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ABSTRACT 

Study of the phase motion across transition energy shows that 

the non~linear term has an important effect. To avoid increase in 

amplitude of synchrotron oscillation the shift of the stable point1 

should occur when the energy is very close to the transition energy 

and with a progl'am keeping the linear approximation valid a', long 

as possible, Computer ~tudy agrees with these results When the 

above requirements are fulfilled~ the final bucket area increase~ 

less than 20% for an initial area Ai = ,3A ,A being the maximum c c� 

bucket area near transition,� 
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10 INTRODUCTION 

The phase of the reference particle around which particles 

describe phase oscillations must be shifted from the first to the 

second quadrant while crossing the transition energy. If this is 

done without particular care~ the amplitude of synchrotron oscil~ 

lations will increase and particles, being outside the bucket, will 

be lost. Usually the study of the phase motion is limlted, with 

good accuracy, to the linear approximation. When crossing transition 

energY9 non-linear terms can become very important. The program of 

the voltage and the frequency of the cavity should be such that in 

the linear approximation the amplitude of the phase oscillation far 

above transition energy is the same as far below, with the supple~ 

mentary requirement that the non-linear term remains small during 

nearly all the time the particles need to cross transition energy, 

Programs are compared both analytically and using the computer 

II. EQUATIONS OF THE SYNCHROTRON OSCILLATION 

1
The equations of the pha se motion are derived in MURAc~106 

J W :::: V(-r;) siAl A.) (1 )
J.,,; r 

where Ie.. (7;) is the frequency of the cavity, ~ fr:) the accelerating 

voltage 9 h- the harmonic number, ¢ the phase of the rf voltage 

when the particle goes through the accelerating gap, E and i the 

energy and frequency of the particle and ~ is defined by 
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JE 

f (2)W= lfij' 

We shall use the subscript s for the reference particle whose 

motion is represented by the stable fixed point far below and above 

the transition energy. For particles close to the reference particle, 

it is convenient to use the relative coordinates~ 

( 3) 

Then the equations of motion become 

\~* =- \J(-c) ~ ( ~s+ ~~) - V(t:) ~Lm. ~s " 

(4 )f'= -?-1fh\j(w)-is ( W1l 
If W* and ~*" are small, we can expand and get 

W~;:: ~ ~ CPs . f* - +- V~ ~S - ~* 2+... " ) 

(5 ) 

(6) 

These equations are derivable from the Hamiltonian 
3 

I ~ ~ \ A ti '< .L ') tJ~· ) ,/ th,1...~II

\~* = --rrn {s W - T V~ ~s . i - 3 :-rrVt.~.s -'r "t" V~r.5· '+'+.~~) 
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III.� LINEAR APPROXIMATION 

fl.. Adiabatic Motion 

For small oscillations and not too close to transition energY9 

only the two first terms are important in the Hamiltonian and the 

equations of motion reduce to 

W~ =- VCc-Q <P . ¢*s 
. * / w* (8 )9� ==-~1Th.is I. 

Far from the transition energY9 the limit of this region being 

given a previous report,2 it is usual to make ~tr) equal a constant 

Vo and to choose Ac.tc.) such that "".5 remains constanL As JI varies
J} r /)S 

slowly with time, the solution of (8) is the well known adiabatic 

r- motion. 

B, Non~Adiabatic Motion 

When the condition for adiabatic motion is no longer fulfilled, 

the linearized equations become 9 if no assumption is made about V(,;) 

and� ps tc}~
 

f .. ~ #-.¢* + ~rrh 1: Vee< ~s·f'-o
 

.. *� -'-.,- J.lV~ P.:l w* -\- 7.. rr ~ i; Vue ¢s .w* = 0 . 
W - VC(JQ~s 

(10) 

We shall assume that near tr~nsition energy ~~I varies with time 

according to 

1 1� = -Jr.!'
}£� ) (11) 
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where J..r i c: posi ti ve and t = 0 at transi ti on energy Thl ~_ J.'~ true onl y 

if V$0v f.s is constant 

In the case ¢.s and V are not functions of time, but ~.s 

has thealue ~so below and 1'("" - ¢So above tran~ition energy~ 

equation (9) becomes 

(12) 

In (12) a e in the following equation (14)~ the upper c:ign applies 

above and the lower sign below transition energy, The solution is 

given by means of the Bessel function of order 2/3~ 

t- t\., Ll 
~h 

T % (u.)
'\ 3) (13) 

(14) 

and AI' A2 represent the initial conditions " 

The ep* solution given by (12) and the w* expression we 

get from (10) are both even functions of t This means that, in the 

hypothetical case that at t = 0 we suddenly shift the stable phase 

CPs from ~SQ to Tr- ~So; t~and vJ* will ha'/e at L' =t;1 
the same .talues they had at t = t i if r i :. --tr. ' 

If the program V(1:) and iii;. cr) is c:uch that the stable phase 

is shifted during the interval t = t o to t = t 
1 

according to 

some relation cPs l-r) 9 then the solution of equation (9 ) for 

depends on the functions V 0.r,) ep.s and t~ (-z:; ) 
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The program must. be chosen such that the solutions ¢* and LJ~ 

are even functions of time. But we may observe that if t and t 
o 1 

are very small~ the synchrotron oscillation will be only slightly 

larger far above transition energy when ¢7{ and Ll../"are not 

even functions. 

A program based on the linear approximation has been proposed 

by N. Christofilos~ K. Ro Symon and K. M. Terwilliger. 
3 

V(t) and 

fc(t) are such that the following relations are satisfied. 

\j s~ (Ys = constant (15) 

V~?S - Vo ~ tls.o· I; (16) 

cry ¢s - . ..:L (17)~ ~So "'Co • 

Then the solutions of the linear equations are 

¢~ = ¢; S:,~J (tV t ~ ()) (18 ) 

W~ = LU~ ~(dv r + S)) (19) 

where ¢! ~ W;: and Q represent the initial conditions (and must be� 

consistent with (7)) ,and dv can be calculated from (16), (10)� 

and (9). The solutions ¢*(t) and W*(t) are even functions as required,� 

and give constant amplitude oscillation during the shifting time. 

Note that it is not necessary, if t l = -to' to start to 

shift the stable point when the motion is still adiabatic. In that 

case the solution for the non-adiabatic motion is the combination 

of (13) and (18). 
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IVe� VALIDITY OF THE LINEAR APPROXIMATION 

In the linear approximation 9 we made two different assumptions • 

.l "� 71'2. h.£ I ~trh r'$Ao~-.Jl.i! negle0~d I.J) compared 0: 05 Wto 2.. 17' 

If V~9's i~ approximately constant 9 equation (11) holds and this 

assumption can be writte; ~ _-:!if. W• 
(20) 

Replacing j)~ $'1T by its va~ue9 (20) becomes 

(21) 

Practically~ it turns out that the time limit for the validity of 

(21)� is very smal1 9 of the order of 10 to 100 revolutions. 

The effect of this term is to change ¢ by 
J<1T'h� ~ W3 

.ll ¢� = V:ts:.rrv~J6s ) (22) 

where K is a coefficient specifying how long the non=linear term 

is importanL The value of K is probably less tharo 10 9 and A¢ 
calculated by (22) is very small and negligible. 

Note� that this effect does not depend on the program. 

Bo We neglected ±V~ ¢s ·¢~~ompared to VCb-U ¢.s ·¢#- ~ 
As long as V and ¢~ are constant 9 the assumption gives the usual 

approximation for small oscillations which is right except near the 

9separatrix. The smaller ¢$ the better is the approximation. 

During the time the stable point is shifted, Vr:..o-V¢s becomes 

very small and the term ~ V~ ¢s '1/*~iS .larger than V~ rfs· ¢-K: 
In this case the solutions of (5) and (6) can increase very rapidly, 

depending on how V~ ¢s varies with time. If we start to 

shift the stable point early, this effect lasts a long time and becomes 
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very� important when the program is such that the solutions of 

equations (5) and (6) are rapidly increasing functions during the 

phase shifting timeo 

v.� GENERAL METHOD TO ACCELERATE ACROSS TRANSITION ENERGY 

From the above considerations 9 we see~ as the non=linear term 

in equation (5) has a very important effect? that the main require= 

ment on the choice of the program y (1:) and {eJrJ is that Vetro Ps 
remains larger than V SLtn t.s (linear approximation valid) as 

long as possible 9 even if the motion is not adiabatic during 3 long 

interval of time. 

A possible program for shifting phase is 

VS Vn� ¢s == C67t4~} (23) 

VCr.l ¢s = Q,r~ I� (24) 

where a is a constant (a < 0) 

_ Vo� ~ &8 
I 

(25) 
~ - 1'"

"C"o I 

The time -Co at which ~s is shifted must be smallo 

The meaning of " T;osmall" will appear later but we can remark 

immediate~y that the smaller to is? the smaller is the effect of the 

non-linear term. With this program~ the differential equations (9) 

and (10) for the linear approximations become

f' - ~ ~->f - ~-rrh t.iV TTf if := 0, 
(26) 

, *� ~ *W.,)f� - 'Ill: 'vJ - ':t71"'h.t.a..-r W = o. 
(27) 
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To solve equation (26)9 we use the new variables 

v..:; t(-?\TTh i~)12. t ~ 
(28 ) 

and I 

-7 "'*,Z= lL ~ 
(29) 

Then equation (26) becomes: 

(30 )~. + (t - J~) z :: O. 

An approximate ., solution of (30) is known in the case 
~1-

fL').<.< -lot, ( 31 ) 

or I 
r ~Jii « (32 ) 

/""' It is ~--;;;: 
2..= C, t..e LW- + C~ ~ (33 ) 

Then 

I 2. c..¢*;:; C.
I 

"C + ~ (34 ) 

where C.
I 
I and c.~ are given by the initial concHtions. The approxi­

mation ( 31 ) means that for small time we neglect ,the last term in 

equation (26). Note that with this program the non-linear term is 

also small compared to the two first terms of equation (26), even when 

it becomes larger than the linear term. 

A similar calculation can be made for \.J* and 'equation (27). 

It turns out that 

\0*':::= C;a -r; 
~ 

... + G £t .., (35 ) 

~ with the condition 

(36) , 
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The constants C3. and C1 are related to Lf and c." so that there 

are only two independent initial conditions< Both functlons ¢./f("t.) 
and vf (1:) gi \len by (34) and (35) are even functl on~ of time_ 

It should be noted that the condition (36) implies a short time 

and any program to shift the stable point in such a short time would 

not have an important effect. But with the program (23) and (24)~ 

the only increase in amplitude of the pha~e oscillations comes from 

the non-linear term I.~ ~~~ From equations (23), (24), and (1) ~ 

we get the relation ~s~) and the parameters of the cavity Vcr) 
and L (r:) ;1

~ ~So -r;~
<:7'i-1s - v.,

-Co (37 ) 

IjC-c) ~ V. ~Stm~ ~s. + 
(38 )\ A 'Z 

t') ~ ..,..:l._+---- f.., 

'1. ,I"
DJ o 

(39 ) 

VI Q COMPUT ER RESULIS 

Calculations were made using the TII program. We started to 

study the motion far below transition energy in the adia1::atic region. 

Particles represented by points on a curve of area A. were accel­
l 

erated and far above transition energy each point described a curve 

of area Af . In Figo 1 are represented the averages of the areas 

corresponding to the same Ai) as a function of the initial 

area Ai for two different programs. In Fig. 2 the root mean square 
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of the distributions is plotted under the same conditions. 

The areas are measured in units of the maximum bucket area Ac 

when near transition energy the parameter Je has the value 

A = .-i- ( ~ £~ V.) 13 c<.- ( r) (40) 
c. 1-r q.1Th / 

where ~ (r) is given by computer studY5 rJv = 2. 7 for and 

= 4.9 for r =.5 (cf. MURA-106 and 423). In the numerical 

ca lculation rA. and the maximum initial bucket area A. isys" _...!.!-.­ t lmax 
1 A • 
~ c 

The solid curves correspond to a program where at small [0 a 

sudden constant jump is made in the cavity frequency, while the 

voltage is constant, in such a way that the stable point is shifted 

to IT -1JSn It is slightly different from the proposed program 

but the requirement that the phase shifting time is small is 

fulfilled. 

The broken curves correspond to the program of reference 3 in 

which we started to shift the stable point when the motion was 

adiabatic (T~ large). From equation (5) we see that for some initial 
\ . r*conditions vv is zero for large negative values of time, then 

I.'*(~)VJ - is not an even function and IW*\ increases rapidly. In 

Fig. 3 a typical case of such an effect is repres~nted. The broken 

curve corresponds to the computer result while the crosses are the 

values given by the linear approximation. The solid curve corres­

ponds, for the smae initial conditions, to the second program which 

keeps the amplitude almost constant. 

The analytical solutions for the case of the jump in the cavity 

frequency are not known and are probably not even functions of time. 
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It is be ieved that relations (23) and (24) shoud give a better 

result Note that by a calculation ~,imilar to th 1', of equations 

(26).. ( 36), the program of reference 3, but with d nort "hifting 

time, will also ~J i ve even function::: for the: O.t ut i 015 1*Cr) and 

cLJ'~\t:) , when L is sma1L Therefore thl " progr m; j"es no increase 

in the amplitude of the synchrotron osci~lation~. 

From the computer results we see that we can a:celerate across 

transition energy at least one-third of the maximum bucket area, 

with very little increase in the synchrotron oscillations. 
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Fig. 1 
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