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ABSTRACT

A simple linear perturbztion treatment is attempted in the
solution of the coupled Maxwell equations and Boltzmann's
equation of the distribution function pertaining to a charged
coasting beam of weak intensity confined to a donut~like space of
metallic boundaries. These coupled equations are cast into a
single integral equation and treated as an eigenvalue problem to
determine the various time modes. Difficulties encountered at

various stages of approximation are appreciated.
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INTRODUCTION
The problem of the stability of a coasting beam in a donut -
' like tube is one of immense mathematical complexity. Even by
accepting the conjecture that if the initial beam is not so
intense as to prohibit the collective effects from being treated
as a perturbation in the lowest order, there still are dif-
ficulties which cannot be solved without drastically over-
simplifying the physical situation.

Realistic approximations aimed at applications to accelerator
physics have been done by a group of authors at Berkela§8)by
invcking the negligibility of cexrtain contributions in the
azimuthal electric field in order to simplify the algebra in the
dispersion relation obtained from the Boltzmann equation {with
the collision term deleted). In this study the less complicated
case of an ideal beam (without the presence of rf cavities to
compensate the radiation energy loss) is examined in some detail
in order to appreciate the various difficulties one has to deal
with when the effect of the azimuthal electric field is con-
sidered in full. In addition to the solution of the unstable
time modes, eigenfunctions associated with these modes are also
discussed in relation to the question: what initial distribution
will minimize the occurrence of those most undesirable unstable
modes.

The problem is first manipulated into a one-dimensional case
and an integral equation obtained by coupling the Maxwell

equations and the Boltzmann-Liouville equation together is then
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treated as an eigenvalue problem, The technique employed in
handling such an eigenvalue problem is based, in spirit, upon the
work by K.M. Case in his "Plasma Oscillation."(l) The various
time modes into which the perturbation increment of some given
initial distribution is resolved then supply an idea about the
stability conditions of the beam. Because of the limitation of
perturbation theory, those time modes which for short duration
indicate possible instability may not actually cause instability
after time long enough to invalidate any predictions based on a
linear theory.

The study is purely of exploratory nature in search for an
approach and is not intended as a downright attack to this

complex problem
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II FORMULATION OF THE PROBLEM

We formulate the problem by first considering a swarm of
neutral particles constrained to move on circular orbits by some
non-energy-contributing agent. The law of constraint will be
specified later The system will be referred to the curvilinear
coordinates based on a circle of radius R with €x radially
directed toward the center of R, é;Y vertically perpendicular to
the plane of R and ég@ counterclockwise; so that @9 = é\xxé\f
form a right-handed triad,(z) The single particle Lagrangian
appropriate for the motion here may be put as

L=psS-E (1)
where § is differentially defined by ds = (R-x)d® and p is the
conjugate variable to § . E is a constant and i§ seen to be
the particle energy. To put (1) in terms of familiar MURA

variables w7 0§ we may carry out a canonical transformation

de = [[dp(r-x) d& = [ dwds
vﬁf%pds .A[ P J/ ) (2)
E E
so that Aw = (rR-x)dp = (R*X)/)—;, dE = — is
conjugate to ;. and the Lagrangian may be put as
L =wd~-E (1a)

which will be referred to as the “unperturbed problem." The
variables /; o f& respectively conjugate to x and y, do not
enter in this unperturbed problem,

The distribution ¥ of a swarm of particles is determined

by initial conditions and satisfies the Boltzmann-Liouville
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equation
N ] .335 ég . Y .;,g’
-aé:g‘grw*;” fx 3/, }, .// +x Ix -r75'"7 Zo (3)

in this particular coordinate system,

A temporally stationary and azimuthally uniform distribution
of the form _‘E=&i'>",y)_‘zot"‘*”) is certainly a solution of this
equation for the unperturbed problem and shall be considered as
given The factor G y) specifies the lateral dimension of the
unperturbed beam (i.e. the cross-sectional extension of the |
beam) and usually can be considered as Gaussian in shape for
both the x- and y- extensions. In the case of a beam of weak
intensity, these Gaussian curves are very flat and aQ e 4;
are small quantities almost constant. This latter approx:.matlon
is essential to the simplification of the problem in what follows,

The actual distribution of a beam of charged particles
coasting in a donut tube of metallic walls will be looked upon
as a perturbed problem with Qxy)¥%w, as the zeroth-order
function  The perturbing sources consist of the interparticle
long~range electromagnetic interaction and boundary image forces
which are collectively referred to as the Y"collective effect."
They are described by the interaction Lagrangian (é€=zcC=1 as

unit)

A[_:—#;J,?';;

= —55-'- As(mx)é ALK + A/y’



MURA-611

in which ;K‘P ) is the electromagnetic 4-potential created by
the beam itself and compatible with the boundary conditions of
the donut cspace under consideration This four-potential is of
course a complicated functional of the distribution function we
are looking for

Let us denote the distribution function of the perturbed
problem by jE* .~ which in general should depend on all three
pairs of conjugate variables is well as explicitiy on the time t.
In the following, 3ll variablec that pertain to the perturbed
problem will be superlabelled with a star (*). Then

Bt B )Gl R )
and any of these starred variables can be expressed in terms of
the unstarred variables (i e. variables pertaining to the
unperturbed problem) through the relation
7%= 1+
where q stands for any of the six variables while Aaq, the
perturbation increment, 1s to be expressed as a function of g's
and wiil be (as we hope it may be) treated linearly in a first-
order theory. Then the linearized version of equation (3) for
the perturbed problem expressed in terms of unperturbed
variables and perturbation increment, has the general form
JEE . AT . 9aF . JaF IAE . 30T - XMO¥

) = e — bl ; = X, ———— paust. 4
e tWowt93s * P 72 * f’,_/',+ >x T 3y

. &92 N ); )':k
= "’Aw’-.-—:"-“/; — —Aah — -4
W f/; 7 é,b, 26 x
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In view of the special structure of E-—-—Q(gﬂf"(w‘) ,
assumed for the unperturbed problem and the absence of the
lateral motion in the unperturbed Lagrangian (la), a number of

terms in the above equation vanish, the surviving ones being:

T dbE QEC .0 B .o @
St Te 35 T 7AW Al 7);; “ax ¥ (W)ax ~ay 3 [N");; (5)

The connection between 4w~ and 4L 1is given by the

(3),

Euler-Lagrangian equation of motion

24w _ sl d aal
5t 28  df 28

N _A . JA 3,4\ A
= (‘R—x){—e&-mﬁ- i__& | t X (/\’-K)I(R”f; g“g—;&* E:*S“}

. A P
-+ - s S }

4
It can be easily shown that in the particular coordinate
system used here, the quantities in the three braces in (6) are
respectively 59 (the azimuthal component of the electric

field intensity), #. and ]f, (the lateral components of the

magnetic field intexgity)ﬁ The latter two terms, because of the
factors x and ; being zero in the unperturbed problem, are
to be dropped in keeping with the policy of approximation,

By definition, 4x= x*-x Yo}

P o« X ""
a% = 2% ~ Ay~ Jdr £

Since j, and j7 are zero in the unperturbed problem and in view
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of the smallness of 2% and 25 assumed, the last two terms in

A d/
(5) are quantities of second-order effect. Consequently, in a

lowest order estimate, we essentially have

~ Ay
d‘A_‘E . dh —~ )() & A ) a}z‘? fé\ ) 9 %'A l
i — i - (SR P . \7 +
% s (R ow U E ¢ or J (7)

The form of this equation is almost apparent even without
going through the details(5), We went through the details just
to examine that if the collective effects may 'indeed be
adequately treated as a perturbation at its lowest order, then
the integro-differential equation we have to face is essentially
one-dimensional in structure, at least in the case of a weak

beam,
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IIT. THE INTEGRAL EQUATION

We are now to express the potentials é;Z’ and f in terms
of the current source density i%ﬁ}? (only the azimuthal com-
ponent), which can be obtained by taking the first moment of the
distribution function itself. We shall consider a donut tube of
the same geometry as the one studied in MURA-555. Briefly, the
donut 1s to have a rectangular cross section of height 2Y and
width R{a+b) where a and b are small parameters fixing the
location of the beam relative to the radial extension of the
donut. The eigenfunctiohs associated with free-space oscillation
in such an empty donut space can be used as the basis for
expansion of those functions within our interest in the following
scheme:

(1) Any function of § which is periodic of period 21T can
be resolved in terms of the eigenfunctions. etn? ;
n= o0, <+ 1integers.

(2) Any function of y which vanishes on y = #+ Y boundaries
can be resolved in terms of the eigenfunctions

sin mfgy—Y) , m = integers

Y

(3) Any function of x which vanishes on x = Ra, -Rb bound-

aries can be resolved in terms of the eigenfunctions.

B, )= ], (E.k-x)) + C N, (£ (rR-0)
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in which Jn & Nn are respectively the Bessel functions of the
first and second kind of order n and ( and k-~ are determined by
the requisité boundary conditions (Dirichlet).
In addition, we shall assume with no loss of generality, the
-t

time dependence in all functions to be of the form €

Essentially, a function F(gx;%f) satisfying the above conditions

can be put as

-iwt -twt
F(G)X.Iy,‘t‘) = Fw((%x;,\/)e * = € LwZ F:qnmo- (@,le/hmo\>

hm o

Wlti\ <9')<'71)1M0‘>E e 'SVW—?(Y Y).aha_(’()

The potentials % and éf; both satisfy the requisite
boundary conditions and can be accordingly resolved. The
azimuthal current density being the first moment of the distri-
bution function also meets the requirement. The solution of
Maxwell equations (adopting a Coulomb gauge an’mo ) gives the
following relations linking the expansion amplitudes of these

(6),

three functions

‘#w,,m,. = £— ():mr ].Ow_m».r (w¥2) (8a)
nd
AOW‘“‘"J“ - é};j; %“"'Tjﬁwhh.f (c=] ar unit) (8b)
in which ﬁ,; ’f '*(;;}) and ):mw “ A, .~ are quantities

10
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depending on the various quantum numbers, geometrical parameters
and certain normalization convention. Their detailed structure
shall not concern us here

Likewise, we expand the perturbed distribution

P ‘.L‘-"'f— -
A R R A ey (8¢)
ma

and by definition of the current density

3

g’:'vbw . - P
S -]dms(w)_\g
we have the amplitude relation (w=x2)

:';;‘9wn,,.,,~ = jd"\/- é‘(W") "' (wr) (8d)

wnm o

where §(w) is specified by the law of constraint in the unper-
turbed problem and will be examined later.

The function &%y} presents some difficulty for a simple
treatment of equation (7). In the following, the situation is
analysed in detail in order to establish some justification for
the simplification compatible with the assumptions already made
in § II.

Let Q¢x y)> be a general function of x, y staisfying the

requisite boundary conditions. We make the following resolutions:

_ 3 (o) (rl
Qx,y) -an;, Dporrgr <% p 1 rm'es (8e)
xglame)= S&gcr‘{)%r{ﬁ
(R~X)Q()(’7)=Z ?j::‘,.’<x'7/h m'g-') (8f)

11
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Then, by adopting the abbreviating definitions

wo_ oy -
;‘]— = AL ) -;"“ = X,,,W (98)

equation {(7) leads to the expression:

é‘_.Q.) )——— 4/ (’\:\//rl,no\>

< — Dawmg
- (7a)
O -, o ‘
= ?‘—g— Z / ; .;_,...."M’rf} DR Q >‘nma~ g J} ",7/»1».0‘)(* )’l“m 0—)
T el NUF RS e p (L Ao

It is understood here, in the bra & ket notation, that for any
Flx,y):
.’ i BSOS »
<nm‘o‘llFf>{.71] n i»;d]:)::)“/' (i*.*'?‘)dxa,y F(’fy)slmazy ()’ Y)‘aml'x) 5W;')':(/-Y1 4?{(#)

(note the weight factor (R-x) in the integration element).

Equation (7a) can then be manipulated to the form:

*
. w ! iz
(b)Y ot

= 9_‘!: ZZ vw (0) 22, e ¢ o l (m.,f—/\i« Cy-\/)j (X)/nm;-) (7o)

2 2 l.} Rpmeg
W | Pt 3=t b J P52
t

ar nrag
Proceeding in a formal manner, without actual evaluation, we

may have:

oyl mtet < ylamey ) G oyl © (10a)

' J-

and (7b) assumes the neat form:

. _ 35’ 7 T ” z( ﬁ:i’ilo) Q)yl‘l —}
(\8 “Sz)t'nn” ” 9‘*' ‘_;: WT, ol A '7"""4‘ ” )a- Jaﬂhrhf (7C)
”» L
SuEJacT‘h
(loa)

12
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Thus there i< an infinite number of terms on the r.h.s. for each
pw' '~ =mode  We are confronted with the problem of a set of
coupled equations infinite in number, an obvious impasse.

For the sake of argument. let us actually evaluate the
/

coefticients i;u,r with respect to the y-variable. The sit-

uaticn for the x-variable follows similarly (although an explicit

evaluation wili be very arduous) since .i—v 2,7’ in the limit

X Lo 15 essentially also the sine function. Then

( ~ fd)v Sev Ly ap) Sin Rty oy ) S0 ZX (g =Y )
et 2Y 2y Y (10b)
~ f I - ' SN R S
( e ! Mt s e vas w /j

all denominators assume
odd integers only.

Now if Q{x.y) is flat and smooth with respect to the
y-variable the expansions in (8) should depend on the m'-quantum

number only wery weakly, in which case (10b) approaches a small

i’

quantity unless m=~ *wm
-
Let 7 be the DC Component in (8e) and define

Ra. 2 ¥
S de 8% By L

—~ - {«

'< E s Pt b A 2 £ A e o e sins 3 S ::: Q aa _’: o
ha Ra T r >
/ d x (R “'X) b}rr Jh [7a8

% {

then the equations (7¢) are decoupled:

» o ~ T . \ 7
(9—.52)'1//’ (W} = _"}g _”_’_’_j_ﬂ"m-ﬁ‘-”" . }A
e = R52 1 3 o Ror [ A 6050 (W7) (11)
my 1 peos

13



MURA-611

Dropping all labelling quantum numbers and introducing the

abbreviaticn

—0 o~ 22
’X;“V;/—— = G(wW) },L R = 71’(‘“—)
& aw— -—g’ J - K-1 (gb)
we may then concentrate on the prototype integral equation:
(6us-n) Por) = g 1(:1)/Jw; Bew;) (i) (11a)
v ya

This procedure of decoupling approximation is of course
rather drastic A better decoupling approximation is to intro-
duce an inhomogeneous function, formally denoted by (ﬂ(wy .
ootained by a second averaging procedure to account for some of
the important contributing terms in (8e) other than the D.C.

pert. <o that

(6(wj-n) Yl = ) +;7(W)7(ﬂ)[dh( W) Y (w7 (11b)

In this exploratory study, we can only afford to treat the
simplest decoupling approximation, so (llb) will be disregarded.
In the next section, we are to briefly examine the structure

of the function §(w) and the integration limit I in (1lla).

14
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IV, THE LAW OF CONSTRAINT

é as a function of w , or vice versa, is specified by the
law of constraint in the unperturbed problem. Although we do not
wish to be particular about a single such law, a realistic
example is examined in order to serve as a guiding principle into
the analytical properties of the function in which we most likely
shail be interested.

Let us say that the external non-energy-contributing con-
straining agent is equivalent to the effect of a magnetic field B
on charged particles, B being perpendicular to the plane of
motion of the particles. Then at a radius r, Fz: ri3
where p is the scalar momentum of the particle. Further, if we
follow the rf - field law such that B= B,r* with B & k

as constants, the latter being very large

then b= Bnr'f”'
. dE
From the defining equation dw™= rd/a and B=J’h‘/‘. =;'E , we first

integrate W :

£+ fo+r2

w==B(—)r +Cang_}:
o £y,

Since W~ is only differentially defined, the additive constant is

completely arbitrary and we would like to put it equal to zero.

15
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Consequently
W ﬁ*l k2
) g, (B L+t)
ow) = "
[Bl(ﬁffﬁijéé ,]i (particle mass set equal to 1)
° 130 ki +
very “““‘1& k R w-
W+

in which we have made the choice that ¢ and w are to have the

same sign. This sign convention uniquely determines the inverse

function §
W(6) ——> ==
y 1— 86
AW R [
qé ! ('__9'2.)3/2.

If the integration interval I in (lla) is for w” from o
to oo , it will be for & from o to 1. For the purpose of
studying (lla), it will be seen later that it is more advan-
tageous to use § as the independent variable rather than w-
So returning to the general case, we may say that the law of
constraint specifies the function w(é) , or what we actually

shall need, the function ggr only. We define
dw .
= = 4é)

to be referred to as the constraint function.

16
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Equation (lla) in its full generality then assumes the

compact form:
Yi6) = Y (wid))
(6-2) 6= j(é) Z;("‘)ld“;.%‘é"%‘é) gz ge)

17
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\Y FORMULATION OF THE EIGENVALUE PROBLEM

Let%ﬂ,»be 3 multiplicative operator andL} be a non-
Hermitian integral operator of definite integration limits and

let us look 3t the following operator equation:
= ayrqenJy

1n which /bej 1s not a linear function of £ . The non-linearity
in 2 of f(<z ) greatly complicates the present problem,
although 1t seems that nothing prevents us from asking the same
question as we do in an ordinary eigenvalue problem, viz, whether
or not there exist particular values of qujlu such that this
equation will have solution 1#“‘4@ . There is no difficulty in
obtaining the eigenvalue spectra and the pertinent eigenfunctions
(by following K M. Case's method). However, we should expect that
the eigenfunctions thus obtained will behave quite differently
from what we can expect of those in an ordinary eigenvalue
problem. particularly in respect of two questions which profoundly
concern our interest. These questions are:

(1) Whether or not there exists a set of functions %{which

have the same spectra :;‘ 3% #; and which are

biorthoganal to'#; over the interval I in the sense that
f(g,fi:« 120 ";fj(&) o d(arny
I V_,\\

(2)  Whether or not \alé) are complete over the interval 1

in the sense that any reasonable function of & defined

18
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on I and belonging td a certain class within our
interest can be expanded in terms of them.

The two questions are of course intimately related and with-
out affirmative answers to them our sole knowledge in the spectra
ij and functionsﬂ#L has only limited usefulness. By taking it
for granted that the answers will be affirmative, various attempts
have been made. based on intuition or by sheer trial, to construct
an equation which is “adjoint" to (12), or approximately so, in
order to generate the required 'gt , but do not lead to any

intelligible result. In the next section we first study the

spectra of our problem.

19




MURA-611

VI THE TIME MODES

In the equztion
G dids = Geis i / 46 £ G0 0id)
o )‘/( / ? 1 /e 1 1 // oy, (12)
we shsll always make the normalization convention
/,w; foekinfig) = / (12a)
z

and subdivide the spectra into two major classes:

(1) Real Spectrum

‘3 £l .2 ) = o has roots 2, which are in I.

Tren [ 6-0,) ¥ (§) =0 and x} $) = ”)-3 . (13)
{Those roots of f{( ) = o, if any, not in I are not
ergenveliues since for them #’ is always trivial.)

) 1(42‘:):5\(}) Hhew Fron (é-.;.".,,')-:?/;fz)f(m’c)

}-rdf(xk)éké-A%)

v (4

(14)

The firct term is the principal value which does not define the

function ¥, at ©=. . The second term defines the value of

¥ -

doat fean The weight function f() . is obtained from

the normaliization convention which yields

PR o3
Sln A S j? d ffbjiﬁh' (14a)

fpm) 4 deag

20
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(c) If in (14). ?(JQTS)=O . then the principal value

sign would not be necessary In addition, if jqfq):g
then {i4a) yields

. j;‘ﬁ’; iy é' iy
§~,_[d§ £16) 1(0] (25)

I 6' "._5“25

Solution ot this algebraic equation will give all 1253

(1) Complex Spectrum

Since i 1% real, if f2, 1s complex. we have right away

8- 52,
Normzlizat.on supplies the algebraic equation in (2.
7 f “’lr)f a”cﬁ}.i j"{,'_‘:\ 2
: § '] | (15b)
= =42,

L

which is ident:cai to (15) Since h.g & f are all real functions,

thnis algebraic equation should supply complex roots in conjugate

’

!

pa.re These res. roots are just the .i’s in (Ic).
Tne degree of complication of equation (15) of course
deperds or the structure of the functions h & g and it is almost

certa.in that ir gereral it will be transcendental in nature.

Of the three functions involved in (15), f {12 ) depends on
& i2rge rumber of parameters Its structure (9b) already bespeaks
tnat (.5) as =n algebraic equation in £ , will always come out

higher tnan cubic in degree of N =~ It 1s of considerable

interest for us to exsmine whether there exist any realistic

21
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simplifying assumptions to be imposed upon h( 6 ) or g( § ), so
that the integration in (15) will make the final algebraic
equation i1n 2 not higher than biquadratic, which 1s the highest
degree equation known to be analyticaliy solvable. Such an
example 1s studied in the next section for the purpose of

gaining some insight rather than taking it seriously as repre-

senting the true physical situation.

22
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VIL SHAPE-~1ND=PENDENT APPROXIMATIONS -

Grest c<impiitication is attainec by taking a Gaussian-like
curse =5 the unitial distribution (treated as a function of é
ratrer “hap of W 2t the very beaginnina).
Furtsermore :f this Gaussian 0. A
curve 1S narrow ana peaked to
such ar extert that i1ts de-
+:ilad shape cou'd be over-

Looked sc *trat a plateau-like

pulse such as pictured in Fig. |

M+

WD
5
N

cou.d cruda.y represent the sit-

ustiorn, tne Jiffsculty of our

crontem i3 ezced no matter what

)

N ¢ L .
tne copstraxnt functicn he & 5 is

U S
=

Trhies sazre-i1ndependent

fomb

treatment v.eids ihe grad.ent FI G

tuncticn A - . c, I
7,§5= Z—[g(p_v+A7-c(e~r~A)j

the haif-widin of tre plateau and M is the center
~ trne Gaussian curva has vanishing gradient. A is

N l} . . {,_ -
sude corctant. Ther equation '15) leads to

LA s o) (16)
by 2T vea-s Y +A-52

23
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If 4. . as a small quantity, is considered significant only to

1ts first order, we obtain

PO A vi o ay ] RAEN ; ,
N . P WA i ! S 5 :
..’—“ \ “__f"'" ,__',._" !-‘{«,,;,‘{/'*‘}JJx (V’)' -(-)»l’\ {-V,]J —— % !- ;1_”{’);}-.))‘[1 (y)*_jlﬁ'g_’y{)ﬂ}
/6(,4’/. (V=T (=ary ;
p gt ol

(17)

This last result is identical to that of an “Impulse Dist-
ribution". i.e.. if the original distribution is exaggerated to
be just sn impulse like 5'-function, so that the gradient
function 1s simply

N (‘.;J(é' )’:,)

Equation (17) is a fifth-degree equation in . and we get
assurance that at least one root will be real.

Written out explicitly in terms of the parameters }175 ﬂ,ﬁ’
which are dependent on the spatial quantum numbers ,,m o , (17),

atter rearranging some of the factors, looks like:

. DA

- - N oy i/ R 'S -

K= v} = L s R - A ()] FekA (17a)
f+Rx Y-iv

which is in the appropriate form for further discussion.

For a given spatial mode ( wmo), ¥ 2% R are deter-

mined or the quantity %Q;l%h is fixed Conversely if the quantity
+ R *
2 | L is given as a single entity by itself, it is possible,
YR A

although quite difficult, to find a set (wwm = ) or more probably,
an infinite number of such sets out of the three--fold infinite
manifold spanned by all possible = m s> , which will give the

: P
corresponding <, ¥, » K such that

24



MURA-611

/7~ the product %/)jﬁ,,j;\ is a preassigned quantity. The defining
constant » in 3(@') can be looked upon as a preassigned
quantity, so that it is always possible to set

mempa———r

7

Y = .

Kv’!)'-rl’{?\ (18)

thus selecting out those spatial modes with which the assumed
initial di'stribution has direct concern.

This procedure reduces (17a) to a biquadratic equation in
{2 , the real root 4z=» being separated out:

el

4 3 ‘[ 2 N ] o[ vrts ———K(u)] ”l[yf\zy)-y‘ﬁ’cv)] =o
-PiLL -8 1<+k ] [ T oy | (19)

This equation can be analytically solved by means of Ferrari's

method,(7) The results are,

2], (o 0] D= - ko]
defining BE-["*FF’“”’]; = V’” ]

L r?
X £ - -4D-7B
and p2 C 3

3 2 3
Y = 48D-»'D-( —éB[”C“‘D]‘E’;B

Constructing the resolvent

The roots being:

+ p? . V‘+L{”15xIV‘
v R } " il ~ R A L
a=Frily Rl iz]s -

subject to the condition (18).

25
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One might wonder whether such an approach to handling the
fifth-degree equation (17), by confining to only those selected
spatial modes that satisfy the rather arbitrary auxiliary con-
dition (18), is logical, since (17) should yield five roots for
every possible spatial mode if it could be solved without any
artifice. This is intuitively answered by referring back t§
Section VI, There it is noted that any real root of (15)
belonging to class (Ic) are special cases of class (Ib) in which
the gradient function g(dho at 6= . From Fig. 1, we can
see that only if n=p do we have gw)=o . Condition (18)
precisely insures that n=p is a real root of (17). For those
modes which do not satisfy (18), no real root of (17) will be

N=y and 5Lﬂ)=c> is never possible in thils exaggeratedly simple
approximation. Should we be a little more reasonable to use the
true plateau distribution in which the height A and half-width A
are separately finite instead of the impulse distribution in
which A— o , a—=0 while AA=N is finite, the situation
would be different since then 2 may have values ranging from

v-a to v+a within which ?cﬂjzo can be satisfied. The problem

would amount to a true fifth-degree equation.
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VIII. CONCLUSION

The result of this study, if any, instead of constructive,
are rather discouraging. We have attempted to appreciate the
various difficulties confronting us at each stage of the
approximation in an effort to proceed further on in a simple
manner by sacrificing such considerations as should otherwise be
extended to physical reality. Nevertheless, even after many such
desperate procedures, we are still so remote from attaining a
very crude idea regarding the ultimate purpose for studying the
behavior of a coasting beam, viz, what conditions, no matter how
approximate, should be imposed upon the initial distribution so
that the occurrence of those predominant unstable modes can be
minimized in the temporal evolution of a beam subsequent to
injection. At least in the kind of approach assumed here, this
intricate problem will be very very hard to analyze, if the two
basic questions raised in Section V cannot be affirmatively
settled.

We therefore would like to conclude this study with a very
brief discussion on what might be called “the initial-value
problem."

In the perturbed distribution ( ¢f (¥¢) , N introduced because

of the normalization convention (12a))

Ek’*(&’é’x'%%) = 2' Nnmq- 1anv(§) (9}1}7{;‘.," >

Sty o~
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~let us extract out one spatial mode so that

-Lnnt

* L)
——— . + = - &
¥, (6% nz Nawws 1, (80 €
As t—=o0 | we should have

F (5,450 —> 9 2% = _,2; Nanme AN
If the set of “adjoint functions™ ;fnhmr | s és mehtioned inll
Section V, is proved to exist and actually available,vthen the
coefficients N, can be evaluated. To minimize the ocburréncekof
a certain time mode £ , we have to make the pertinént |
coefficient N_,, small. With the structure of Na available iﬁ’

relation to Eo(i) and its gradient ?(5) , we at ;lea‘stv have some,—'v

- thing to start with to investigate the aboveémentioned}problem,

although the prospect is not very optimistic bécause‘of the
further intricacy that the eigenfunctions ika, themselves actually
also depend on 30& as evidenced by (12) and all those expressioné
in Section VI. To know more about the operator equation cited |
in Section V seems to be the key to a better appreciation 6f

these difficulties we have to cope with.
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