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The problem i¢ treated of finding surface current distributions
reduired to produce magnetic fields suitable for spiral ridge accel-
erators, where the field is required to be zero outside the region of
the current distributions and where media of two different permeabil-
ties are used. The problem is reduced to the design of an "eiementary
magnet". The fina. accelerator magnet can be formed of a single

such magnet or built up using a number of them.
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INTRODUCT ION

Method: ha e been devel.oped for finding current distributions
which woui.d produce magnetic “ielids required for radial cector FFAG

accelerators Thie was accomp <hed first by using oniy <urface current

(1)

distraibutions and then by using only voiume current distributions(2)

In thic< report, thece methode are used to determine surface currents

- , *
to produce the magnetic fie d< for spiral ridge accelerators.

A comewhat more genera! treatment wili be used than that of the
previous reports. Media of two permeabi'ities will be used, so that
the results could be appiied to other than air core magnetcz:.

We c¢hai.! con<ider the magnetic field represented by the complex

magnetic sca’'ar potential:

) ~ e a4 (m/'/) N (1.1)
\/0"9%9*)"" ,:H (") L@)—ty,)(.;., e lMN#

olF,
] . .
where {7 &nd H are rea. con=tants, o= R+1imkwith h and K
°

4

real constante vy 1 a pooitive oy negative integer. N is a

positive integer ( l"\ 8, “) or {r V,y) reprece/&)ta a cpherica.
"

and ). are recpect-
, o) Lo L(:-) A+l

ive.y odd and e en tunction- o@y@ which are also =olutions of the

coordinate f:y>;tem;'?!'= ]{ -8

egendare equation:

(V) e M) 7 6
2 = ~mA/
A Il‘y) I(y v (1.2)
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(mN) , . [
!;‘1'24-17' S wy S
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oo Ly + 3/ S wﬂ *oie

(1.3)

(m M)

Lty

Ci+4 = (oo LL,}/ 101
@)

Z
where (yF= (X + 1)(oi=+ z)—'w{"/\/
We shall throughout this report assume the following approximations:
V) (V)
(720F| = dgb”“*J}/ I’ [__7;*44 = Ckﬂl.UJ}/

’ © (1.4)

(o)

which are relatively good approximations for large FFAG accelerators.
For small accelerators, it might be necessary to use more terms of
the series (1.3). The real and pure imaginary parts of \/ in (1.1)
represent separately harmonic components of the spiral ridge field.
This follows because any spiral ridge field (even of accelerators
with radial straight sections) may be analyzed into components of
this type. Since the equations for the magnetic fields and currents
are linear, the sum of any number of solutions is also a solution.
Hereafter in this report, unless otherwise stated, we shall deal with
the complex field (1.1) and shall determine the complex current
distributions that produce it. Then the real and pure imaginary
parts of this complex field will be produced by the real and pure
imaginary parts respectively of the complex current distributions.

-3-
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‘Agksoon as any spiral ridge field has been resolved into harmonic
“components, the current distributions required to produce it, can
be found by adding the current distributions required for its

| harmonic components.

| The field (1.1) is to be produced in a certain region of space

o surrounding part of the median plane'7 = 0. This corresponds to the

region between the magnet pole faces of the accelerator. It is in
-thls region that the vacuum chamber is located. The surfacea

current distributions producing the magnetic field lie in and on

2 region Kl surrounding Ko. Region Ky is all space surrounding Kg

and ‘K;. The magnetic field is required to vanish everywhere in Ks.
"Suqh a field can be produced by one or more magnets of a specific type,
| which we shall call elementary magnets and which are described in the

 neat section.

ELEMENTARY MAGNETS

An accelerator magnet could be built out of elementary magnets

us:.ng them as building blocks. We start with an (l'" 1/'¢ ) spherical

v _vbadrdinate system. All space is divided by the elementary magnet into
:'tﬁrée regions K, K;, and Kp. K, is a curvilinear parallelopiped

~bounded by spherical surfaces r = r; and r = by the cones

-1
¥ = Y. and 7 = 7/_1 and by the azimuthal planes ¢.= ¢' and ¢=¢_/
The region K; surrounds Kg. It is bounded on the inside by K, and

~ on the outside by the spherical surfaces r = rp and r = r_,, the

cones y = 72 and '7': ’%2 and the azumuthal planes ¢ = ¢1.

..9&"‘1.

wd -
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Here

StV Lyl
§{2 < qbﬂ < ?& < q;a.

-2 'a fi, < A-TEL
where the above quantities are given constants and the ¢fs~ and P’s
are positive. The region Ko is the region of the magnetic field

that we are interested in producing. The region Ky contains the
surface current distributions that are required to produce this field.
The region K, represents all space outside of Ko and Kl' The
permeability of the regions K, and K, will be assumed to be the

unity while that of Ky will have a constant value,/4? . When an
accelerator megnet 1s made up of a number of elementary magnets,

the regions K, and Ky of the elementary magnets will combine to

form the regions Ko and K; of the accelerator magnet.

The region K; of the elementary magnet wiil be subdivided into
various subregions which can be identified by a three dimensional
integral coordinate system. This is illustrated in figures 1-8.
Figure la is a three dimensional diagram of an elementary magnet.
Figure lb represents the csame view of the elementary magnet as figure
la, but where the various regions of la have been pulled apart
as if by an explosion. Figures 2,3, and 4 represent three azimuthal
cross sections of the elementary magnet. Figures 5 and 6 represent
projections on the median plane by cones :}’ = const.

Figures 7 arnd 8 represent projections on azimuthal planes of cross
sections of an elementary magnet by spheres. In these figures,

each region is represented by a triple of numbers. Consider the
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azimuthal crose <ections at 9% where dt)é.gz L.Qé (figure 3)
Thic azimutha: cross section cuts through the region Kg which 1=
denoted by {0.0,0). A point moving along a radial line (j/ = const

¢’ = con<t) and starting from a point in (0,0,0) will enter into
the region (1.0.0) and then into Ky as 1 increaces. Again starting
in (0,0,0) and moving in the oppocite direction along the <ame radial
line this point will pass into (-1,0,0) and then into Kp. As 1
assumes the valuesrh;q,iz‘ and [:z the point will cross surface
current distributions If a point starts in (0,0,0) and moves along
a line (r = const:,7 = const.), it passed at ¢ =.¢, into the
region (0,0.1) and at ¢==9a’ into the region (0,0,-1) On moving
further i1n either direction it pa<ses 1into Ko l

I ¢+: ¢_l+27]', then the region K, is a toroidal ring shaped

region with the orgin of the spherical coordinzte system at 1ts
center. Thic¢ elementary magnet could be built out of eiementary
magnets, using them ac building blocks Using them an this way, a-
azimuthal cross cection of the region K, of the completed magnet

could be made in the figure
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The azimuthal cross section could also be made to vary in azimuth,

When the various elemental magnets are fitted together, this
must be done so that the region Ko of the complete accelerators
magnet is free of surface currents. This will be accompolished if

azimuthal currents for one elemental magnet coincide. with those
of the adjoining magnet. While the same need not be true for the
surface distribution on the 7{A r1 surfaces, nevertheless, if this
were done, the resulting current distributions would be greatly
csimplified. Each of these types or regions has its own characteristic
form for the magnetic scalar potential. Furthermore, as soon as the
magnetic scalar potentizl is known for the first order sub regions
(a,0,0,) (0,b,0) and (0,0,c), the scalar potentials can at once be
written down for the (0,b,c) (a,0,c) (a,b,0) and the (a.b.c) sub
regions. Thus if the scalar potential is known for all the first
order sub regions of the magnet, it can at once be written down for
all the sub regions of the magnet and all the fields and surface
current densities can be computed.

In order to simplify the notation, the following abreviations

will be used in the following sections:

& N)

\L_ﬁ/"“_‘ will be replaced by &
(v M) (1.6)
) will be replaced by ‘_
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tm N)

/
é—%] will be replaced by A,
N

)
/
){Zz-H will be replaced by L@

The various subregions into which the Kl region of an elementaty

magnet is divided may be classified into types as follows:

First order regions (a,0,0) are of type (1)
First order regions {U,b,c) are of type (11)
First order regions (0,0,c) are of type (¢)
Second order regions (a,b,c) are of type (/""l/)
Second order regions (O,b,c) are of type ('7.¢) |
Second order regions (a,0,c) are of type (5",#)

Third order regions (a,b,c) are of type (I"’ y.¢)

where the quantities a,b,c take in values +1 or -1,
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SUBREGIONS OF TYPE ( )

There are two subregions of this type, namely (1,0,0) and
(-1,0,0). 1In order to find ti.» fields in these regions, 1t is
only nec:ssary to know the fields in (0,0,0) and Ky. We start with
the equation:

o+ '
’O’O — N
V‘:. 2 H (r'F) [ e

¢ ®\e (o)

(1.0,0) _im Ng (2.1)

O nH R

V(—/,j,o)_ o H 5 i Ny

- ° ©

9;9,
4iiiiiiiiiiiii} Y=Y
\Q

% Y=y
| L.y



' o+ | =(
were R 00 () e : ) *3

#—l) - ’L%'-I,O‘o) (g_ )‘“; ¢ 1,0,0 (r, )_(‘“'1)

R &0 - A=)
R = j——-(g) ; R"‘"= d RL

where the 1{3 sre constant- to be determines byr%oundary conditions
then,
OO .
/—- (%4—1)('_‘) e
(o)
(©,00) .
Hy = HE) o™
Y (Rl 5 e |
H.
" ecn.}/_

~om MH (7 iV

(©J
(oo} :
U N —imNg
HI - Ha R Lo_ e
.(I,oro) | | ©
H, "= H (@ g K _"im Mg (2.4
~ (1,00) .
Hy' = - MH, (&) p‘*” | M
(0
(‘/)0)) /_/ R‘-I) ' .—M /V}é
' (I)OF» &ﬂ v
H, = H, (E)R e 2.9
€/,00)

/"/4 Ceou Y= - ?.W\N (,) EI‘O(L& e_‘imA/’t

~
i
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We shall as ume permeability 1 in Kq and permeability /v.,in Ky

In order that PI" be continuous at r = rl and r = r~, we require

_L,(+3)
& +1) Y, (’ﬂ) é(+:z) ( ) i (’7) oL+
f", /,g E
é<+3) (2-6)
{"'H) W <-3= G(-HL _,) (ﬁ) o
or
_ (24+3)
YT R e L
o+ P"_(%ﬁ) /
Yo xR W= ©
th '
en r{\'lﬂ‘*?
" TR
Yo T " (—il)_zm VoW)T T K L s
Rl (7) -
Substituting (2.8) in (2.2), one finds !
| ’-q)a(""l
E(H)z _ _I_ ":,: {I N L] (,»v_jld"’%} (2.9)
rﬂ-‘ 2+ 3 - -
M (7‘) hy <+2 \p
o B 4 (B (r')“”’ (2:10)
P F’)""‘*:’l r \g
In the same way, one ca(uﬁ‘ind

ol
(~1) | (’:.) P+ (2.11)
R = - ._0._;.7“_":2:;2_‘";,? ) {} 4 oL+ ) ( h_j

F(f':j X+ \ P j
';2"')__ A+ (%)XM &,- _ (ﬂ)w%; (2.12)
) r_:l 2el+3 ,_,-
- (E,) )



The following quantities are useful for computing surface current

densities. oy

() M
Reny= (h°

Qe+ 3
7 (/) -
; +() _ | E‘e a1
P-(m- ya (;;)Q-(+3
(F) =)
Ry = 2L (2
N n
(+9
)= ©

“€+3
|+ :ii!(!é)a /
A+2\[]

A+l (h)“‘”

(
§

The surface current dencities on the two spherical sur. aces r

= 451 & vE- ;
and r = r, where ?;,ﬁ 0 £ 7’+1 are given by

(1,0,0

iy (f)=

(o, o

1,2 Wy

SO

,0)
- - “‘“i/\‘;

(7 R-

(2.15)

=T
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(1° ) dp, ¥) 'l N
iy ()= H H = /-/["’ B) L e
( /?‘ ()] 4:’ (2.16)
(1.e0) +) S M
Yre (1 = i B ‘ g
77'?»7( ) = H im N/ H R R( r) L Le
dpo “) -‘Lm/V;
R= Hy - ’
4T, | ()= (n) R ( ‘
The corresponding densities on the spherlcal surfaces r = ;-l and
r=rc where 'i/ (’7 <‘y | are given by:
..) (1,09
)'/771 ()= Hg Hgg
/i ) ) _ (0’ ‘)
1ty ) - 'Lf; - b4 (2.17)

' . (LUQQ)
4 by ‘(/31) = #

. _ é/,0,0)
Uﬂ' z¢ {’:J—_: y

SUBREGIONS OF TYPE ()
/

There are two subregions of this type, namely (0,1,0) and (0,-1,0)
To find the fields in these regions it is only necessary to know the

fields in (0,0,0) and in K2.
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We therefore start with the equations:
‘ (o,ao) H ( )’“" -imA/¢
V r' : o (o)

0.10)

- 1) 1
\/ _ "‘ H ('—;) +1 ,—-,(')c_UhA/? (3.1)
©;1.0) dtl ) _imNg

V©is - H (IE":) [M =

where

l"“'): 'U,(O"'o) L N (,:,o) L

&) ©)
(3.2)
,1?0 @,"vo)‘ (o;d,o)
| = L + v,
¢ ©
and
_ﬁ“‘) (o ',0) L/ (o,10) |/
v L (3.3)

P2 et T I
® ) (e)

where the ‘U’s are constants that are determined by the boundary

conditions.

w14



Then

We are assuming permeability 1 in Ko and/u. in K;.

preserve the continuity of B‘/ at 3/ = % and yz ?2, we set

MURA-569

/_,,( ooy_ // s ) 6;) zm/V,s
(ooo
P

(ooo) . : imN
= —itm M, ()7 miVg
Hyp ey =-tm M (E)7 L

H o M) P
g F e

©

/—/:éf‘:)-y = —1m NH.,(;;> /—‘(”)L e—iMN’
H:,—l.o) . H(a(‘f") (F) I——7(—4) _,m/\/,,

()
(Ches I,O)

Hy = () Fé‘)L -fmA/f

@
( L] ,QO)

o covy=—imNHE) f—'(—/)[_cmw

(o)

&R @ )
m ) Hv( )= Hf): )

v L )+ % (C) " = /l—': ,t';) (v))

/
?f° L (1/.‘) +- 'U:C) !E) (yt) = O

©

15

(3.6)

In order to
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Then VU = __L_ /
° }(o_) () (7/2)

M D (3.8)
% ‘/‘;‘5 Ly o
where . L KL) o
Then @L){Vﬁ © (7)
I _“[)w(fo [‘—(w Loy - Lo Lo o

In the same way we find

(-

-5 e[ Kbt Loyt o)

Also the surface current densities on the conical surfaces 17/ = \/'

3 10)

and Y=Y, whan r' r‘ are given by

\

Y1 rfy,) = qu H, (1/)- ~imMNH. (r) [qu/n RN Ty

Ced Y ©) o) | L (3.11)

4miaty,) = %/,i tv,)- H,(‘m(y,) = /—/Cf) [n:n '/o' ] _iwhe
1)

i

-1,0)
Inipls )= /-1/ 7 ) -zm/\/H/ )"‘ “ o im N (3.12)
ey I“ z.)£
- . (©,-10) ,
0D ey = Moy oo im s

~16-
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The corresponding surface current densities on the conical surfaces
= Al .
y =Y., and ¥ =Y., where r‘_IS P < K‘H are given by

©-1, 6) ©,0,0)

) ) A 1) -imMN
A{n2p(k’-;)= Hd%')-#"@")t—%%‘/;‘/"{%) ('(V..)"LIY-,)]Z 9

(0

. (G op) Eyps
47,-24,(}{,,)': /'7Z )™ l"‘(y-';‘ H"() [’—-(}’-:) ]'(;I] (3.13)

©,0)
77""\7:)——-/%60/,)— ZMA/# é—v) (y_” ~imMyg

) €
(3.14)
b /o) ,
-)
(V—l)
In case we assume the approximations,
Liy) = sim o [ty = Coouu
7 7
4 4 © (3.15)
/ ' / .
(é_(q/)-_- (A)wﬁu.)}z | {Zaﬁ/) = —w&vn}/
the . |
her D= / (3.16)
W™ Tn v (3 - %)
&)
[T L Los couipy,y
M S (Y- ) (3.17)
— )
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=0

and /—' ~ C‘,(?—o, o YL Coa vl -)
M SN (LT ) (3 18)
=) . _
/ _-’-\-_) L— coL wo /"l S w(y_z—-}/)

Srm b“«éﬁl"?Q)

The latter two can be obtained from the former simply be replacing

(+1, +2) by (-1, -2), then

o .o+ \
v(a':‘:-i - ,/'c H‘(i") Co w-y‘ "?‘MA/¢
= /‘* '

9,~1,0) rﬂ H r jof +1
Y -5',1°(_) L S (o)
s e “‘V3(L'7LA

Likewise the magnetic field components and the surface current densities
may eacsily be obtained by substituting (3.17) and (3.18) into (3.4),
(3.5), (3.6), (3.11). (3.12), (3.13), and (3.14).

It <hould be noted than in the cace(?) of a radial sector
machine that a harmonic component of the field could be produced in
(0,0,0) with zero field in K., by using a surface distribution only
on the cones %/ = </, and 7/= ?tl’ the current dencity in the cona-

7= Yo and Y = g, being zeros, if the angles = %) and ¥ =y,

were chosen properly. It will now be shown that this is not possible

(0,1, O
in the case of the spiral ridge accelerator. 1In this case \/

and in order that f{; be continuous at‘y = ?&, it follows that,

. Ol

~tmN
) L(% " ¢- o ,J;- , ¢) (3.20)

by {

-18-~
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d - £
Now as %; and @& change, the phase angle of I%) JEJMA%%ill
/ r
change. Therefore L_(y) =0, or using the appré’imation (1.4), we find
[G))

If  is real, this equation has real solutions for 71 and one can then

produce the field by a surface current distribution in the case~y:= }ﬁ

where cosUJ)4 =0. This 1s the case 1n a radial sector machine. But

in a spiral ridge machine {» is not real but complex. In this case
w= Qa, +2.CL.‘_ where a‘and @, are real and o, %0

Then

Lo a,y, coall ALY, =0

5,:#\_ a"yl dL;N»_L\ C“‘%: O
or QO‘OD’\. Qth‘y,s Q

A, - 24,
or e 73:;-.2 4 onr e;V:zz}q

which has no real solution for 3& Q.E.D.

I

SUBREGIONS OF TYPE (_¢)

There are two subregions of this type, namely (0,0,1) and
(0,0,-1). The fie¢lds in thece regions are determined by the
fields in (0,0,0) and Ky TR

~19-



We therefore start-with the equations. qlz

A+ )
\V(oooao’ r H (r‘) —-sz¢

= “lolly - e
- n ©)
(0,0,1) ' X o=
: (+0
V = - /': o _l‘:) L @ (4.1)
re ©)
©,0,-)

Vo M ()L
il k2

ﬂ'l) +=1) (+ .
where @ = .z'é CO'O«"YV\/Ugs N zgl)SJ/V\_’VHN¢

) ) (-1 .
@ = U, C,U'Q-‘W’/V¢+-'U’ M'Yan; (4.2)

)
where these U's are constants to be determined to satisfy certain

PN boundary conditions.

~20-
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Also set 5&'):: i__ @HL (J @(-') (4.3)
¢ dy

1)

Q-

Then {ooo)

= He) g« EMWN¢—2MWA/¢]
H(O'O'O)‘—‘ H (E) L’ [M_MN¢__ ; SMLWNJ (4.4)

Y °\R) @
(000)
qu ')"'HW‘N{,: L[&MMN¢+2C.DQWN¢]
(60,1) H <O(+') ) L
‘L/y ( ) [- qé&q) (4.5)

lO)

X
H(v;vcl»)y H, (?r) | |
H = H, {os+l)(°)o‘l_ @H

S Ho(f;)"‘,z.; 5
©o- ) /T
o y= KT 8

o )

- (M)

The continuity of B at = $, and ¢ ¢7. gives:

)
—wmNg SJ.M.'W\,\/¢ + N M)C—c':p /V¢
WNSAM.MM, % Yu _IY wo.'mN¢ .7

— -VY\N'U WW»A/;S, -(-mA/ (ﬁ)mm/\/’z.___o

-21-
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From which one finds

'U{.“,-; —-i. e’im,v‘/’, Coa ™ N¢:_
s " SN~ 4)
R RPNy VY
In the same way, one can obtain SMWN(Q: d;)
ook gV g N,
¢ M . MWM&_‘.A‘)
) i -imVe i N e.
Y = - !
> \S)'./"‘ m A/{¢-z- ¢")
. —imNy
@M= -L€ l Coam N - 9)
/A M’YV\N(¢-¢.) *
é_’) i :““/VS‘:,
= - — s v Mo -
A Sim Nl 1) or2 )
OI) , ...'UM,\/¢ ot
(A I: 1 e ( _
% Ha/u St Woa )\ J([a con m Mg, 4)
Go,-) ; ~tmMg,
=LH, L e I
V ° M Mw/\/ﬁs (D)CWW\A/@ ¢)

The surface current densities in the azimuthal planes ¢p=< ¢ and

P = ¢1. where '44/" r‘ , }/ }/ }/ are given by

imit)e HTE HE B L (B < ’“‘N‘*J
Yriy @)= H‘” ) 22 )L qs“,’jm ]
'7'77'2/"@)""/"/('0") /-/(—-) ¢ "

YTly @) = H‘f"” = H @+ (E-)“ Z_

o

~DD

(4.10)

(4.11)

(4.12)
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Likewise the surface current densities in the azimuthal planes

¢= ¢-I and ¢ = ¢-7_ where /7] &€ P £ I, R }_/"}/S}./“are given by
, 6,0,0) ©o-1)
grip@)- H O 100

14
G/Zré}/éAy) = ‘A/kao I) ng?,op‘

=)
Vri) = HE (019
, ©,0-1)
'sz{;/eéq) = /7/

In the case of a radial sector machine, it was possible to produce
a single harmonic component by one azimuthal surface distribution on
each side of Ko if the angles for these distributions were chosed
properly. This is no longer possible for the spiral ridge accelerator,
where a pair of azimuthal surface distributions are required on each
side of Ko. The proof is very similar to the case of the (-y) region
which has been treated in the previous section. The proof follows.

Assume that the surface distribution at g« f'_is missing, Then

Hy B0 <imVHET) ™5 (2 )

N {0)
therefore "l m ¢/
< = 0
which has no real solution ¢‘. Q.E.D.

SECOND AND THIRD ORDER REGIONS

The first order regions can be designated by (a,0,0) (0,b,0)
and (0,0,c) where a,b, and ¢ can take on the values +l1 or -l.
Likewise (0,b,c) (a,0,c) and (a,b,0) will designate second order
and (a,b,c) third order regions. The potentials in the first order

regions can be written.
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(=)

\/b'o'c).-—- -h Ho(l,;él)w - 3"
(

2.9) and (2.11), /_'

&
where Eﬁq)are given by by (3.2) and qg )

by (4.10)

Since the normal components of Eg are continuous, it follows that

o b -.i'T\/VGA
\/&'Io'o): —A 1 H‘, R( ) F <

YYS )

V= o i Hc(g) Y

v(a.,o,c)_ _ F l‘/ I?m) L. ;.Ecc) . (5.2)
a) © -

vza.b,c) /_7/ P /-7‘ ) 5

To illustrate:

v('.O."’) _ /1_7/ /?/+')L @5’)

©

(,,_/) o) ) (-:)
P, B A

(5.3)
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From these potentials, the fields in all the regions may be computed.
& Thus we find,

(a oo)

H —(a)Ly - 1mNg

H“ 1 (B R L"”"N’ (5:4)
Mc‘:zw- -imN ( )pw-m% |
(o o) Ho<+l)(;) r,(b) -im Ny
/_40 o) H (F (A; im Mg (5.5) H(:qi/uf‘/ ) §u

(o)

2 g7 HERLE 6

(oof_) o £ ) oc.) (&l

Hrc'o,oc-) Ho(ﬁ'l:)(f) %c)? Cwy /"/7//#) tloi

H, = i—/‘(’;')L ¢ A (b) L

S RETLE AR
SLO) _../.&H (o~) /-7(1-") -L:lm N,A/ ( bC) %{/7 /?‘1’/:"(5)%-(() (SI )
M =N/ & abe @) L) «)
ng'b')/AH()R /-:,uezm?)H(tciy H(“)/P /v‘é‘
o 0,0 ™ (b im
H;:—Uiy“’m%h’ ()5 e ™
/«_f;. c) ___/Uk H (d+|)( ) l__,tb) @(c)

From the magnetic field strengths, the surface current densities at

— the boundaries between the various regions may be computed.
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CONCLUDING REMARKS

1. Magnetic fields are always produced in practice by volume currents.
Surface currents distributions may be of interest as a first approx-
imation to volume currents. This approximation would only be
expected to be good if the thickness of the volume current distribution
is sufficiently small. For most accelerators, such thin volume
current distributions would require impractically high current densities.
neverthelecs, the methods and results of this paper could be useful
in the following ways:
(a) for the design of cryogenic magnets where sufficiently high
volume current densities might be achieved so that the surface
current would form a valid approximation.
(b) As a very rough zeroth approximation which might be useful
in. »ough computations.
(c) This paper should helo clarify certain parts of another
paper to appear shortly on the production of spiral ridge
fields by volume current distributions. 1In particular the
figures corresponding to (la) and (lb) for the volume current
distributions are very difficult to draw in such a way as to make
them inteligible. Figures la and 1lb will be useful in this case.
2. It should be remembered that the analytical expressions for the
fields and surface currents are complex. The real and pure imaginary
parts of these fields appear much more complicated than the complex

expressions.
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3. No attempt has been made in this report to represent graphically
the surface current densities required, or to try to construct more
practical surface current distributions by adding several harmbnic
components of the field represented by (1l.1l).

4, It has been assumed that the permeability i?/&~everywhere in K-
This can be easily modified. For instance, one could assume that
in Ky the permeability is everywheré//bk , except in the regions
(a,b,c) where it is unity. It is only necessary to modify the
\/@mlhg)

expression for accordingly.
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