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with respect to the accuracy, completeness, or usefulness of the informa-
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owned rights; or
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resulting from the use of any information, apparatus, method, or process
disclosed in this report.
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includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or
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with the Commaission, or his employment with such contractor.
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ABSTRAVCT
Algorisms are developed for the solution of an integral scaling
magnetostatic problem. The particular problem adaptéd to relaxation
techniques consists of distributed pole-face windings located in spiral
grooves periodically connected in radial gaps to form complete current
loops. The potentialé on the poles thus excited are nbt graded differ-

entially across the pole face.
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1. INTRODUCTION
Laslett! has developed algorisms for the determination of magneto-
static scalar potentials characterizing a scaling spiral sector FFAG mag-

netic guide field. In addition, Laslett” has formulated a modification of

~ this algorism for two~dimensional currents. In a previous paper, this last

modification has been generalized to handle three-dimensional scaling cur-
rents. The present paper extends both the development of the algorism and
its modificatidn to handle the case of three-dimensional integral scaling cur-

rents.

II, STANDARD ALGORISM
The magnetostatic problem under consideration requires the solution

of Poisson's equation in the coordinates § » N . P where

2=l r = 2 D =
In order to permit easy comparison with the scaling problem solved by the

FOROCYL program, the following variables are used;

K=t V=", z2=-f7. o

AT QT AT

The differential equation in these coordinates becomes:‘
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where the quantity ,D; and the regions I, II, III, and IV have been des-
3 The approximation of Eq. (3) by a difference equation
makes use of the three~mesh dimensions h,d, P such that
X=hi ,Y‘-‘-,&J" and X = pk , (4)
where L , J , and k are integers.
If the point (0, o, o) is considered to be the standard point, then a

second~order approximation tothe potential is

Uijk =Uooo + thx' + J/&UY + kPUz

+$L§ (iahluﬂ,-r.\’;l. U, -!-k”"‘,ﬁluzi +22ihlb UX‘Y +.‘lz'khpUx.2 +ljk,LPUY2> -
f

where the subscript letters indicate the nature of the derivatives.
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An algorism fm' the determination of Uooo may be found from Eq. (5)

by multiplying by a weighting factor N ijk and aumming.
= N Usiie = U 2N+ hU Z Ny +4 Up Z9Niji + PU S KN, ix
a ; L
WU Z 0N+ 28U SN 4 R UL S N,

+hl qY‘z‘_“’Nﬁk '*'hPU;ZZikN;Jk +LpU S ikN;;, ,  ©
The weights are then arranged so that the use of Eq. (3) eliminates all the |

derivative terms. Thus, if the coefficients of the derivative terms are

each made proportional to the corresponding coefficients in Eq. (3)

Z iNige=0, | M
A2 3 Nigk = :,%?iYs (8)
Z k Nk = 0‘, )
NS BN K 10)
LS AN = °<('+ %AY:L) ’ (1)
LS KN = %;“, a2
hd 2 {iN;G = = ;Z‘ Y, | (13)
hp S ikNy, = - A (14
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2 Sk Njje =0, (15)
There are 26 values of the number tfiples (1,3 ,k ) for the integers
ranging from - 1 to 1 if the value (o, 0, o) is omitted. Equations (7 - 15)
supply nine relations. It follows then that the determination of the algorism
is not unique. To permit comparison with the two~dimensional grid algorism

of the FOROCYL program as modified previously, 4 the following distribution

of weights is adopted.

e l-.
Nloo —i r N—-Ioo ) (16)
L s 2 T3l
No.o“a('*'zs:Y)*“':‘Ya 1
BTN W
No-.o‘a.('* ,Y)“——:Y, (18)
Mgt -
Nom =35 = Noo- ' (19)
mr
Nno - -J.W‘ﬁ;Y= N—Ho = ~‘Nl-lo = -'N:uo s (20)
‘and ‘ |
MNYs
Nwa - Y N-IO-I =_'[\];o-l = -—'N;Iol s (21)
where
4 A :
r::—':- y end S=',—°" . (22)
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All other values of N jk are taken to be zero. Equations (16 ~ 22) satisfy

> 4
Eqs. (7 - 15) ide.nﬁcally if X ='e Furthermore, if S= 0, the weights

reduce to those used 1:areviou.«s|l;y4 for the case in which the differential scal~-

ing parameter k is setequalto - 1. If
A

2
ﬂ—Z-N,Jk I+ +T+—¢O; YQ,

Eq. (6) gives for the standard 14~point algorism

Do = ZNip Ui €,

where

v,
WJ[I I —.urh-u
Yo

In Eq. (25) the notation
X = (I-L)h,
Y=J34,
= (K-K)p,

in I

in I

w 1T

in 1

(23).

(24)

(25)

(26)

27

(28)
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w=I-1,-1-1,, =

H=1J,-d, , o (30)
and .

B=K,-K = K,-K, (a1
is used. Figure 1 illustrates the new origin of coordinates used in Eqs. (26 -
31).

In the new coordinate system the boundary conditions3 become
U(LIK) =UEIK) =UATK) = UaTk) = v, B | (32
and ‘ | |
U@LIK) =UQ,JTK) =U(IJ,K) = 0 (33)
| at the copper-iron interfaces. Likewise, at the copper-air interfaces
V(LIK) - U(LIK) = V(1L,TK) - U(LJK) =0 | (54
VITK)-UIIK)=V(ITK)-UIIK) =0 , =5
and
V(I3,K) - U(IIK)=V(IJ,K)-U(IL,K)=72. (36)

At the interfaces I1-., II-1II, II-IV, and IV-I both the potential function

and its normal derivative are continuous.
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II. CURRENT VALUES
The only remaining discontinuities that occur are discontinuities in
the normal components of ﬁ at the copper~air interfaces characterized by
J=J , and J =J1 . If the difference between the function \/ extrapolated
into the copper region and UJ in the same region is designated by
A=V-U, (37)

then the value of /A atthepoint (2, | , K )is

YT =;$AY+-3_-,84AW+ ih,LAW-rk.prn s (38)
andatbthepoint(i,—l ,k)is | '
% .
In general, since 8 is zero in the air, Eq. (24) gives for the standard
algorism |
ﬁ\fooo = ZNi:\K ijk . (40)
The correction to Eq. (40) required on the cones J=J, and J = J, o 18
vo’oo = Y_Std Algbrism] * [CV] 3 (41)
where
Olcv] = 3 Npy 45 (42)
ford = J'. and
OICV] =3 N, Bi. (43)

8
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for J = J . Equations (16 - 22) may be used to reduce Egs. {42) and (43) to

D[CV] ouo A, ,,,, (Ano —uo) | (44)
for J =J, and |

»D‘_C V] = No_,o AO—lo Yo (A /—:o) (48}
for J=J&.

Equation (56) of MURA-583 gives the discontinuity in the 7) ®r Y
derivative of the potential. From this and the differential equation in Eq. (3),

it is possible to evaluate the various A s in Eqs. {45) and (46). Thus,

Vi -1\
—_:'- (I" I) (- Mr‘hfur
% o o
’ V,
Aon)== Ve /7 \ + 4 ,8 J ﬂ
Ve (I-], 2 Ja 1
‘WH ( ) WH[—.' +4 Js] LThw
V. -
(K-KX) o 6
-V
WH
0
Ao~ B0 = 2 v
WH
o |
s (47)
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— (TI.-T I
WH ( * ) T amhar
Ve
NE (K,-K) 2 0
g =—x > L ’%,_J"V;
2 WH Ara \
.YL(I'I:) [4”&-’—'6‘]-‘-] amhe
WH
Y. (K-K) 0
BH (48)
and
Ve
WH
o
A-HO - Al—lo =2 \A
WH (49)
)
’
where the inserts in the column symbols from top to bottom refer to the
regions_ I, II, III, and IV.
The solutions of the boundary value problem may be completed by
noting that the integral scaling boundary conditions at the extremities of
the unit cell are
2w (ke w ri:'
V(IJK)=e V(IJ0) ) 50
d
2 ar(k+\)w
V(IrJK>= c V(0IK)
(51)

Finally V is to be made an odd function of J .
10
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