9) 
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The coefficients b(z), c(z). etc. in an expansion may of course 

be determined by a least-squares analysis of the mesh values of 

F. 
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VI. mMPlITATION PROGRAMS 

A. Present Status 

Results have been obtained from IBM 704 computer pro

grams for the case of square ended drift-tubes. Programs 

have also been written to include drift-tubes with rounded 

corners and axial holes; these--programs are still being 

checked. Also, the algori~s for the inclusion of 

elliptical boundaries have been d&rived. 

B. Comparison of Results Obtained With Known Data 

In connection with square ended drift-tubes, inter

polation between curv,e.s give.n in Wilkins report (10) 

yields results which agree quite well with data calculated 

via the methods presented. herein•.Although the results 

calculated thu6 far are of limited ~xtent, their apparent 

validity has warrented the extension of programming. 

c. Future Aims and Additions 

In addition to the inclusion of consideration of round 

cornered drift-tubes and axial holes into computer programs, 

and calculation of corresponding data, the inclusion of 

several other more sophisticated computer programs are of 

' 
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interesto These include: 

1 Allowance for elliptical cornered drift-tubes.0 

20� Construction of contour (equipotential) plots from 

mesh values of the eigenfunction. 

3.� Programmed modification of geometry so as to 

permit calculation of configurations whose 

eigenvalues are previously specified. 

4.� Calculation of the effect of non-uniform drift

tube sizes and spacings. 

5.� Investigation of other linear accelerator type 

cavities applicable to higher energy proton linear 

accelerators, e.g. disk loaded wave quide type 

structures. etc. 

6.� Calculation of the quantities listed in Chapter 

V so as to assist with the choice of the optimum 

geometrical configuration and the final design 

parameters. 
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VII. alNCLUSION 

Calculation of eigenfunctions and eigenvalues for cavities 

of revolution via solution of finite difference equations have 

been carried out for cavities containing square ended drift

tubes. These calculations have been done with the aid of an 

IBM 704 computer program. Programs for consideration of round 

corner drift-tubes with axial holes have also been written. 

These and similar other programs, yet to be written, will 

provide data for the design of a 200 ~v proton linear acceler

ator. 
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FIGURE 2 

A Finite Square Mesh Sup.ri~os.d Upon 

A Rectangularly Bounded Region 
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