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ABSTRACT
Study of the phase motion across transition energy shows that

/\

the non-linear term has an important effect. To avoid increase in
amplitude of synchrotron oscillation, the shift of the stablie point
should occur when the energy is very close to the transition energy
and with a program keeping the linear approximation valid a< long
as possible. Computer =ztudy agrees with these results. When the
above requirements are fulfilled, the final! bucket area increases
less than 20% for an initial area A; = C3AC,AC being the maximum

bucket area near transition.
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I. INTRODUCTION

The phase of the reference particle around which particles
describe phase oscillations must be shifted from the first to the
second quadrant while crossing the transition energy. If this is
done without particular care, the amplitude of synchrotron oscil-
lations will increase and particles, being outside the bucket, will
be lost. Usually the study of the phase motion is limited, with
good accuracy, to the linear approximation. When crdssing transition
energy, non-linear terms can become very important. The program of
the voltage and the frequency of the cavity should be such that in
the linear approximation the amplitude of the phase oscillation far
above transition energy is the same as far below, with the supple-
mentary requirement that the non-linear term remains small during
nearly all the time the particles need to cross transition energy.

Programs are compared both analytically and using the computer
II. EQUATIONS OF THE SYNCHROTRON OSCILLATION

1
The equations of the phase motion are derived in MURA-106
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where ZL@) is the frequency of the cavity, VfT) the accelerating
voltage, h, the harmonic number, (ﬁ the phase of the rf voltage
when the particle goes through the accelerating gap, E and Z{ the
energy and frequency of the particle and MJ is defined by



W= 75 (2)

We shall use the subscript s for the reference particle whose
motion is represented by the stable fixed point far below and above
the transition energy. For particles close to the reference particle,

it is convenient to use the relative coordinates:

WX W-ws (P*: ¢*¢5'

Then the equations of motion become

W = V@ son (st ¢*) —VE) sin 4>5 ;
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1f W and q) are small, we can expand and get

W= Ve s K - Vs f ¢
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These equations are derivable from the Hamiltonian
3
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III. LINEAR APPROXIMATION

A. _Adishatic Motion

For small oscillations and not too close to transition energy,
only the two first terms are important in the Hamiltonian and the

equations of motion reduce to
. % 2
W o= \/m(bs 56
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Far from the transition energy, the limit of this region being

given a previous report,2 it is usual to make V(T) equal a constant

Vo and to choose gC(C)such that ¢5 remains constant. As 5g’varies
slowly with time, the solution of (8) is the well known adiabatic
motion.

B. Non-=Adiabatic Motion

When the condition for adiabatic motion is no longer fulfilled,

the linearized equations become, if no assumption is made about V(T)
and @s ('C)

% <£L¢ J,:Urh;/vmc{a %0
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We cshall assume that near transition energy }Q varies with time

according to

{S/ = -1T



where - is positive and t = O at transition energy. Thitc 1. true oniy
if ‘/Sm%g is constant

In the case ¢3 and V ére not functions of time. but C)t’)g
has the - alue ¢’g° below and T — ¢So Above trancition energy,
equation (9) becomes

G- L gt aThbloend, T <o

I (12)
In (12) a< in the following equation (14), the upper <ign applies
above and the lower sign below transition energy. The <solution is

given by means of the Bessel function of order 2/3:
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with
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and Al, Ao represent the initial conditions.
* *

The qf) solution given by (12) and the W expression we
get from (10) are both even functions of t . This means that, in the
hypothetical case that at t = O we suddenly shift the stable phase

* .
(1)3 from ¢$o to T— 4350., q> and W will have at T =-C‘$
the same values they had at t = ti if 1—{ = '-'(f& .

If the program \/(f) and ﬁg(‘t) is such that the stable phase

is shifted during the interval t = to to t =+t according to

1

come relation qSS (t) , then the solution of equation (9) for
| /

-to<1: < ‘t" depends on the functions V ton CP; and KS (T )

o)



The program must be chosen such that the solutions ¢>kand &)7"
are even functions of time. But we may observe that if to and t
are very small, the synchrotron oscillation will be only slightly
larger faxr above transition energy when ¢’fand a)*are not

even functions.

A program based on the linear approximation has been proposed
by N. Christofilos, K. R. Symon and K. M. Terwilliger.3 V(t) and
fc(t) are such that the following relations are satisfied.

V sim @s
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Then the solutions of the linear equations are
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where gff.p U):jand © represent the initial conditions (and must be
consistent with (7)),and o can be calculated from (16), (10)
and (9). The solutions ¢f*(t)and Uj*(t) are even functions as required,
and give constant amplitude oscillation during the shifting time.

Note that it is not necessary, if tl = —to, to start to
shift the stable point when the motion is still adiabatic. In that

case the solution for the non-adiabatic motion is the combination

of (13) and (18).



IV. VALIDITY OF THE LINEAR APPROXIMATION

In the iinear approximation, we made two different assumptions.

ey / #
A. We neglected Irh Ls 07 ~ compared to 2_77/)#5 W
/J
1f \/S&n,ga i3 approximately constant, equation (11) holds and this

assumption can be written '
3 §> ‘?%f- \d (20)

Replacing fg by its valiue, (20)-becomes

21
-E>\/Sun)¢5 ' | (21)
Practically, it turns out that the time limit for the validity of

(21) is very small, of the order of 10 to 100 revolutions.,

The effect of thls term 1s to change 95 by
KTh 4 W3
AP =

Visonw?ds 1 (22)

‘where K' is a coefficient specifying how long the non-linear term

is important. The value of K is probably less than 10, and A¢
calculated by {22) is very small and negligible.
Note that this effect does not depend on the program.

. ) K
B. We neglected 2. Vs @s "Zéompared o) Vwﬁ; ‘ﬁ@ :

As long as V and ¢& are constant, the assumption gives the usual
approximation for small oscillations which is right except near the
separatrix, The smaller ¢.s , the better is the approximation,

During the time the stable point is shiftéd \kxmd¢g becomes
vei:y small and the term F \/S.wu % ¢ 1s larger than \/ccu ¢s ¢*
In this case the solutions of (%) and (6)‘can increase very rapidly,
depending on how V¢°¢;gﬁs varies with tirﬁe° If we start to
shift the stable point early, this effect lasts a long time and becomes

7



very important when the program is such that the solutions of
equations (5) and (6] are rapidly increasing functions during the

phase shifting time.,

V, GENERAL METHOD TO ACCELERATE ACROSS TRANSITION ENERGY

From the above considerations, we see, as the non=linear term
in equation (5) has a very important effect, that the main require-
ment on the choice of the program Y(T) and gﬁﬁy is that VGM7¢%
remains larger than V sin %3 (linear approximation valid) as
long as possible, even if the motion i1s not adiabatic during 3 long
interval of time.

A possible program for shifting phase is

Vson ¢5 = WM, (23)
- 4
V con 558 oT™

where a is a constant {a < O))

o = 0B (25)
T,/

The time 7T, at which g is shifted must be small.

i

The meaning of " T,small" will appear later but we can remark
immediate.y that the smaller 'to is, the smaller is the effect of the
non-linear term. With this program, the differential equations (9)

and (10) for the linear approximations become

b - + ¢*—arhba TF %= 0

-

i,
0 - A W ambaT W



To solve equation (26), we use the new variables

= %—(—R‘nhﬁra.)y’* t %

(28)
and I X
— 1
2= W .
(b (29)
Then equation (26) becomes:-
L'z I S A
Tt (¥ ~ma)Z=0. | (30)
An approximate. fsolution of (30) is known in the case
WL A (31)
or / '
2% 32 ,
T Z] & 71 amhhba (32)
It is ' P
g —
z= Cu T+ G (33)
Then
¥_ o/ i Qg (34)
¢ = Ql T + ~

where le and QK are given by the initial conditions. The approxi-
mation (31) means that for small time we neglect the last term in
equation (26). Note that with this program the non-linear term is
also small compared to the two first terms of -equation (26), even when
it becomes larger than the linear term,

A similar calculation can be made for \A)* and ‘equation (27).

It turns out that

2
Vy*== C,T 1t C’%ﬂ

(35)
with the condition
2 14
w<K zs -
“1 (36)



The constants €3 and Cy are related to Cv and C%‘ so that there
are only two independent initial conditions. Both functions (ﬁ*ﬁ:)
and beﬁﬂ given by (34) and (35) are even functions of time.

It should be noted that the condition (36) implies a short time
and any program to shift the stable point in such a short time would
not have an important effect. But with the program (23) and (24),
the only increase in amplitude of the phace oscilliations comes from
the non-linear term ; M)*.X . From equations (23), (24), and (1),

we get the relation ¢k(t) and the parameters of the cavity V(t)

and 1(_(53:
o __N
Ciqi<#5 = Eég£%2§_ T 1 /
R

o (37)
Vg =V,\ s ds, + W‘%( ) J
j%
uﬁ o b aR (8)
_ b iR
gc.tﬂ = { [T |+ Cﬂgq%ra h
(39)

VI. COMPUTER RESULTS

Calculations were made using the TTT program. We started to
study the motion far below transition energy in the adiatatic region.
Particles represented by points on a curve of area Ai were accel-
erated and far above transition energy each point described a curve
of area Af . In Fig. 1 are represented the averages of the areas
A(Q, corresponding to the same A;j, @s a function of the initial
area Aj; for two different programs. In Fig. 2 the root mean square
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of the distributions is plotted under the same conditions.
The areas are measured in units of the maximum bucket area AC

when near transition energy the parameter 7C_has the value

(AR

e /

T \ 47)

{ 2
where o (") is given by computer study, o« = 2.7 for [= 2 and
% =4.9 for | = .5 (cf. MIRA-106 and 423). In the numerical
calculation ¢k,:‘#‘ and the maximum initial bucket area A, is

. imax

3 he”

The solid curves correspond to a program where at small Co a
sudden constant jump is made in the cavity frequency, while the
voltage is constant, in such a way that the stable point is shifted
to T — ¢6ﬁ . It is slightly different from the proposed program
but the requirement @ that the phase shifting time is small is
fulfilled.

The broken curves correspond to the program of reference 3 in
which we started to shift the stable point when the motion was
adiabatic ( 7. large). From equation (5) we see that for some initial
conditions VJ* is zero for large negative values of time, then
UJ*'CE) is not an even function and ILU*\ increases rapidly. In
Fig. 3 a typical case of such an effect is represented. The broken
curve corresponds to the computer result while the crosses are the
values given by the linear approximation. The solid curve corres-
ponds, for the smae initial conditions, to the second program which
keeps the amplitude almost constant.

The analytical solutions for the case of the jump in the cavity

frequency are not known and are probably not even functions of time.
11



It is be ieved that relations (23) and (24) shou d give a better
result Note that by a calculation similar to th:® of equations
(26)1(36), the program of reference 3, but with a ‘nort =hifting
time, will alco give even functions for the colutioas (#*“) and
h)*Qt\ , when T is smail. Therefore thi= program ;i< no increase
in the amplitude of the synchrotron oscil!latione.
From the computer results we see that we can a.celerate across

transition energy at least one-third of the maximum bucket area,

with very little increase in the synchrotron oscillations.
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