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ABSTRACT

—~ The solutions obtained previously for the magnetic field
produced by a spiral sector FFAG magnet in which the pole face
windings are distributed in spiral and radial grooves have been
extended to include the effects of a finite variable permea-
bility in the iron. A unified method is presented for the con-
struction of the algorisms. The cases treated are sufficiently
general that both radial gaps as well as radial return current
slots are included. This allows the potential to be graded
along the spiral poles with a grading distance equal to the
distance between radial return slots and with a grading dis-

tance equal to the distance between the radial gaps.

r— *AEC Research and Development Report, Research sugported by the
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I. INTRODUCTION

Magnetostatic problems containing regions of iron with

isotropic properties obey the relation:

Vo/uvv.—_- 0) (1)

where the permeability 4 1s considered to be a function of
the magnetic field magnitude. In order to apply iterative
techniques, Eq. (1) is replaced by its integral equivalent:

: i
S
Application of Eq. (2) to a region surrounding a standard mesh

point yields the standard algorism. The surface S is deter-
mined by the mesh points neighboring the standard mesh point.
Since the regions in which permeability effects must be
treated do not overlap those in which distributed currents must
be handled, it is possible to find algorisms for all cases of
interest in a D.C. magnet using Eq. (2) er a simple extension

of it. Such cases are enumerated in detail.

ITI, STANDARD ALGORISM IN SPIRAL COORDINATES

In cylindrical coordinates, the line element is given by

d3 =2 dr+lsrde +Kdz. (3)
If the coordinate transformation
w w(t +N
r=re (§+N¢P)} 6=9 5 Z=Kne arf) (4)



MURA-602

is employed, the line element in Eq. (3) becomes

43 = r{”(ﬁ*ﬁ)aﬁ% N +1, +ywNK)de +“1?A,>¢] (5)

The vector areas are given by

J,_S.; = rl(WN7r+?8+7wNF)x K dfdy

or
J»»—S; = V(3 - wal)d pdx, (6)
d —S_'; = wrikx (2, +1F)d}dy
or
A5 = wrtl,didy, ()
and
d'gl = wr“(i;ﬂ,’;:)x(wni‘ﬁ}', +QWNT:)£§JJ70
or

A5, = w (-1, +k) dydo (8)

In order to calculate the gradient of V , it is first

expressed in cylindrical coordinates,

VAR LR ) SN F Ve (9)
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The spiral transformation of Eq. (4) may be used to give

2 L2 ., 2
rs¥y Twdy "ty s
3 - 2 2
55 My Top
and
2 _ 2
32 ~ o ° (10)

Equation (9) then becomes

- R B AR R

(11)
Thus Eq. (2) becomes
fg,ur[ ,;’rg—g é_. wN-Nf%h—%{)]abfan
-\—“A'wr[ 3§ -92;5- L3dy
N gg/mr[ 2(23Y 2 )I/)@ﬂ,e,g;,a: "

where the brackets in Eq. (12) indicate that the expressions
contained are preceded by a plus sign for the faces with a
positive coordinate incrament and are preceded by a negative

sign for the faces with a negative coordinate increment.
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For easy comparison with previous calculations(l), the
following scale changes are introduced:

=y, Y-

W‘t "'N"

72 JZ-—- i (13)

Equation (12), in these variables becomes

(13- 58 R arersz

,+§§{-%§;—£+O :YQLJ/WJ,X'JJ

. Sg [_._J_VI_AIAY+ ' *alf],muw — 0

M
AR AT P (14)

b = N | (15)

and a similar interpretation is employed for the brackets.

To obtain the standard algorism relating the potential
V0o at the standard point (0,0,0) to the potentialvijk at
its neighboring mesh points (ijk), one applies Eq. (14) to the
unit mesh cell surrounding the point (000), 1In detail this

becomes:




MURA-602

— oo—v
{Vl h 200 4{;&( m‘" hot Vio- ) I,%I(V,, oo V_,o .\{,o)} ﬁ'ﬁ‘:—fﬂo-ﬂrwh)'a‘&

©

- (P MO L)l ] e g
(- R AL R ) St

R Al e (o L

+ {_M(\/ WV -V _Vb_‘__@(\éo: ~Vioo )} Hoo ﬂoao<’+wwkjg_lo) )

‘fb')' lof 100 ~o] -0 'D; P 2
(-]
f'\
MN M \/;°° b0~ /u~ao-l ﬂwa( ) _—
*{f#ﬁh(vo-f\{oo V/o—/\!:oo) :5.( P i =T "o ]'1,0, - 05
[-]

e o & o (16)
where the subscripts (ijk) refer in order to mesh increments of
the X;\C'Z coordinates, (hlp) being the corresponding size of
the mesh units in the same coordinates.

Equation (16) may be put in the form
Voo 2 Nedie = 3 Niji Vi (17)
but since the digital computer can handle Eq. (16) as it stands,
the weights N i3k in Eq. (17) will not be exhibited explicitly.
P
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It is to be noted in passing, however, that the values of Jwrijk
from Eq. (16) for the case of constant permeability differ from
the values of fV'ijk previously found(l) although both sets of

weights satisfy the moment relations.(l)

This is simply an
example of the fact that, whereas the moment relations are
necessary conditions for the determination of the weights, these
relations do not uniquely determine the weights,

If the standard point (000) is located on the face of iron,
the values of M on the various faces of the unit cell sur-
rounding (000) must be estimated in a different manner. There
are several cases involved and for each case the insides of the
brackets remain the same as in Eqg. (16). The cases, therefore,
will be illustrated using the notation §+L} , {—k} etc. to
refer to the brackets in Eq. (16) for positive §-—increments,

negative % - increments, etc, Thus:

Case 1. % = constant face:

{+h}(n)(;+vwh) pAh = §=h} M (1=Twh) ol

+§_+J’.} %"-’-’ hp —g g'“'*' hje
[ rp} at(emaelp)hh - §-p} & (1-mw B )bl =0

Interchange M and 1 if iron is on positive side.



MURA=-602

Case 2, 77 = constant face:

{.,.h} "“"'cl-rn"llrh),o,é { h} ’“‘"(l #wh)p,@
+§+}(0hp - }Mhp
5

+ +p}’**'()+7r'ur—— M { }"“'(/ ~rwlp )u =0.

Interchange M and 1 if iron is on positive side.

Case 3, 70 = constant face:

+)1} "“"(H—n"w‘h F,& g-k} %‘-’-‘(I-#wh)}oze

{
e (i b - AT 4 e
%

«3rpf (e diphg - i a(-TeRR b = 0.

Interchange A and 1 if iron is on positive side,

Case 4, é = constant, Q = constant edge.
{*“SC'X'”’"")F’Z - {-h} L;*—'(/—FWh)/o-Z
+ e Ohp - {2 & g

F 4 P EE T Ahd = -] B2 (-Tu R by =0 .
Three other variants at this relation are

possible depending orientation of edge with respect

to direction of é-q axes. (a) interchange (1)
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and (M+1)/2 in line one; interchange (1) and
(M+1)/2 in line two; interchange (1) and (A& +1)/2

in both line one and in line two.

Case 5, 7 = constant, ¢ = constant edge.

[ RO Rt = o A2 mrah)pd
+ {*rl}(‘)%}o - {—lg /'-Liﬂ Mo

+ z-r’o}(l)(l-ﬁ'ﬂ'wg-p) he - §-p} /_33_'{/—7‘0%/9)};,& =0,

Three other variants are possible as in case 4.

Case 6, § = constant, 70 = constant edge.
§+h} O)(1+Twh)pl — -h} Atl(1-mah) ol
+§ A hp - {0 ez

+ 3T+ Tl ) hd - SR} A (1-Tw Dbl =0,

Three other variants are possible as in case 4.

Case 7, § = constant, 72_ = canstant, 70 = constant corner
gﬂ}(:)(wnwh)p,% - §—h} /_J:";"_:’(/-—rwl,),ol
+§rajhp - [AF £ by

+ 3P O Twfp)hd ~ §p] A3 (1mmarip)| 4 = 0.
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Seven other variants of this case are possible
depending on the orientation of the corner with
respect to the coordinate directions. The seven
cases differ in the permutation of (1) and

(m+3)/4 in all possible combinations.,

ITI. ALGORISM IN INTERIOR REGION OF COIL
In general it is advisable to modify the potential function

V of Eq. (12) in the region interior to the coil by using
V=U-C, (18)

where C is chosen to simplify the nature of the boundary value
problemo(z) The specification of the interior region of a coil
is somewhat arbitrary. For our purposes it seem desirable to
define this region by placing conical caps (practically plane
caps) on the top and bottom extremities of the coil. The
region bounded on the top and bottom by these caps and on the
sides by the inner edge of the current distribution will be
called the interior region of the coil. In general the interior
region so defined will contain iron and air but no current.

A choice of C that is consistent with the corresponding
choice of C in the presence of a current distribution and one

that eliminates all double layer distributions is

C =-Y, -2, (19)
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T for 7,474 7, .
In this case, Eq. (12) becomes
U_,Uu_ V2
[rlGd-% fzm) (N ?‘)Jif*?z
.9_ U
*jg"“’”‘[ 3% LJ’LVL’(
_n U g, "
-t-“#wr[ % 5% +(1 7z) +(/+,Zx)%’l‘] aL§aLf =0
(20)
Equation (16) after modifying the potential and removing
\‘Y’/&ﬂ becomes:
7~

Y‘l MNrS Um Uom U\o - ng\ v;ﬁg( Uno Uano'Ux -10 U b~10 4&)} /4'0 #ow)(”rWh)

MNYFS I.ﬂ - - i}{g A */u'aao /—wah
gyj( 000 Uloo) Ulol I)ODI-UIOI oo) .‘l’w‘ﬁ; Ul:f‘%:g U—:-m .Uo-lo* m )%( a0 Y )

+

m“'z@% U Vo™ uo —ioo> {l Mr% (J +J)]( 010 U;oo -l\f)}(ﬂmﬁ-ﬂ“")

27‘,5 ho 100

ey 0, ) e R U (A )

nfwﬁ

*% NS 1) 11~ ) 208 (™ U} (4000 o)

/o: iOa ~10)
Iol

'°° Ulo N U’”) %_ (.[’);00 00-5} (A 0o—t+ ﬂboo)(’ TW'&I‘ P) s 0

(21)

10
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where

AL -
5:'—’-,-;‘ dnd Y-—/QJ, (22)

r= 5 3

4
h

For interior regions containing air, the permeability is set

equal to unity,

IV, ALGORISM IN COIL REGION
Since the construction of the algorism for [J,,, exhibited
in Eq. (21) is convenient from the point of view of numerical
computation, the results of MURA-591 for infinite permeability

are put in a similar form, Thus; if one defines the square
bracket E{] to mean
[ (g-I-3)wW
[J_:‘ — (K,~K)/ B
’t !
(I"'i"L)/W

3
and the bracket [o] to mean
[ (1,-Tyw!
(K,-KyB
Lo] =
(I-1)/w
K-K))/B
AR

11
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where the first two braces refer to the contributions from
the (‘P,{ ) surface for positive and negative increments of é s
the second two braces refer to contributions from the (§ 7 )
surface for positive and negative increments of70 s and the last
two braces refer to the contributions from the (§ ,f ) surface
for positive and negative increments of 7 . The bracket
notation as in MURA-59]1 refers to the four regions of the coil.,

See Fig. 1 for clarification of coordinate notation.

V. ALGORISM IN CURRENT CARRYING SLOT
The algorism centered in a radial current carrying slot in
real iron whose width is less than one p-mesh unit may be found
as above except that an effective M must be found for the
direction perpendicular to the slot. Consider the following

air-iron boundary

*
ol
o
]
. e &P .
-0 oo ¢ 10
o-l

for the case of constant M.

The flux passing in the 00 ~—10 direction in the air is

Ve ~Vy

X

13
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and in the iron is

Since these expressions for the flux are equal, .\4; may be
eliminated to give for the flux

VW)

where

Mo
)+ (A1) e

/L.::
This is the effective permeability that is required.

The algorism thus becomes, after defining for convenience,

(n) = {Vn [M -(#-I)Bs] + '\[‘_. “/«L -—(MH)BS:I}
J

14




MURA-¢02

0= ﬁwﬁrs-i Ch-"0)[(~0)Z

L

Aw... ’Humc..ivli

oct- O1-1- Q6! 04~

00/-. Oli= 90t aQn

Mmm?s& - _E?.ﬁwwﬁu% [0 {02070+

N

(7

Qahl.vm.«meb\vliwﬁoryo..ﬁ!oSD..N:. o

0F0_01-1_ 010 gy

?sﬁivm -\ (- 0-0+ 0

A&.RR.F\ QM& 0" V mo\
Az

e )0

N-0- 3+bﬂ\‘3w£&. ?VW T .wm.m -

vﬂf%up ?V Tﬁ% s\hﬁ.@:ﬂ *

L
Q0= -0l 001 ot a@f? _ —

- (Q0- D...‘.D?_ZZ‘

o)~ 101 N 1o \ LH
+\ - 0-Q+ vrzz nw.f

nH

00_ }-91= loo_ 1ot a0l-. 900 N
Eti .2 3:..,. D,m;zz _Hmcniv.. .% D. .Dv«s._.?v.much

..M..MM - iA...T._.. D._.SD.__QS SAN

z Fon.:ov.:\ 000 osv +A: ﬁ‘r_r

15



MURA-602

For the part of the coil in region IV adjacent to air, replace
the M in the above equation by M = 1. 1In the iron it is
expected that sufficient accuracy will be obtained if all terms
containing J or J2 are dropped. In addition the parentheses
containing h and p may be set equal to unity. Similar sim-
plifications also apply to Eqs. (16) and (21).

In this case

M
B
I+ z;(,a.—l)

and M= - (Pogy + Ky, (25)

}Z::

Note that Bs is the relative width of the slot in units of p
'Vg is 4T times the sum of the abampere-turns for all coils

surrounding the ;ntﬁ pole, and NQ,\is the same quantity for

the pole adjacent to the nth

pole on the low potential side.
In certain special cases, for example air-iron boundaries
and copper-air boundaries, it is necessary to use mixtures of
Eqs. (16), (22), and (23). These are not illustrated. In the
iterative procedure, the value of M at any point in the iron

is calculated from the empirical relation:

A +H
= T 2

where H is the magnitude of the magnetic field. Thus from
Eq. (11)

16
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_ATY OV IV _ ANM 3V 2V
wf X Y L X oz

(27)

Using the simplest algorisms for the derivatives Eq. (27)

becomes

2
H9~= ’D <Vl-oo Zlo0) + —M-} vt:ot 00-1 +[l + —_—— 477‘7;2 J ] ole V_?_"_"’
sty 2h L\ 2p . 240

ATI_J‘( 0o _MXKM o—) 2MN/V, Iao vl-ooXVo-M VO l)}
21 £ |

(28)

Finally it is to be - noticed that the solution of the algorisms
for the case of infinite permeability when subjected to the

2) yields an integral

integral scaling boundary conditions(
scaling potential. On the other hand, in the case of finite
permeability, application of the integral scaling boundary
conditions gives a solution which does not possess integral
scaling. It is expected, however, that, if the integral scaling
boundary conditions are applied between boundaries on which

the potential is small, the solution within each individual

17
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cell is essentially correct. Thus the extent of the deviation
from integral scaling may be determined by comparing homologous
points of relatively high potential in adjacent cells. The
problem remaining is then to find what sheet currents must be
placed on the iron surfaces to restore the property of integral

scaling. This consideration will be studied at a later date.
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