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ABSTRACT 

The solutions obtained previously for the magnetic field 

produced by a spiral sector FFAG magnet in which the pole face 

windings are distributed in spiral and radial grooves have been 

extended to inclu~e the effects of a finite variable permea­

bility in the iron. A unified method is presented for the con­

struction of the algorisms. The cases treated are sufficiently 

g.eneral that both radial gaps as well as radial return current 

slots are includedo This allows the potential to be graded 

along the spiral poles with a grading distance equal to the 

distance between radial return slots and with a grading dis­

tance equal to the distance between the radial gaps. 

*AEC Research and Development Reporto Research supported by the 
U.S. Atomic Energy Commission, Contract No. ABC AT (11-1)-384. 
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I. INTRODUCTION 

Magnetostatic problems containing regions of iron with 

isotropic properties obey the relation: 

where the permeability;u is considered to be a function of 

the magnetic field magnitude. In order to apply iterative 

techniques, Eq. (1) is replaced by its integral equivalent: 

f ,u \IV·dJS =0 . (2) 
'S 

Application of Eq. (2) to a region surrounding a standard mesh 

point yields the standard algorism. The surface S is deter. 

mined by the mesh points neighboring the standard mesh point. 

Since the regions in which permeabi~ity effects must be 

treated do not overlap those in which distributed currents must 

be handled, it is possible to find algorisms for all cases of 

interest in a D~C. magnet using Eq. (2) tr a simple extension 

of it. Such cases are enumerated in detail. 

II. STANDARD ALGORISM IN SPIRAL COORDINATES 

In cylindrical coordinates, the line element is given by 

If the coordinate transformation 

(4 ) 
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is employed, the line element in Eqo (3) becomes 

The vector areas are given by 

or 

or 

(7) 

and 

or 

In order to calculate the gradient of V , it is first 

expressed in cylindrical coordinates o 

2� 
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The spiral transformation of Eq. (4) may be used to give 

d _ 11 d + d ,�
~ - if-.I~~ 

and 

• (10) 

Equation (9) then becomes 

(11) 

Thus Eq. (2) becomes 

(12) 

where the brackets in Eq. (12) indicate that the expressions 

contained are preceded by a plus sign for the faces with a 

positive coordinate incr$ment and are preceded by a negative 

sign for the faces with a negative coordinate increment. 

3� 
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For easy comparison with previous calculations(l), the 

following scale changes are introduced: 

(13) 

Equation (12), in these variables becomes 

(14) 

where 

lJ. == ..l;l. +.It- (15)o 'W' 

and a similar interpretation is employed for the brackets. 

To obtain the standard algorism relating the potential 

~oo at the standard point (0,0,0) to the potential'v'ijk at 

its neighboring mesh points (ijk), one applies Eq. (14) to the 

unit mesh cell surrounding the point (000). In detail this 

becomes: 

4� 
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{YooO-v,oo _lil1(V +Y.-V -v \- rrY (v. +y. -v-v \1 )i.-/oo+!-looo(/-7rUf h) n 
- h If-J{ P -/01 001 -10-/ 00-1) "1CfJ{J -I/O (),IJ +/b O-ID}S ot PA'.I 

- 7f(Y+~)(v. +V- V -v \+[1 + 4rr'-/Y~Yl)~(\'o/~ YePQ\~ )J.%+)J.O()() h10+ ~ 7JI!J h /10 100 -/I 0 4(0) 110 I. IJ 1 J. r{ 
() 

\_!!!i(V +v -v -v \+~("Ol-~()()\} }too/+floDo(1 +7r?V N 10\ hi,+ l ~~h 10/ 100 -/01 -1(0) ~ 1'") ~ 11 1-') 

r­

\ _~/v +V -V. -V \ + M~ 'fooo-~O-/)~ )A.DO-I+)J.QOO 1,_v'Jlr.N )0\ hl = 0- 1 At.l';h ~ 10-' -10-1 -/(0) 1Jo ~ JO IS .:t ~' 11 ')100 j 

• • • 0 • (16) 

where the subscripts (ijk) refer in order to mesh increments of 

the f; Y; 1. coordinates, (hlp) being the corresponding size of 

the mesh units in the same coordinates. 

Equation (16) may be put in the form 

(17) 

but since the digital computer can handle Eqo (16) as it stands, 

the weights }J ijk in Eq. (17) will not be exhibited explicitly. 

5� 
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It is to be noted in passing, however, that the values of N. ok 
~J 

from Eq. (16) for the case of constant permeability differ from 

the values of JV ijk previously found(l) although both sets of 

weights satisfy the moment relations. (1) This is simply an 

example of the fact that, whereas the moment relations are 

necessary conditions for the determination of the weights, these 

relations do not uniquely determine the weights o 

If the standard point (000) is located on the face of iron, 

the values of )l on the various faces of the unit cell sur­

rounding (000) must be estimated in a different mannero There 

are several cases involved and for each case the insides of the 

brackets remain the same as in Eqo (16)0 The cases, therefore, 

r· will be illustrated using the notation f+ h1,{-h1 etc. to 

refer to the brackets in Eq. (16) for positive ~-increments, 

negative ~ - increments, etc. Thus: 

Case I. ~ = constant face: 

IT 'h1(1)('+7T1tr\a)r..t - i-h1 ~(I-Tr'Wh))O.l 

+i~11 ¥ h to - ~ -1S¥ hto� 

-t{orrS ¥(''''Tr~~f) hl-1-p} ¥(I-Tr~~p)h~ =o.� 
Interchange ~ and 1 if iron is on positive side. 

6� 
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Case 2. IZ = constant face: 

+ ~-rp1 ~+'(/+7TWAp)h.t - {-JO}T('-Jrw~ JO)hl = 0 • 
Interchange fl and 1 if iron is on positive side. 

Case 3. f = constant face: 

{ 1" h} ¥(I -t-7r'Wh) fl - 1- h} ~;-l (I -1rWh) JOl 

+ { 1".t} ¥ hto - {-.l1 ¥ hJO 

-+ i-tf}(I)('-t7i1U'~p)h..e - f-,to1~(J-11"'W~)O)h-i = o. 
Interchange A and 1 if iron is on positive side. 

Case 4. ~ = constant, .I( = constant edge o 

I;-h~(/)(I+7T1(rh)f.t - {-h1 ~TI(I-7T'lVh)r.t 

+ i+.t1(I) hto - i -,t1¥ ~lJO 

+ {'t r1 ,M./3(I +1T?r~f)),.t - I -PJ ~:3 (/ -JT1v ~ JO) h.£= 0 • 

Three other variants at this relation are 

possible depending orientation of edge with respect 

to direction of ~ -1 axes o (a) interchange (1) 

7� 
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and (~+1)/2 in line one; interchange (1) and 

(ft+l)/2 in line two; interchange (1) and (A+l)!2 

in both line one and in line twoo 

Case 5.. 12. = constant~ f = constant edge o 

I+h1¥ (J -rlr'1lrh)~..e - ~ -h1~ (1- 7T1V h) r.t 

+ LT.t~ (,) hf - i -1£ P-p..-t-I hf 

+ ~+jOJ(')(J+1r~~p)ht - {-;of ¥(J-T~JO)h.t =o. 
Three other variants are possible as in case 4 0 

Case 60 ~ = constant, e:f = constant edgeo 

{+h1(1)(1 +7rwh) ~j - I-h~ ¥(I-7f?Vh)jOl 

;- i-t-P,l ¥ ~ 1> - {-.g1¥ hf 

+ li"f1(/)( I +7T'hr.~ p) kt - I -/OJ ¥ (J -lTw~ Jo)h.i =D. 
Three other variants are possible as in case 4. 

Case 7 0 ~ = constant, ~ = constant, ;P = constant corner 

+ i+1, } ( I) hr - ~ -..t ~ I'-If+3 hf 

+i+r~(I)(/+7T1v~f)hl-1.-rJ1~:3(J-7T'W::'p)hJ,= O. 

8 
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Seven other variants of this case are possible 

depending on the orientation of the corner with 

respect to the coordinate directions o The seven 

cases differ in the permutation of (1) and 

LM. +3)/4 in all possible combinations 0 

III. ALGORISM IN INT ERIOR REGION OF COIL 

In general it is advisable to modify the potential function 

Vof Eqo (12) in the region interior to the coil by using 

V= V-c J 
(18) 

where C is chosen to simplify the nature of the boundary value 

problemo(2) The specification of the interior region of a coil 

is somewhat arbitrary. For our purposes it seem desirable to 

define this region by placing conical caps (practically plane 

caps) on the top and bottom extremities of the coil. The 

region bounded on the top and bottom by these caps and on the 

sides by the inner edge of the current distribution will be 

called the interior region of the coilo In general the interior 

region so defined will contain iron and air but no current. 

A choice of C that is consistent with the corresponding 

choice of C in the presence of a current distribution and one 

that eliminates all double layer distributions is 

(19)C - -Yo 

9� 
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f or ~I .( ?z <1l~ • 
In this case, Eqo (12) becomes 

Sf)< r[(~ $f -iz ~ - ~,) - 1V.N(-Ntf T~~)J d-f J,iz 

+ H,M-W-r[-fljf TjfJ'/'~J,'t. 

+ f~p wr-[- ;; t!! -r(J+'l'-) ;V +(I-r~~)~ ] oL~ eL~ == 0 
5 ~ ~~~ 1 • 

(20) 

Equation (16) after modifying the potential and removing 

'n r/c?.l becomes: 

(21)� 

10� 
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where 

.lr -:::: ­
h 

F~r interior regions containing air, the permeability is set 

equal to unity. 

IV. ALGORISM IN COIL REGION 

Since the construction of the a1gorism for Vooo exhibited 

in Eq. (21) is convenie~t from the point of view of numerical 

computation, the results of MURA-591 for infinite permeability 

are put in a similar form. Thus, if one defines the square 

bracket [~J to mean 

(I~- I -l)/w 
(K~-K)/ B[±] ­

(I+± - I,)/W� 
(I-<-K,)/B� 

and the bracket @] to mean 

(ILf- r)JW 
( KIt-K)/B 

(I- I,)/W� 
(l" -K1)/B ,� 

11 
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where the first two braces refer to the contributions from 

the (f,~) surface for positive and negative increments of ~ 

the second two braces refer to contributions from the (§ ,~ ) 
surface for positive and negative increments of f ' and the last 

two braces refer to the contributions from the (~ , f) surface 

for positive and negative increments of ~ 0 The bracket 

notation as in MURA-591 refers to the four regions of the coilo 

See Fig. 1 for clarification of coordinate notation o 

V. ALGORISM IN CURRENT CARRYIl'-lJ SLOT 

The algorism centered in a radial current carrying slot in 

real iron whose width is less than one p-mesh unit m4Y be found 

as above except that an effective}L must be found for the 

direction perpendicular to the slot o Consider the following 

air-iron boundary 
•01 

-10 10 

0-1
•for the case of constant j..(, 0 

The flux passing in the 00 -+-10 direction in the air is 

v; -V;o 
0< 

13� 
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and in the iron is 

Since these expressions for the flux are equal, ~ may be 

eliminated to give for the flux 

where 

jI= fk 

1+0«(,«.-/) • 

This is the effective permeability that is required. 

The algorism thus becomes, after defining for convenience, 

(n) =: {""['< -(}<-/)ll.] + '(, t..•-(1<+'\8.]1 
.J 
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For the part of the coil in region IV adjacent to air, replace 

the p. in the above equation by flv ::: 1. In the iron it is 

expected that sufficient accuracy will be obtained if all terms 

containing J or J2 are dropped. In addition the parentheses 

containing hand p may be set equal to unity. Similar sim­

plifications also apply to Eqs. (16) and (21). 

In this case 

Note that Bs is the relative width of the slot in units of p 

Yn is 47r times the sum of the abampere-turns for all coils 

surrounding the !(nt~ pole, and Vn- I is the same quantity for 

the pole adjacent to the nth pole on the low potential side. 

In certain special cases, for example air-iron boundaries 

and copper-air boundaries, it is necessary to use mixtures of 

Eqs. (16), (22), and (23). These are not illustrated. In the 

iterative procedure, the value of )L at any point in the iron 

is calculated from the empirical relation: 

A -t- H 
(26)

8 -to H 

where H is the magnitude of the magnetic field. Thus from 

Eq. (11) 

16� 
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Using the simplest algorisms for the derivatives Eq. (27) 

becomes 

Finally it is to be'noticed that the solution of the algorisms 

for the case of infinite permeability when subjected to the 

integral scaling boundary conditions(2) yields an integral 

scaling potential. On the other hand, in the case of finite 

permeability, application of the integral scaling boundary 

conditions gives a solution which does not possess integral 

scaling. It is expected, however, that, if the integral scaling 

boundary conditions are applied between boundaries on which 

the potential is small, the solution within each individual 

17� 
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cell is essentially correct. Thus the extent of the deviation 

from integral scaling may be determined by comparing homologous 

points of relatively high potential in adjacent cells. The 

problem remaining is then to find what sheet currents must be 

placed on the iron surfaces to restore the property of integral 

scaling. This consideration will be studied at a later date. 
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