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ABSTRACT 

Algorisms are developed for the solution of an integral scaling 

magnetostatic problem. The particular problem adapted to relaxation 

techniques consists of distributed pole-face windings located in spiral 

grooves periodically connected in radial gaps to form complete current 

loops. The potentials on the poles thus excited are not graded differ­

entially across the pole face. 
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Laslett1 has developed algorisms for the determination of magneto­

static scalar potentials characterizing a scaling spiral sector FFAG mag­

netic guide field. In addition, LasleUZ has formulated a modification of 

this algorism for two-dimensional currents. Ina previous paper, this last 

modification has been generalized to handle three-dimensional scaling cur­

rents. The present paper extends both the development of the algorism and 

its modification to handle the case of three-dimensional integral scaling cur­

rents. 

u. STANDARD ALGORISM 

Themagnetostatic problem under consideration requires the solution 

of Poisson's equation in the.. coordinates ~ , >'l ' f where 

~ =~k -€" - H9" 'l =f , f = 9 • (1) 

In order to permit easy comparison with the scaling problem solved by the 

FOROCYL program, the folloWing variables are used. 

(2.) 

The differential equation in these coordinates becomes: 
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t . . ••• ;;'1) x.t ~:l U 
~ ~ +(1 +fy-~) dya + 11; d:l~
 

~7r iJL ,.MN d~U .... *rrty dU� 
-~ Y)K~Y fJo dX' ~l ~o '?� 

V9 v~ X:-XT....l-]� \1'1 r(~-x:)(~ - y;) I L' "rr?U 

(z,-l..i'(;- Y,") y[z,-z] 

I~ m::(x;-x-.iY;.- y.) VL X; +.( - "~1U"] 
(z, ­:Z}Y;:-vi) YI 2, + Z] 

where the quantity tJ. and the regions I.. n.. ill.. and IV have been des... 
o 

cribed previously.3 The approximation of Eq.(3) by a difference equation 

makes use of the three-mesh dimensionS h .. 1J .. F such that 

)( = hi) Y =.t j S do \'\ d :z = p k , (4) 

where l.
• 

... j .. and k are integers. 

If the point (0.. 0 .. 0) is considered to be the standard point.. then a 

second"order approximation to t he potential is 

Vijl< -== Uooo + ih Ut' + Lt Uy 1" kp U. 

+ fl ( 1" h" Vtr ... j ~llUy" y-+K""pl U.ll +J iJ hJ Ut'Y" +J. ikhPUi'.l TJ. j k.APUri\ 
~. ~t~ 

where the subscript letters indicate the nature of the derivatives. 
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An algorism f~tl1e dete:rlllinatiOp. of U000 maY he found f:rom Eq.(5) . 

by multiplJing by a weighting factor NiJ l< and summing. 

The weights are then arranged so that the use of Eq.(3) eliminates all the 

derivative terms. Thus" if the coefficients of the derivative terms are 

each made proportional to the corresponding coefficients in Eq. (3) 

= 0 ,Z i N iJk (7) 

-e~ j Njjk = ";c< Y ~ (8) 
o 

(9)~ k NUk== 0, 

t~12 itNij \<,= 0( , (10) 

(11)t..t"'~ j"- NiJk = d.. (, + :tr ), 
~.r p ~ 

f) or:('
hAl L, 

.~. 
k NaSk 

•• N 
Z J ij\< 

M,.fJ.. 
= To(ol

• 
If' 7f0( 

= - 1V,[J Y, 

(12) 

(13) 

o 

hp ~ i k Nijk = - 12!i 0<. , (14) 

and 
o 

4� 
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(15) 

There are 26 values of the number triples ( L j , k ) for the integers 

ranging from • 1 to 1 if the value (0,0, 0) is omitted. Equations (7 - 15) 

s-upply nine relations. It follows- then that the determination of the algorism 

is not unique. To permit comparison with the two-dimensional grid algorism 

of the FOROCYL program as modified previously, 4 the following distribution 

of weights is adopted. 

and 

where 

.N : ­ 7r r .y= N =-.N - -N 
Il 0 " "Mf'JJ" -1-1 0 , ..., 0 - _II 0 j 

MNr.s 
N,ol = - 1+4, -= 1{IlH =-N,"-I = - N..'OI , 

(20) 

(21) 

.tr=T j c1nJ S = 
.l, 
-p " (22) 
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All oth~r valueaot.Nijk ~e taken ttl be zero. ~_t1.(.)IlS(16 - 22) .tisty 

Eqs. (7 ~ 1~) ~y it 0( =: i:l... o. tIu!FurtheTm!l1"e. it 5 = ...~ 
reduce to thOse used previously4 for the case htwhichthe differentjalscal­

ing parameter k is s.etequaI to .. 1. If' 

1'1' Ml~ 1. ~ .".J.. \ ,..t 
J./ == 2 N1jk = I + r"' .... 7J; + ,11" r , 

Eq.(6) gives for the standard 14-pOint algorism 

JJ~oo = Z N ijk U,Jk + E ~ (Z4) 
,. 

where 

i VI :II: 

,V\ m 

~J[K-K ]:B H . I 
" 

In Eq. (25) the notation 

~ = (I - Io ) h ~ (Z6) 

Y=J"iJ, (27) 

(Z8) 

. 6� 



and 

W-I -I::I-1- .1 I ¥ 3 J 

H= JJ. -J. , 

B=K-K=K-K). , ~ 3 

(Z9) 

(30) 

(31) 

is used. Figure 1 illl,JJJ.trates the tJ,e\Vo:rigin of cOOJ"dinates used in Eqs• .(Z6­

31). 

In the new·cOOrcUnatesystem the boundary conditions3 become 

(3l) 

and 

U(I,JK) = U(I.JK) = U(I~ K) = 0 
(33) 

at the copp.er-iron interface.s. Likewise" at the copper-air interfaces 

V(I.JK) .... U(I.JX) =V(I" JK) - u(r...SK) = 0 ~ (34) 

V( I J K,) - U(IJK,) =V( I J K..)-U(I J K.) = 0 J (35) 

and 

V(I J, K) - U(rJ1K) = V(IJ,.K) - U(I J.t K) = 0 • 
(36) 

At the interfaces l ...n, n"'III.m...IV, and IV-I both. the potelltial function 

and its normal derivative are continuous. 

7 



MUBA..591� 

m. Cl.JJUt.,EXT VALUSB� 

The. only remaining discontinuities that occur are dillcontinuities in� 
.... 

the normalco$poaents of Hat the copper...urinterfac.es characterized by 

J:: J .11.00 J =J.a.' tf the difference between the function V extrapolated
1 

into the copper region and U in the same region is designated by 

A =V-U , (37) 

then the value of li a.t the point! i I I k ) isI 

6 il l< =j Ay -+ t.t.tAyy 'i" ihJ, Arr T kJ,p AX-I .t (38) 

and at the point ( L -, Ik) is 

(39l 

In generll.!. since E iJI· zero in theail', Eq.(Z4). gives for the standaJ"d 

algorism 

/J ,r =~ .,N.• ,r 
. · ~ LH< Vijk • (40)Vooo 

The correction to Eq.(40) required on the con.es ~ = J, and J =J.t is 

(41)V:oo= [std. AlgPTismJ T [C V] J 

where 

(4Z) 

forJ=J, and 

(43) 

8� 



for J'= J. Eel.....' (16 ... 22) ma.y he ~d to reduce Sq,s.(4Z) and'(43) to 
~ 

DCCV] =NOlo 60010 -r .t{,JO ( lillo - 6-110) (44) 

for J == J, and 

(45) 

for J ==J •
J. 

equation (56). of Ml.l1lA-S8S· giv~s thecUscontinuity in the 11.* y 
derivative of the potenUal. From tlU.s and tbedifferential. equation in Eq. (3)" 

it is possible to evaluate the 'Various !.l 's in Eqs. (45) and (46). Thus, 

.Yt. (r - I). •wH ... - '-lI"k1lf 

BH 
()3.. (K -K)

It 

IV. (I - r t) 

WH� 
~ (K-l<.)� 

() (46)BH 

-'V: 
WH 

o 

Vo 
WH 

o 
(47) 
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and 

A -li-1-10 I-ID ~ 

o , 

~ (I..-r) 

~ (K -1<)
'B H f 

:k. (I-I,) 
WH 

.Yt.. (K-K,)
BH 

_ Vi 
WH 

o 

-=" 

,� 
- J,""~", 

o 

I 

~ 

o 
(48) 

(49,) 

where the inserts in the column symbols from top to bottom refer to the 

regions I. U. m. and tV. 

The solutions of the boundary value problem may be completed by 

noting that the integral .$caling boundary conditions at the extremities at 

the unit cell are 

(50) 

and 
, IT'( k 1'1) '2lr 

V(IoJK)= c= V(OJK). 
(51) 

Finally V is to be made an oddfuncUon of J . 
10 
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