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1. INTRODUCTION� 

We wish to find an approximate solution of Laplace's equation 'V2~:: 0 

in a rectangular region, where the values of ~ are given on the boundary. 

We set up an array of mesh or equally spaced points in the region, as shown 

in Fig. 1. There are (N1 - 1) (N2 - 1) points in the interior of the region. 

The points i =: 0, i = Nt' and j == 0, j:: N are on the boundaries. Then2� 

~. 0 refers to the value of ~ at the mesh point (i, j). Since we shall be�
1J 

(n) 
using an iterative method, ~ 00 refers to the value of our approximate

1J 

solution at the mesh point (i, j) for the nth iteration. The points will be 

handled from left to right (j fixed, i:: 1, 2, ... N - 1) and from bottom to
1 

top during an iteration. The Liebmann algorithms* are characterized by the 

x.. (on)
use of the new values of ~ in each iteration when dealing with the mesh

1J 

points handled after (i, j) in the nth iteration. In the nine-point method, we 

consider the effects of the values of ct> at all nearest-neighboring mesh 

points (i + 1, j), (i - 1, j), (i, j + 1) (i, j - 1), and the next nearest neigh

bors ( i + 1), j + 1), (i + 1, j - l), i - 1, j - 1), (i - 1, j + 1) on p .~n) . 
1J 

The difference equation involving the values of P on this set of points and 

most closely approximating Laplace's equation is 

- 20 ~ iJo + 4 ( ~ 0 1 . + ~ 0 1 0 + ~. 1 + ~ . ) + ~ + 
1 + , J 1 - , J 1 - , J

0 

i, J - 1 i + 1, j + 1 

+ ~ i - 1, j + 1 + ~ i - 1, j- 1 + ~ i + 1, j _ 1 :: 0 

If p
1J 

is the exact solution of this difference equation, and if we let the00 

*For background material on iterative methods and the Liebmann algorithms, 

see references (1) and (2).� 
2� 
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d . <.n) ~ .<.n)error ~ in our iterative solution ~ be defined by:
1J 1J 

¢. ~n) = P.. ,1J 1J 

then for the extrapolated nine-point Liebmann algorithm, both ~ 
1J
. ~n) and 

en)¢. . are given by
1J� 

(n + 1) =: n'- (n) +� 0( [_ 20 ¢. ~n) + 4 ( ¢ ~n + 1 ~ + ¢ ~n) . + .¢ (n + 1)�
¢ij >'"' ij . 1J 1 - 1, J 1 + 1, J i, j - 1� 

(n) (n) (n) do (n + 1) + ¢ (n + 1) ] 
(1 )+¢ .. )+¢. l' 1+¢' l' 1+'P· 1 11,J+ 1 1+, J+ 1- , J+ 1+ ,j- i-l,j-l 

where 0( is the over-relaxation parameter, ¢. ~o) is arbitrary in the in
(n) 1J 

terior, and ¢ = 0 on the boundaries for all n. 

II. SOLUTION OF THE DIFFERENCE EQUATION� 

As a solution of (1), we try*� 

(n) 2n + j i .. " ¢.. = A B sm 1 8 sm J¢ (2) 
1J 

Substituting in (1), we find that (2) is a solution of (1) if 

2A 2 = 1 - 20cx. + 40( [B cos 8 + A B- 1 cos 8 + 2 A cos ¢] + 

+ 20<. A cos 8 cos¢ (B + B- 1) (3) 

*Note that the algorithm (1) is not symmetric with respect to inversion of its 

application in the x and y directions. If we first apply it in the y direction 

(i fixed), and then increase x (i), the results are slightly different, since 

the pattern of "new" and "old II values of ¢ is changed. This is not true 

in the case of the five-point extrapolated Liebmann algorithm. Thus the 

solution (2) is not symmetric in i and j, as it was for the five-point 

algorithm. 
3 
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and 

(4) 

Equation (4) can be written: 

AB-1 (2 A + cos ¢) = (2 + A cos ¢ ) B. (5) 

and (3) becomes: 

A 2 :: (1 - 200<. ) + 40(. (2 + A cos p5 ) B cos e + 8 ex. A cos ¢ . (6) 

Multiplying (5) by B, we obtain 

2
A (2 A + cos ¢) :: (2 + A cos ¢ ) B . (7) 

Squaring (6) and using (7), we obtain a quartic equation in A, so that (2) is a 

solution of the difference equation (1) only if A satisfies 

A 4 - 16<X cos.¢ (1 + 20<. cos 2 9) A 3 + 2 [20ot - 1 + 8 0(.2 (4 cos2~ - 4 coa 2 9 

2 
- cos 2 9 cos2¢ ) A 2 - 160(. cos ¢ (200( - 1 + 2 eX. coa 9) A + (200( - 1)2 =O. (8) 

From (2) we see that the error will converge to 0 at all points on the 

mesh as the iterative equation (1) is applied (n increases) only if IA\ < 1, 

and that the smaller A is, the more rapid the convergence. Also, in order 

for the error to be 0 on the boundaries, 9 and ¢ must be given by the follow

ing expressions: 

11 
9 ::: "Nt r, r = 1, 2, .. 0 • , N 

1 
- 1 

¢= rr s, S :: I, 2, ..•. , N 2 - 1 .
N 2 

From the results for the five-point extrapolated Liebmann method, we 

expect the largest value of A, which gives the slowest convergence and there

fore dominates the convergence process, to be nearly 1 in magnitude if r 

4 
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and s are chosen as 1 and the mesh is small (i. e., Nl and N2 large). 

Also, the value of ex leading to the smallest real value of A for r ::: S ::: 1 

(let these values be cx'b and A ) is expected to be slightly less than twice
b

the "nominal" value (the value used in the Richardson algorithm). The 

nominal value in this case is 0'::: 1/20, so that cx is expected to be slightb 

ly less than 1/10. With this guide let us consider the case of an infinite mesh, 

so 8::: ¢ :: o. Then (8) becomes 

A 4 - 16 d (1 + 20(.) A 3 + 2 (20OL - 1 - 8 eX. 2) A 2 - 16ex (22«. - 1) A + (20d - 1)2::: O. 

(9) 

One of the roots of (9) is A ::: I, for all ex. Thus for a very large mesh, 

one root of (8) approaches 1. If we take ex..::: 1/10 in (9), the equation becomes 

A432 - 1. 92 A + (1. 84) A-I. 92 A + 1 ::: 0 . (10) 

The roots of (10) are I, 1, and 0.04 :!:.. i ~ . 9984'. Thus, for a very fine mesh, 

one root of (8) approaches 1, and for 0( near the optimum value, we obtain 

another root near unity, and a complex pair of roots of modulus 1, with small 

real and large imaginary parts. These results have been verified numerically, 

as will be discussed later. 

III. APPROXIMATE SOLUTION 

It is of fundamental interest to learn how the convergence rate depends 

on N1 and N 2 for ex.. chosen in an optimum way. With the information that the 

real roots of interest are near unity in magnitude, we rewrite (7) as 

B 2 :: 1- 2{1-A2) (11) 
2 + A cos¢ 

5 
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For A near 1, we approximate 

2
B == 1 - _l_-_A _ (12) 

2 + A cos ¢ 

Substitution in (6) yields the approximate quadratic� 

A 2 (1 - 40<. cos 8) - 40<.. cos ¢ (cos e + 2) A + 200c - 1 - 40£. cos 8 :: 0, (13)� 

or 

A 2 1J/4cJ... - cos 8} - cos¢ (cos e + 2)A + 5 - 1/4oc - cos 8 :: O. 

Note that for cos e ;:: cos ¢ = 1 and 0<. =0.1, the roots of (13) are 1, 1, 

which are the real roots of (8) for this limiting case. In the five-point 

extrapolated Liebmann procedure, the optimum value of ex. (for the smallest 

convergence factor) is found when the roots of a quadratic equation are equal 

(see Reference 1). If we assume here that the optimum value of ex is that 

for which the roots of (13) are equal, we obtain the quadratic equation in c("b 

X cX..
2 

- 5 O(b + '41 ;;;; 0 (14)
b 

where 

222
X = cos ¢ (cos 8 + 4 cos 8 + 4) - 4 cos EI + 20 cos e. (15) 

The solutions of (14) are 

5 ±. ~ 25 - X 1 1 ±.. ~ 1 - X/25
0( :: (16)

b 2 X 10 X/25 

The + value is discarded since it leads to values of ex. greater than 0.1, 

which produces all complex roots A in (8) and (13). Using o(b:: 1 + ~./ _ X/25 ' 

from (16) 

A 2 ,; 20 eXb - 1 - 4 O(b cos e :: 1 _ 2 (1 - 1a ~ b) 
------b 1 - 4 ~ cos EI 1-4o(bcos e 

or A 2 
b 

;" 1 -
J25 - X 

2 ~---::------::----;;:::::::==::::.
5 - 2 cos e + J 25 - X (17) 

6 



MURA~594 

Substituting for X from (15), 

A 2 . (5 - 2 cos 9) - fc.5 - 2 cos 9)2 - COS 
2 

¢ (cos e + 2) 
"2" 

(18) 
b (5 - 2 cos a) + 1{5- 2 cos 9)2 - ~~;Z (cos e + 2)

"2' 

2 

For e == ¢, cos 9 =cos ¢ :.: 1 - a, a:.: ~ t;), where N1 ::: N2 =N, 

x :: 25 - 36 a, to first order in a. Then 

2 12 fa 
(18 ')Ab ~ 1- 3+2a+6fi- 1-4/a. 

For comparison, the five-point extrapolated Liebmann algorithm yields an 

optimum value A 
2 

::: 1 - 2 fi fa. The important result, if our approxi
b 

mation is good, is that the convergence rate (I - A 2) is proportional to 

c
"a :::: 

112 71 
~' 

1 
so that it is of order N . 

IV. COMPUTER SOLUTIONS 

Because of the uncertainties in the approximation procedure above, 

and since an exact solution of (8) and optimization with respect to ex: appeared 

difficult analytically, it was decided to solve (8) on the computer for various 

values of ot, N1 and N2' and vary oL until the minimum maximum real 

root A was obtained. A floating-point FORTRAN program was written by
b 

T. Edwards and V. Pratt which varied oc:: by fixed increments, and found the 

roots of (8). For reasonable running times, the increments in ex were of 

order 0.00125, but this was too large to give accurate results for Ab . There

fore a search routine was added which reduced the change in ex as the optimum 

point (O(b' A ) was approached. Still, the smallest change in ex. possibleb

with floating-point numbers ("-'10- 9) was large enough to produce appreciable 

7� 
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changes in Abo Therefore. a fixed point routine which also searched for 

11
(o'b' A ) was written, so that the minimum /).0(. is now about 3 x 10- .

b

With the results of the earlier program (floating point) as first approxima

tions. the fixed-point program was used to gain more precision. By this 

technique. about five-place accuracy in Ab was obtained. 

In all cases tried. the best value Ab was obtained where two real 

roots of (8) became the same. within the accuracy of the program. This 

seems to be a characteristic of this problem. and use was made of this fact 

in the fixed-point program. That is. since a double root x for a polynomial 

equation P 4 (rX.. x) = 0 gives 

= 0 (19) 

at this point also. the computer program first sought the root of the cubic 

equation (19). and then sought the roots of P 4 nearby. It was always found. 

in the cases tried. that these three roots were very close together. so that 

apparently the optimum value of ol does yield two equal roots A for (8).
b 

The computer results for ex: b and A b 
2 

for N =10 (10) 100 andl 

N2 = 10 (10) 100 are given in Table 1. The value of 0( b is first in each 

entry. with the corresponding value of A; just below. 

The value of K*. which is the equivalent to A; for the five-point 

extrapolated Liebmann algorithm. was calculated also in each case. and in 

general gave a value for the convergence rate (1 - A: or 1 - K*) of 10 to 

160/0 less than for the nine-point case. Thus. although the nine-point 

algorithm (1) may be expected to take longer to calculate since more points 

8 
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must be handled, it converges faster, and to a more accurate solution of 

Laplace's equation. 

In addition to the cases for Table I, calculations were also carried out 

for the cases N1 =NZ = ZOO, 400, 1000, in an attempt to test the accuracy 

of our approximation formulae (16), (17), and (18). The results for these 

cases, plus the 10 x 10 case, are summarized in Table II. These figures 

show that the results of the approximation formula do approach those of the 

numerical solutions of (8) for N1 and NZ large. The relative error is 

appreciable for small N, but the indication that the convergence rate of the 

same order and slightly improved for the nine-point results as compared to 

the five-point results is verified. These "handy" formulae (16) to (18) can be 

used to obtain first approximations to olb and Ab for the computer program, 

and thus save computer time. Alternately, values from Table I and Table II 

could be used, with an interpolation or extrapolation formula, to obtain first 

estimates for different Nl and/or NZ' 

The complex pair of roots of (8), which accompanies the real equal 

pair in the computer solutions of (8),do:s approach, as a limiting value, the 

re sults given under equation (I 0) as N1 and NZ become very large (and, 

according to the computer results, eX approaches O. 1). For example. using 

the second floating-point program (which searches for Ot: automatically).b 

for N1 = NZ = 100. the complex pair is - 0.0389 :!:. i O. 97Z, and for 

N1 = NZ = 400. the complex pair is - 0.03973 :!:. i O. 9924. This agreement 

is a good check on the computer program. 

9 
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V. CONCLUSIONS AND DISCUSSION 

A solution is obtained here for the functions satisfying the difference 

equation (1) for the nine-point extrapolated Liebmann algorithm. An auxilliary 

condition on the convergence parameter A appearing in the solution is given 

by the quartic equation (8). The value of the overrelaxation parameter oG such 

that the real roots of (8) have their minimum maximum value is to be found. 

Such values were obtained numerically, using the 704, for a large number of 

cases, as summarized in Tables I and II. Approximate expressions for O<:b 

and A: were also obtained, which are more accurate as the number of points 

in the mesh is increased. 

Several minor questions remain unanswered at present. Are all four 

,'-"" roots of (8) actually solutions of (1)? The complex pair obtained (for eX < O. 1) 

seem to be extraneous, but there is no proof of this as yet. Also, does the best 

(minimax) value Ab always occur where there is a real pair of roots of (8) 

(plus a complex pair)? 

The results indicate that this algorithm will always converge faster 

(fewer iterations) than the corresponding five-point formula, and it converges 

to a more accurate solution of Laplace's equation. However, the total time 

required will probably be greater, due to the greater number of points in

volved in each calculation. A combined use, first of the five-point formula, 

followed by the nine-point, might be worthwhile in a number of cases. 

10 
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TABLE I� 

N 1 r: 10 20 30 40 50 

10 

20 

o(b 

A
2 
b 

.07607 20059 

.47304 

.07996 76244 
· 55503 

.07998 22256 

.55473 

.08624 73806 

.69018 

.08089 00316 

· 57399 

.08805 35485 
· 72988 

.08122 70330 

.58117 

.08878 91726 
· 74614 

.08138 67465 

.58458 

.08915 38516 
· 75422 

30 .08087 32498 
.57434 

.08805 17207 
, 72992 

.09036 88850 
· 78131 

.09138 76609 

.80407 
.09191 70000 
,81593 

40 .08120 95461 
· 58153 

.08878 68340 

.74619 
.09138 71794 
.80408 

.09259 23202 

.83112 
.09324 35774 
.84579 

50 , 08136 89448 
· 58495 

,08915 13054 
.75428 

.09191 63347 

.81595 
.09324 33987 
.84580 

.09398 23977 

.86248 

60 .08145 65657 
· 58683 

.08935 66439 
· 75884 

.09222 33218 

.82284 
.09363 18336 
.85456 

· 09443 38428 
.87270 

70 .08150 97576 
· 58797 

.08948 31507 
· 76165 

.09241 60866 

.82718 
.09388 06322 
· 86019 

.09472 83865 

.87938 

80 

90 
.-..

.08154 44278 
· 58871 

.08156 82646 
· 58922 

.08956 63929 

.76350 

.08962 39946 
· 76478 

.09254 45709 
· 83007 

.09263 42874 

.83209 

.09404 88507 
· 86399 

.09416 75507 
· 86668 

.09493 03706 
· 88396 

.09507 44550 

.88723 

100 

¥d IN? 

~ b 
20 

.08158 53487 
· 58959 

60 
.08147 45354 
· 58645 

.08935 92943 

.75878 

,08966 54673 
.76571 

70 
.08152 78274 
· 58759 

.08948 58610 
076159 

.09269 93081 
· 83355 

80 
.08156 25621 
· 58833 

.08956 91407 

.76344 

.09425 42554 

.86864 
90 

.08158 64430 

.58884 

.08962 67676 

.76472 

.09518 05946 

.88964 
100 

.08160 35585 
• 58921 

.08966 82579 
· 76565 

30 .09222 40747 
.82283 

.09241 68877 
· 82716 

.09254 54011 

.83005 
.09263 51367 
.83207 

,09270 01706 
,83353 

40 .09363 20948 
.85456 

.09388 09373 

.86018 
.09404 91819 
· 86399 

.09416 78983 

.86667 
.09425 46143 
· 86863 

50 .09443 39239 
,87270 

.09472 85100 

.87938 
.09493 05188 
· 88396 

.09507 46187 
· 88723 

,09518 07685 
.88964 

60 .09493 34467 
.88403 

.09526 46822 

.89155 
.09549 48075 
.89678 

.09566 06992 
· 90055 

,09578 39412 
· 90336 

70 .09526 46401 
· 89155 

.09562 50112 

.89974 
.09587 82870 , 
· 90551 

,09606 26487 
· 90971 

.09620 07256 

.91285 

80 /""'" · 09549 47414 
· 89678 

.09587 82631 
,90551 

.09615 05090 
· 91171 

.09635 04109 
· 91627 

.09650 12531 
· 91971 

90 ,09566 06182 
· 90055 

,09606 26101 
, 90971 

,09635 03963 
· 91627 

.09656 33317 
· 92112 

.09672 51033 
· 92482 

100 ,09578 38504 
· 90336 

.09620 06775 

.91285 
.09650 12291 
· 91971 

.09672 50940 

.92482 
.09689 62024 
,92872 
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lX- b 
AC, Five-point 

N 1 (=N2) Eq. (16) Computer Eq. (18) b
Eq. (18 

1
) Computer a1lorithm 

K" (corre
2sands to A )
b 

10 .0792 .0761 .4051 .1151 .4730 .5279 

100 .0974 .0969 .9150 · 9111 .9287 . 9391� 

200 .0987 .0984 .9565 · 9556 .9637 .9691� 

I 
400 .0993 .0992 .9780 · 9778 .9817 .9844 

1000 .09973 .09968 . 9912 .9911 .9926 .9937 

j 

4� 

3� 

2� 
1� 

o 
o 1 2 3 4 5 

i 


