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ABSTRACT 

The problem i c treated of finding surface current dlstributions 

required to produce magnetic fields suitable for spiral ridge accel 

erators, where the field is required to be zero outside the reglon of 

the curr.ent di~tributions and where media of two different permeabiL

ties are used. The problem is reduced to the design of an "element~ry 

magnet". The fina~ accelerator magnet can be formed of a single 

~uch magnet or built up using a number of them. 
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INTRODUCTION 

Method~ hale been deve~oped for findlng current distributlon~ 

which wou'd produce magnetic .rield~ required for radia.l ~ector f:FAG 

caccelerator~ Thi wa~ aecomp ~hed first by using only curface current 

distrJ.butionc(l) and then by uEing only voJume current distributions(2) 

In thiE report, the~e methode are used to determine surface currents 

to produce the magnetic fie ds for splral rldge accelerators * 

A somewhat more general treatment will be used than that of the 

previous report~ Med13 of two permeabiities will be used, so that 

the results could be applied to other than air core magnets. 

We shal: concider the magnetic field represented by the complex 

magnetic sca~ar potentia~: 

(L 1)·v ~_ ~ H't1! )Q{+J I~N) -t~ N; 
~, Y,~) ., G (~ ~lyJ,.+, , e. 

where ~ and H are rea., con,::tant~, o~~ k+iY\'l~Wlth and K o 
rea; conc:t;:mt c ~ i a poc:i tive or negative integer, N is a 

positive integer' ( l.4 e '.) or . ", , ('l)Y'9') reprt:,Nf s a spherica~ 

coordinate ;y' tem~;.J= Jr. _ L'\ ~ 3'ld L{y~~l are re':pect·
'I' '1.. cr. (0) ;<,+ I (e) 

i'ie y odd and e en functionc of"! which are also so~utions of the 

~egendre equation: 

Fcr:ma." 1 ';a.ue: of) and 1,jrge . a Lue c ot ItJJl-y the fo ...:.owing 

expansion~(3) repre~enL rapidy convergent series 
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(rn N) • ..1-[ ~L £'1J) - ~wy + 
f~+-, (Ol I.J- W 

(1. 3) 

'",AI) 
c.o-o wy +- IIILty}

(el al +1 

this report assume the following approximations:We shall throughout 

t
~N) 
(r~+1 ~ ~wy • 6so..wy

I (1.4 )(0) 

which are relatively good approximations for large FFAG accelerators. 

r- For small accelerators, it might be necessary to use more terms of 

the series (1.3). The real and pure imaginary parts of \I in (1.1) 

represent separately harmonic components of the spiral ridge field. 

This follows because any spiral ridge field (even of accelerators 

with radial straight sections) may be analyzed into components of 

this type. Since the equations for the magnetic fields and currents 

are linear, the sum of any number of solutions is also a solution. 

Hereafter in this report, unless otherwise stated, we shall deal with 

the complex field (1.1) and shall determine the complex current 

distributions that produce it. Then the real and pure imaginary 

parts of this complex field will be produced by the real and pure 

imaginary parts respectively of the complex current distributions. 

-3
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As soon as any spiral ridge field has been resolved into harmonic 

'components, the current distributions required to produce it, can
 

be found by adding the current distributions required for its
 

harmonic components.
 

The field (1.1) is to be produced in a certain region of space 

Kci surrounding part of the median plane ~ = O. This corresponds to the 

region between the magnet pole faces of the accelerator. It is in 

this region that the vacuum chamber is located. The surface~ 

current distributions producing the magnetic field lie in and on 

a. region K1 surrounding K ' Region K2 is all space surrounding Koo 
,andK1 . The magnetic field is required to vanish everywhere in K2 . 

Such a field can be produced by one or more magnets of a specific type, 

which we shall call elementary magnets and which are described in the 

neat section. 

ELEMENTARY MAGNETS 

An accelerator magnet could be built out of elementary magnets 

using them a s building blocks. We start with an (rt. y.; ) spherical 

coordinate system. All space is divided by the elementary magnet into 

'th~ee regions K ' K1' and K2 • K is a curvilinear parallelopipedo o 
bounded by spherical surfaces r = r 1 and r = r_1 , by the cones 

y =11 and r= "'1-1 and by the azimuthal planes rjI.. t}, and t/>~ 'i_I 
The region K1 surrounds Ko ' It is bounded on the inside by K ando
 

ori the outside by the spherical surfaces r = r 2 and r = r_ 2 , the
 

cones 'Y = ;'2 and r = r-2 and the azumuthal planes IJ ~ tj"L and
 

~. ;-",. 
-4
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Here 

X2. /- XI £..Yt L 'Y;L 
G L c...'-;J. ¢-: ¢, L C;.,.. 

(1.5) 

where the above quanti ties are given constants and the ¢ ~ and"'~ 

are positive, The region Ko is the region of the magnetic f1eld 

that we are interested in producing, The region K1 contains the 

surface current distributions that are required to produce this field. 

The region K2 represents all space outside of K and K Theo 1 , 

permeability of the regions Ko and K2 will be assumed to be the 

unity while that of K1 will have a constant value./-! , When an 

r- accelerator mcgnet 1S made up of a number of 
, 

elementary magnets, 

the regions Ko and K1 of the elementary magnets will combine to 

form the regions K and Kl of the accelerator magnet,o 

The region K1 of the elementary magnet will be subdivided into 

various subregions whjch can be identified by a three dimensional 

integral coordinate system. Th1s is illustrated in figures 1~8, 

Figure 1a 15 a three dimensional diagram of an elementary magnet. 

Figure 1b represents the same view of the elementary magnet as figure 

la, but where the various regions of la have been pulled apart 

as if by an explosion Figures 2,3, and 4 represent three azimuthal 

cross sections of the elementary magnet, Figures 5 and 6 represent 

projections on the median plane by cones y = const. 

Figures 7 aLd 8 represent projections on azimuthal planes of cross 

sections of an elementary magnet by spheres. In these figures, 

each region is represented by a tr1ple of numbers. Consider the 
,,,5,·· 
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azimuthal. eros':: ::ections at ti where A.. L ~ L ~ I fIgure 3)'to c.r-J 'f'o Iof, 
Thl azimuthal cross section cuts through the regIon K WhIch lSo 

denoted by (0,0,0) A point movlng along a radial lIne (/ = conet 

11¢ = conet) and starting from a point in (0,0,0) Wl..i..l- enter into 

the region (1,0,0) and then into K2 as I' increases, Again starting 

in (0,0,0) and moving in the OPPoclte direction along the same radial 

lIne this point will pass into (-1,0,0) and then into K2 As I' 

assumes the vaLuest"':;lIr;, t!., and t;. the point will cross surface 

current distributions If a point starts in (0,0,0) and moves along 

a line (1' = const, , l' = const L it passed at ¢;:=. ¢, Into the 

region (0,0.1) and at ¢ ~¢_, Into the region (0,0,-1) On moving 

further In either direction it passes Into K2 

I. ~+-= f-,+~1T, then the region Ko is a toroidal rIng shaped 

region with the orgin of the spherical coordinGte system at its 

center. This elementary magnet could be bUIlt out of elementary 

magnets, using them a~ buildIng blocks Using them In this way, a ~, 

azimuthal cross section of the region Ko of the completed magnet 

could be made in the figure 
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The azimuthal cross section could also be made to vary in azimuth. 

When the various elemental magnets are fitted together, this 

must be done so that the region K of the complete accelerators o 
magnet is free of surface currents. This will be accompolished if 

azimuthal currents for one elemental magnet coincide with those 

of the adjoining magnet. While the same need not be true for the 
a,y.J 

surface distribution on the 1f~ ~ surfaces, nevertheless, if this 

were done, the resulting current distributions would be greatly 

simplified, Each of these types or regions has its own characteristic 

form for the magnetic scalar potential. Furthermore, as soon as the 

magnetic scalar potential is known for the first order sub regions 

(a,O,O,) (Ojb,O) and (O,O,c), the scalar potentials can at once be 

written down for the (O,b,c) (a,O,c) (a,b,O) and the (a.b,c) sub 

regions, Thus if the scalar potential is known for all the first 

order sub regions of the magnet, it can ~t once be written down for 

all the sub regions of the magnet and all the fields and surface 

current densities can be computed. 

In order to simplify the notation, the following abreviations 

will be used in the following sections: 

will be replaced by L 
II) 

(1. 6) 

wlll be replaced by 
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(.,n N) 
~ ~~, will be replaced by 

(1. 6)1;c:fy 
~~-I-I
~N) 

will be replaced by 

The various subregions into which the K1 region of an elementaty 

magnet is divided may be classified into types as follows: 

First orUer regions (a,O,O) a.I'e of type (,..,) 

First order regions are of type ("If) 

First Qrder regions (O,O,c) are of type ( ; ) 

Second order regions (a,b,c) are of type (r. y) 

Second order regions (O,b,c) are of type (1f. tI ) 

Second order regions (a,O,c) are of type (r:.'!) 

Third order regions (a,b,c) are of type (tt, y,;) 

where the quantities a,b,c take in values +1 or -1. 

-8
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SUBREGIONS OF TYPE ( L ) 

There are two subregions of this type, namely (1,0,0) and 
• 

(~1,0,0). In order to find tL: fields in these regions, it is 

only nec}ssary to know the fields in (0,0,0) and K2 , We start with 

the equation: 

dr J 

(o,~O) Hfr) LV= -r: o~~ 
• (0) 

(-100) (-I)f-I L 
0 

/{,V~·-r: 
Co} 
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(+i) 1L(J )~O) (C.)-(P(+'l)where R = r-o r; 

'-, I 00' (r. )-(.1,-1-2)
\: " , IJ

11. 
l-:) H 

19 

• OH) d....!.i) 
, ~ -= ~ (If;) 

where to be determines byrtoundary conditions 

then 

(2.3) 

- bll NH. (~)~. L 
.1 (oJ 

1-/I~ ,",") '" 0(+I)" - 1m N~J-L I, L e 
lO) 

(2.4) 

(2,5) 
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We shaLL as IJme permeability 1 in Ko and permeabili ty ~ in K1
 

In order that e~ be continuous at r = r and r = r?, we require

1 

then 

'lftrl '" - j (!l) i", .. 3 
r -I 

I 

Substituting (2 8) in (202), 

,, 
one finds 

(2.10) 

(2 11) 

(2 12)
 

-11
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(2,13)
 

The following quantities are useful for computing surface current 

(2.15) 

R(+1) - 0<+ I
''',) - ~;r 

~ 

R(.fool)
If.) -= 0 

The ~urface current densities on the two spherical sur aces r = II 

and r = r where/i..'.' ""V (. 'y- are given by2 " ~·l t ~ +1/, 

··12
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(2.17) 

11 / Hyfl ,0,0) 
'7 " it!' ,tJ.,J = 

SUBREGIONS OF TYPE (y) 

There are two subregions of this type, namely (0,1,0) and (0,-1,0) 

To find the fields in these regions it is only necessary to know the 

fields in (0,0,0) and in K
2

. 

-13
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We therefore start with the equations: 

( 3.1) 

where 

( 3.2) 

and 

-r~') (0 10) L1
,=-~" + 

(3.3)(1)) 

-r

where

,
 
(-I) (0 -I g) L' 

-=1f" + 
o (0) 

the 11.$ are constants that are determined by the boundary 

conditions. 

14 ~ 
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Then 

( 3.4)
 

( 3.5) 

( 3.6) 

We are assuming permeability 1 in K and/ in K1 , In order too 

preserve the continuity of By at Y= yl and y= r2' we set 

L' L". 1'/
'it. @>l M ~ 'If..) tel N,) ': .r ~) (y,)
 

?f L' (V) +- Ule) (Lei) ty~) ': 0
 
o (0) '"I 
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Then I
~ -- L' L- (0) ('1,) (E.) (Yt)

,)AJ) ( 3.8) 

~~ L'- - I L (0) (y,.)(0) (Y,)
~1> 

where 
L' 
(0) ()I,) (<;;)

l' ty,)D= 
L' L'
(0)Then (y l) (e) (y-z) 

r(:~ (3.9) 
{--l 1,) L'(y.j [ L: (y.,) L(y) - L L 0ll.» (e) (0) (0) (y,&) tel 0/)

",' 

In the same way we find 

Also the surface current densities on the conical surfaces y = ~ 

and y = Uz. wh2n r ~ I-' ~ I-"l are given by
T. -,' '+1 

-16
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~	 The corresponding surface current densities on the conical surfaces 

'Y = Y-I and ~I = ;'-1. where ~ ~ r' Vt are given by
-I , +' 

( 3.14) 

In case we assume the approximations, 

Lty) • 
= ~ ""->Y LIyJ

(t» ie) 

Lty> ~ w CtrO w)' Cry)
(I) (eJ 

(-:-/Jr I 

I 

-

-

Covl.AJy 

-w~y 

(3.15) 

(3.16) 

.?- (3.17) 

~LAJ 1/. ~ l-V(y~-¥) 

SVV\ vV ('1,--JI,)
 
-17·
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f-f) 

and r .~ 

( 3.18) 

~ L.u Y-, ~ i.AJ{Y_1.-Y) 
J'A ~ vJ(}t. r. - Y-,J 

The latter two can be obtained from the former simply be replacing 

(+1, +2) by (-1, -2), then 

(0,',0) 

'\I V = 
(3.19) 

. $0,-'.0) i 1 (r)' 01 + IV ~ - rono _ ~wy., ~~(~ _ ,\ 
./'A ~ ~ vJ(>!1.· ~/) - .. y; 

Likewise the magnetic field components and the surface current densities 

may easily be obtained by substituting (3.17) and (3.18) into (3.4), 

(3.5), (3,6), (3.11), (3 12), (3.13), and (3.14). 

It should be noted than in the case(2) of a radial sector 

machine that a harmonic component of the field could be produced in 

(0,0,0) with zero field in K" by using a surface distribution only 

on the cones oil = 11 and "( = 1-1' the current density in the C::>f1O'~ 

Y= Y... and "I = '1-2 being zero'), if the angles 'tj = Y1 and "I = r-l 
were chosen properly It will now be shown that this is not possible 

V
(0,1,0)_

in the case of the spiral ridge accelerator. In this case ° 
and in order that fly be continuous at r = yl' it follows that, 

·0<+1 -iMN; 
(3.20)eo - 0~) ~(y,) (f. ' ;) 
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r'o . ~ 0(+' I IV.Now as and (j change, the phase angle of (r". _2M ~ill - ..2.r 
appro (1,4),change. Therefore L (y) =0, or using the ""'0 imation we find 

lO) 

If U) is real, this equation has real solutions for 11 and one can then 

produce the field by a surface current distribution in the case -y = Yl 
where cos0U~ =0. This is the case in a radial sector machine. But 

in a spiral ridge machine ~ is not real but complex. In this case 
• 

w,= a.. , + t Cl1. where G,and Q'1. are real and 

Then 
C,.(:rQ... G., y, ~ C1. '&. y, -::: 0 

~ a.. y, ..sM,,-~ u.. I. y, =0 

Ol" ~~Q.~y,,=o 

0'(\ 
~a.1.li - Q~ .. y, 4 a.'1 y,e :-...Q. e ': -I 

which has no real solution for 1 Q,E,D,
1 

SUBREGIONS OF TYPE-1~ 

There are two subregions of this type, namely (0,0,1) and 

(0,0,-1). The fi91ds in these region~ are determined by the 

fields in (0,0,0) and K2 

".19
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We therefore startowith the equations. 

v(O,o.o~ 

(4.1 ) 

where 

l-I) 

(4.2)~ = 
where 

J
these (J $ are constants to be determined to satisfy certain 

boundary conditions. 

···20~ 



Then 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

The continuity of B$6 at ; -= 4>, and ¢ ~ ¢1. gives: 

(4.7) 
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(4.8) 

(4.9) 

(4.10 ) 

The surface current densities in the azimuthal planes ¢~ ~ and 

</>-:::,/.. where ~/" r~ ~+I are given byl/' y" 1./1"1. - "-I /+/ . 
1

I !lD,qI) HP.o,o) H ~)r:J< L [~') - 2W\ Nt/J]
I-Jrrlr~)= - -= - jJ (tI>.) - e

(' I Y Y 0 0 (0) , 

, J ~,OO) I It.'.o I) JJ::j0l. r (+/) -~'rv\N~] 
4..". 'ytrA) ': HI" '- H;" =1-1101.+1)(1'";1 b, r~ (~)+t:. I 

(4.12) 
t '" jrJl",ql) 1-1 C,.,)O( L/ ~t+1)L/ iTtt' l""'~) ~ -.." -= - - \i:! (,... )Y I:> ~ (4)) 

/.Irr i 'I (;.),. 1-1;:0,I).,. /~ (cH I) (fi-( S 
-2Q·~ 
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Likewise the surface current densities in the azimuthal planes 

\I ~ )/ ~ Yare given by'-1' 7., 

(4.13) 

In the case of a radial sector machine, it was possible to produce 

a single harmonic component by one azimuthal surface distribution on 

each side of K if the angles for these distributions were chosed o 
properly. This is no longer possible for the spiral ridge accelerator, 

where a pair of azimuthal surface distributions are required on each 

side of Ko ' The proof is very similar to the case of the (y) region 

which has been treated in the previous section. The proof follows. 

Assume that the surface distribution at '.fLis missing. Then 

< (0,0,0) · NIL ~t')ol+L' - i~ )J~1-1~ (~ y,~ r= 0 ~ - l 'M 'To -;; e 
r 'N'. 

I 

(0) 
therefore -1 YY\ ;, 

e.. -:::D 
which has no real solution CJ>,. Q.E.D. 

SECOND AND THIRD ORDER REGIONS 

The first order regions can be designated by (a,O,O) (O,b,O) 

and (O,O,c) where a,b, and c can take on the values +1 or -1. 

Likewise (O,b,c) (a,O,c) and (a,b,O) will designate second order 

and (a,b,c) third order regions. The potentials in the first order 

regions can be written. 

~23-
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I.. -tYtA N~ 
b.,c.IO)_ _ ~ H R¥'-) L e .."


V - D 0 (c.)
 

L6 NI 

p 16,0) . J J fr' )0(+1 r ~ e..- t h"\ f; (5.1)V -= - t: -r 0 ltf
 

toP,C) H ~ )0<.0+-' L A:.(~)
V = - ~o (F ~ 
(lit) 0 ~ CQ) r(M) ;to (o()

where R are given by (2.9) and (2.11), . by (3.2) and .~ 

by (4.10) 

Since the normal components of 13 are continuous, it follows that 

(5.2) 

(5.3) 

24
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From these potentials, the fields in all the regions may be computed. 

Thus we find, 

From the magnetic field strengths, the surface current densities at 

the boundaries between the various regions may be computed. 
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CONCLUDING REMARKS 

Magnetic fields are always produced in practice by volume currents. 

Surface currents distributions may be of interest as a first approx

imation to volume currents. This approximation would only be 

expected to be good if the thickness of the volume current distribution 

is sufficiently small" For most accelerators, such thin volume 

current distributions would require impractically high current densities. 

nevertheless, the methods and results of this paper could be useful 

in the following ways: 

(a) for the design of cryogenic magnets where sufficiently high 

volume current densities might be achieved so that the surface 

current would form a valid approximation. 

(b) As a very rough zeroth approximation which might be useful 

in rough computations. 

(c) This paper should help clarify certain parts of another 

paper to appear shortly on the production of spiral ridge 

fields by volume current distributions. In particular the 

figures corresponding to (Ia) and (Ib) for the volume current 

distributions are very difficult to draw in such a way as to make 

them inteligible. Figures la and lb will be useful in this case. 

2. It should be remembered that the andlytical expressions for the 

fields and surface currents are complex. The real and pure imaginary 

parts of these fields appear much more complicated than the complex 

expressions. 

-2h-
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3. No attempt has been made in this report to represent graphically 

the surface current densities required, or to try to construct more 

practical surface current distributions by adding several harmonic 

components of the field represented by (1.1). 

4. It has been assumed that the permeability i~everywhere in K1 • 

This can be easily modified. For instance, one could assume that 

in K1 the permeability is everYWhere"IA' except in the regions 

(a,b,c) where it is unity. It is only necessary to modify the 

expression for V(fA,'c,(.) accordingly. 
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