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ABSTRACT 

The kinematics of high energy nucleon-nucleon collisions 

are examined in the laboratory system and the rest-frame of the 

centre-of-mass, and the appropriate Lorentz transformation is 

described in detail. Some of the results are applied to the 

production of pions and anti-nucleons. 
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I. INTRODUcr ION 

In this report we consider the collisions of high energy 

protons with stationary target nucleons, and the subsequent 

production of various secondary particles, e.g. pions, anti

nucleons and strange particles. The kinematics of these processes 

are of particular importance to the design of accelerators if the 

targets are placed inside the machine, since we are then faced with 

the problem of extracting the secondaries. 

It is convenient to consider the kinematics in both the laboratory 

system of coordinates, LS, and also the rest-frame of the centre=of= 

mass of the colliding nucleons. When the energy of the bombarding 

proton is relativistic, these two coordinate systems are related by a 

Lorentz transformation, the properties of which are described below. 

Throughout the discussion we neglect the neutron-proton mass difference. 

Suppose that (E i , Pi) (E~ ,pi) are the energy-momentum 

four-vectors, in LS and eMS respectively, of a particle with rest-

mass mi ; the units are chosen so that the velocity of light is unity. 

The Lorentz transformation between them is(l) 

(1.1)(~.~)~-~)~ ~:( 

~~ J1-t 

E'l -+(~. K) 
J1-~~ -2



From (1.1) , (1.2) and the fact that P'CMS must, by definition, be 

zero, it follows that 

I 
--EC.MS J1-~ E~S 

- (1.3)
~c. - p..S I'f. 

LS 

Suppose now that the direction of motion of the bombarding 

proton is chosen as z-axis for both LS and CMS and that the momenta 

Pl" pI are inclined atangles 9" ~! to it. (see figure (i) ). Denote 
1 1 1 

the longitudinal and 

if -Qxis 

Fig. (i) 
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transverse components of momentum in LS, eMS by (Ii' t i ) and 

(~i, ti) respectively. The transformation (101) may be written 

2·L� -
- (1.4 ) -

where 

(1. 5) 

and 

(1.6) 

~ As will be shown later the value of 8~ determines the character of 

the transformation. 

If M is the nucleon mass, and T the kinetic energy* of the 

bombarding proton, then 

* T will denote kinetic, and E total, energy throughout this 

discussion: T· = E. m.~ 0 

~ ~ ~ 

-- \;- lMElS 
(1.7)

PLS� -- JTtT-+~M) 

and from (1.3) 

~t-	 - J':).l'\ 
I� (1.8)£. Co \"\~ -- J1 M (T-+ ;tM) 
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The above formulae provide the basis for our discussion of the 

kinematics of nucleon-nucleon collisions, and in the course of it 

we shall give a detailed discussion of the Lorentz transformation 

in (1.4) 

2. KINEMATICS� 

Consider a nucleon-nucleon collision� 

(2.1) 

in which N2 is at rest in LS and N
1 

has kinetic energy T. The 

secondary particles, and also their masses, are denoted by m1 , m2' 

m3 ••• It will be assumed that there are no less than three• 

secondaries, and by baryon conservation, at least two of them are 

,;-
baryons: therefore 

2M < ~ VV\'.... (2.2)•Ir 

and 

M < (~ lVI~) - "'j = L M· 
(2.3)ltj l. 

for any mj' 

From the conservation of energy and momentum in CMS, we have 

, L. (.. t" ")~- ~t.+ i, +t.Ecr1S - c \" 
(2.4 )

L.t~ -- ~ t:. -- 0 
...t v '" 

or 

EI 
ct1S -

·C "' n' 'J" 
'mJ ~"""J 

L' :..)ih,. 
+ "'J = (2.5) 
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The jth secondary will have maximum energy when the right-hand 

side of (2.5) is a minimum, subject to the conditions 

I =- - t·
J� (2.6) 

It can be shown in this way (see Appendix for details) that the 

maximum energy, in the CMS, of the jth secondary is 
I").. 

Ec.",s 
(~.7) 

2.1� Secondaries in the backward LS Cone� 

The jth secondary travels backwards in the LS when� 

< 0 (2.8) 

From (1.4) a necessary condition for 1. to be negative is 
J 

(2.9)~'	 < 1J 
or, from (1.5) , (1.6) and (1.8), 

) 
(2.10) 

It is� easy to show that: 

S~ (a)� d cannot be less than unity for all secondaries, 

at the same time. 

for if (a) were not true, the sum of the energies of the secondaries 

would exceed E'CMS (see 2.10, 2.2). It can also be shown that, as 
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a consequence of baryon conservation: 

I 

(b) ~j is never less than unity for secondaries with 

rest=mass greater than, or equal to, the nucleon rest

mass, i.e. no such particle can appear in the backwards 

LS cone. 

Suppose mj >M: S; will be less than unity if 

Ejmax :> Ej ? f:~) ECMS 

or, from (2.7), if 

(2.11) 

When* m. '~~i' both terms of the left-hand side are 
J '~J 

negative; when m. > L m., then from (2.3)
J t*J J. 

m·J - M > YV\J' - L M! 
l..tj " 

I.,.,
and since the left-hand sideE. c:. M.i > M(t+jm~ -rMJ) 
of (2.11) is again negative. Therefore (2.11) is never satisfied when 

m ~ M, and ~~ must always be greater than unity.j 
* From the mass spectrum of elementary particles(2), the inequality 

mj < ~.mi is seen to hold for all processes that are allowed in the 
t~J 

Gell-Mann"~Nishijima strangeness scheme. However , it may not be 

true for forbidden ones, e.g. n + n.,!\+ n +'1t , where m + mt= <. rfl/\n 

-7
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If the rest-masses of the secondaries are given, then ECMS 
(and therefore T) must satisfy (2.11) before any secondary can 

appear in the backward LS cone. 

A necessary and sufficient condition for (2.8) to hold is 

(2.12) 

Therefore 

< 

and the jth secondary will appear in the backward LS cone if and 

only if 

i) its CMS energy satisfies (2.10) 

ii) it appears in a backward CMS cone of small half-angle, 

the of which is given in (2.13}.tangent� 



2.2� Maximum and Minimum Energies in LS 

The LS energy of the jth secondary is greatest when it has 

maximum CMS energy and travels parallel to the centre-of-mass: 

(2.14) 

The minimum LS energy is merely the rest mass if E ~ ~ m. ~c;
Jmax J 

otherwise it occurs when the secondary travels anti-parallel to the 

centre-of-mass, with its maximum eMS energy: 

-� (2.15) 

't~ [E~'ft4l)( - ~ ~ Wft.1 
-8
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The value of Ejmax has also been obtained by Meyer and Holladay 

(reference 3) in a different form. 

3. THE LORENTZ TRANSFORMATION 

The direction of motion of the jth secondary in LS is related 

to that in the CMS by 

-�-�
(3.1) 

(see 1.4; for convenience the suffix j is omitted.) Since tan1r 
~, ~I I 

depends or. CMS energy (i.e.Q ) as well as on ~, we shall treat & 
as a parameter and see how its value affects the relation between 

t and ,,' • 

First suppose that &' > 1: tan t vanishes when ~ = 0, 11" , 

and is positive elsewhere. Its maximum value, 

(f' > 1) 
( 3.2) 

occurs when the derivative 

(1. +E' t./tt.'I')-�-� (3.3)~«~", t 0' )£ 

vanishes, and is a1ways less than ii /2. 

If ~<.." t' ~ 1 (by definition 8' ~ ~c. see 1.6) tan t is 

discontinuous at cos t' .. -- ~' and J.i/d.-t' is always positive As 

VI increa ses from zero to cos -1 (- 6' ), tan 9 increa ses from zero 

to infinity, and as " increases from cos -1 (- G' ), tan~ increases 

from minus infinity to zero. 
-9
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Equation (3.1) may be solved for cos~' 

I - 8' 't? tQY\~ :. ~ ~: (1~~) ro..f\a. ~ -+ 1 (3.4 ) 
Co"'Ot± -

't;;.~ (A~c."). '9 - ~"-) 

the square root is always real (by virtue of 3.2 when 8'>D and its 

sign is chosen in tQe following way~ 

S' > 1 
o ~ ~~ , ~-1t1j8') 

(3.5a) 

,~-1. (-;'3') ~ -&: ~ 1r� 

8' < 1� 
(3.5b)o ~ '9~ , c~1(-cS') o~ ~ ~ ~;t.
 

~-1 (-0) ~ ~/_ ~ 11" ~~ ~ Q. ~ 1\� 

The relation between 9 and '9' is illustrated in figures (ii), 

(iii). Comparing these, we see that angles with single arrows in 
I , 

(ii) correspond to t+ in (iii) and those with double arrows, to ~_. 
~'- .Q' ,

Notice that when 0)0 1, both "+ and '9_. correspond to forward 

angles in LS ( ~< V/2); when ~'< 1, '(. corresponds to forward LS 

angles and " to backwards LS angles (9) 11'/2).-

=10
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3.1 LS Energies and Angles Corresponding to a Given CMS Energy 

If a secondary particle has a given CMS energy E' , its LS 

energy E s and angle f9 9 ml.;.'::;: satisfy 

~I 

(see 1.4) To study the behaviour of (3.6), we shall again treat E' 

as a parameter. 

The solutions of (3.6) for E in terms of E i and 

E I ~ Jrt ~~,&[-E"'- ~r~(1_~2..~2.~)) --
tc (1-~: ~~~) (3.7) 

are real provided 

E/''' > W\1'(.~ (1.- ~~ c~~'6) 
( 3.8) 

When E' < Wl't; (Le. ['>1, see 2.9, 2.10). this condition is only 

satisfied if '9 ~ ~ (E i ) (see 3.2); when E' :> t'f\~, it is satisfied
"'M 

by all values of -& . 
E' < ~: there are two real solutions s Ej;( 9- ,E') for every 

9' ~ ~ax(E') and none when 'V '> :Rx(E'). E+ (~,E') is greater 

than E_ ( '9, E') for all '0 except ~= tax' at which point the solutions 

are smoothly connected. As E' approaches h\(sE+( t,E') and 

~ (E') increases while E_{ t sE') decreases. 
max 

E' ~ in this case there is one real solution for eachh\": 
'& between 0 and 11". The LS energy in the forward cone ( ca, "/2) is 

always greater than that in the backward cone* : 

-11
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~ <. 1';~ (3.9) 

since E: (&)E') :: E: tlt-t ,E/ ) 
for(i ,E') ?> ~_ l '9 I E') 

the only solution of (3.6) which satisfies (3.9) is� 
*Suppose E = El when ~= 0'{1f/2 and E = E2 when9- =1' -0': then from (306)� 

Il _ ~ 'f:.1/~ 
- t, ~l ~t ::.. ea., ~ ~ ,,. C«)r c: ~ Qc;.El 

Since P1.) ~~ ,cos 0' are all positive, 

E"+ <&J Eo') o~ &~~ 

E_ (i)Eo') 
""h.~ " 1r 

or, since cos 9 changes sign at 't = 11'/2 

_ EI + Pc. Ccr.) t J£'2- - ~"t::t (1-ft· Cot1 -9) . 
E(~,e') - to (1. - P:- Cq,1,",) (3.10) 

Notice that as E' increases, E(9 ,E') increases for all ~ • 

The curves af E versus' for several values of E' are shown 

in figure (iv); no two curves intersect one another. 

3.2 Maximum Energy and Angel in LS 

For a given LS angle ce , the LS energy of the secondary 

particle varies between certain limits, corresponding to the varia

tion of its eMS energy between m and E'max. 

E'max ~ ~ ~: ~ must always be less than 

the limits of E (see" 3.2, 3.7), 

E (3.11) 

are readily apparent from figure (iv). 
-12
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E'max > W\t. since E( t ,E') increases with E' (see 3.10), 

the limits of E are 

(3.12) 

For a given LS energy, the largest possible value of ~ may be 

obtained from (3.6): 

o~-9~® 
(3.13)

c.~® = [£- t E~.¥E~mt. 
3.3� Transverse Momentum 

The transverse momentum of a given secondary is the same in 

both LS and CMS (2.9) and is therefore a useful quantity to measure.� 

If the transverse momenta of all secondaries are bounded, then their� 

LS energies and angles are restricted to a certain band in the� 

(E, 9) plane.� 

Suppose the secondary has CMS energy E', and non~zero transverse 

momentum t (E' >1m2 + t 2 ): then the corresponding LS energy E and 

angle 9 must satisfy two equations (3.6). 

e' :� ~ [E -~, ~ cos~J 
(3.14) 

t" :.� ~ bLV\ ~ 
which define two curves in the (E,t) plane (see Figure (v) ). 

These curves intersect in two points 

col: '9:t, =. ~ ( ~c: Ii I ± J-E'-2----m-'----t~")It 
( 3.15)

E t "" '{ (e. I :r. ~ .('E'1.-IYt~_I;.2.0 ) 
such that 

(3.16) 
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As E' varies between m and E I max ~ ~ lies in the range 

@. 
~'" 

(3.17)--

and E lies between 

£Vf\ClII( :> E ') E~t¥\ 

E'W\-x -= ~ ~~4- ~~ j~~n(o ..t:] ) 

Suppose the transverse momentum is bounded, T1 ~ t ~ T2 

the points of the (E, ~ ) plane which represent the possible L8 

energies and angles of the secondary will be contained in the area 

between the curves: 

p~~ ) '1.:' Y'~t 
(3.19)

::. t;. (E - ~~ f c~'O) J 
This area is shown in Figure (v). 
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4.� TRANSFORMATION OF DIFFERENTIAL CROSS<~SECTIONS 

AND ANGULAR DISTRIBUTIONS 

The relation between LS and CMS differential cross=sections is* 

(4.1) 

Where primes denote quantities measured in the CMS. The dependence of 

* The azimuthal angles 0, 0' are always identical in the coordinate 

systems used here, and therefore need not be considered 

E' 
. 

,~ 
; 

on E,� 9 is obtained from (1.4), 

%'<ca)£) =-) t~~ '9' = ~~ 
)
•� 

~(Coti-&)
 

(4.2)
E/(~) E) -) Sl =- ~ (e 1"peCK1~) 

and hence the Jacobian for the transformation is 

J(',E):� I~~::~: ~~ I== [t"(,~~-&)\ ~,.~~1~ (4.3) 

The expression under the square root is positive and therefore 

J exists for all values of 9 and f ; from (4.1), (4.2) and (4.3), 

(4.4) 

If the CMS differential cross-section is known, three interesting 

LS quantities can be obtained from (4.4)~ 

a) the angular distribution for a fixed LS energy E; must always 

lie in the range O.('9~ @ (3.13). 

b) the energy distribution for a fixed angle ; the range of values 

of E is given by(3.11) or (3.12) depending on whether E' ~ ~~ • max e 
-15~ 



MURA-563 
Internal 

c) the angular distribution per unit solid angle summed over 

all energies 

(4.5) 

(4.6) 

E'Vf\"'f( >'" ta :~ (3 oil.) 
(4.7)

E(9jE"~l 

A(~)= £ &' [9- '<&JE) ,E'{9-\E)] ;r~,E) d,E 
(o~f~ "It) 

Equations (4.6)9 (4.7) are an agreement with the r~sults of Kaplon and 

Yamanouchi (reference 4). 

An alternative way of calculating A(~) is to express ~' as 

a function of ~ and E i (see 3.4) and then integrate over eMS energy: 

Now from (304): 

_t2-~ E/~~ to JL=-> 
t<:,.'JJ JE'l.-w.'" ({)~ti-~~) 

(4.9)
~E.'± rr.T 
't ka:..r¥\~ 4Jt (oac9-~)rc 

IT= 
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the square root must be rea1 9 and therefore� 

," EI 4 EI ~ mfc. 04Z.(.~ ~ - ~'1. E I 
(4.10)~~ - 0 

!J·ec..?·· it 
E'max < M1 tc:. : both 1}'

+ 
9 ~!. correspond to the forward LS 

cone 0 ~ ~ f 9- (E' ) < "/2 (see A 3), and so max max S 

1\ (9) :: f 
E' 

~""{ <1"' [~~ ,E'] Id(""&~l 1-1 <T'[9~ ,e] /cl(C.a1a f(){ Jd.E' 
f' ~ (.~ ~) \ d. (c.~ ~ ) 

o 

(4.11) 
( 0 ~ & , ~Mel« ) 

E' max >m(': the range of E' must be split in two, 

a) m 'tc ~ E' >,. E' (0 ~ 9 $ iT/2)
0 

b) E' max) E' ~ mt'c (O~'Q~"). 

The contribution from range (a) is given by (4.11) with E'max = mt . c 
In range (b),"9+ contributes to the forward cone ( 9 ~ 1\ /2) and 

'9~ to the backward cone (~ ~ 'iT/2). Therefore 

(4.12) 

-17
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5. APPLICATIONS 

The production of pions and anti~nucleons are two examples of the 

nucleon-nucleon� collisions discussed above: 

N + N -> N + N + "1T (5.1) 

N + N -> 3N + N (5.2) 

From the kinematic point of view, the chief difference between 

these processes is that the maximum CMS energy of the pion is greater 

that "m Tr ~ c whereas that of the anti-nucleon is less than 

~_ tc: (m ' ,M_ are the pion, anti~nucleon masses respectively). 
N n N 

Consequently, while the pion may be produced at all angles in the LS, 

the anti-nucleon is restricted to a forward cone. 

Consider a bombarding nucleon of 10 ,BEV kinetic energy ( the 

target nucleon being at rest): then equations (L 3), (1.5) become 

,....T 11 M� ~ 0- Cj 2-� ~ 
(5.3)I� 

"'- 2 .S'~,.,
Ec:.M~ ~ 5'-1 M� r 

c.. 

The pion has a maximum CMS energy (see 2.7), 

£' ::: 1-2 M (5.4 )1i ~QX 

which is greater than mii '1 since m ~ ~ M; its LS energy lies c 
between (see (2.14), (2.15) ) 

10·5 M� (5.5) 

Since the anti-nucleon's maximum CMS energy 

::� 1· 8 M (5.6) 
... 18
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is less than M_ ~ (M = M), it will appear in an LS cone of semi-angle 
N N 

0 (5.7)t Cl.V\ _t (E') -1 IT .....
WiCVl( ~G)C 

-- 3&
8 "'" 

(see 3.2) and the limits on its LS energy are 

(.~ M ~ E_ ~ 1-1 M (5.8)N 

From (3.13), (5.3), (5.4), (5.6), the largest LS angles at which pions 

and anti-nucleons of given LS energy may appear are 

8) ': c.o~-1 (Eli - O'~&31 (8t :=. (oJ:)-l(E N - (5.9)0'106_,� 
1i \ JE~ - W\; N JE~ _ M2. )� 

The values of fH\ ,9 for various energies, together with the ratiosall' N 
of the centre-of-mass velocity to the pion and anti-nucleon LS 

velocities (see 4.2), are given in Table I. 

Ta ble I: Max~mum LS anq I e as a f unct'~on 0 f LS enerqy 

E1f 1M 1 4 7 10 

""'"'0.92 0.92 0.92 0.92['If 
81 0 31 0 18 0 7 0 

~~ 

E_/M 2 4 - - - 6- -.- . . . _. _.. - - -- -_.~N

1.06 0.95 0.933I N� 

36 0 22.50 130�(8)N 
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The angular distribution of pions and anti-nucleons with given 

LS energies are of particular inportance for the problems of internal 

targets in an accelerator, and can be obtained from the eMS differen

tial cross-sections for (5.1), (5.2). Although not much is known 

'about these cross-sections at present, one ,or more of the following 

possibilities may not be too inconsistent with existing experimental 

data: 

(1' (~',E') COl'\st oV\t (a.) 

1./ Eo' ~ (IT) 

<:..c>14 '9' (c.) (5.10) 

t.o1~ "8h'" (d.) 

From (4.3), (4.4), the corresponding LS cross-sections are 

( Q.) 

J(-e)~) (lr) 
(e - ~c pcO';) ~)). (5.11) 

T(C8, E) lc:~'9 -S)~ (c.) 
~1 ((~&-S)~ + 1J~1. '9 

2
"J :r(~)E) (c.~9- 0') Cd,,) 

(E1t- r~"&t ('t;(t~9-St-+ ~~'9) 

and the angle 9 never exceeds @ (see 5.9) 

All four possibilities in (5.11) have their largest values at 
\ 

-20
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~ = 0 and tend to decrease with increasing ~. Therefore a rough 

measure of their behaviour is given by the ratio 

= ~ (®IE)j (5.12)
fa-I: (0 )f) 

The values of S (E) for both pion and anti-nucleon production are 
t 

given in Table II. At very high energies, 5 (E) does not change
t: 

very much for different choices of t , mainly because ® is small; 

at lower energies, it varies considerably 

Table II. 

St (E)
L5 Energy a b c d 

... 

I 0.09 0.0008 0.07 0.0006 

4 0.4 0.05 0.04 0.005 
) 

7 0.7 0.03 0.05 0.02 

10 0.9 0.08 0.7 0.6 
; , 

2� 0.2 0.06 0.1 0.03 

N4 0.33 0.13 0.01 0.004 

6 0.7 0.4� 0.1 0.07 
; 
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APPENDIX 

PROOF OF MAXIMUM ENERGY IN CMS. 

From (2.5), (2.6) the maximum CMS energy of the jth secondary 

occurs when the right-hand side of 

E' - (m 1. i:L t'1. )i/~ _ L (~':' -t i~ -+ ttl. )1/2, (A.l )<.MS j + j + j -, J. . L .... L� 
\...;J� 

is a minimum, subject to the conditions: 

t't Q~ t. 
J 

:. t/.2- = -
.1 

~ 
J (A.2)II JL.:I: j Lrj 

Let H denote the right-hand side of (A.l) : any extremum of H must 

be a minimum because H tends to infinity when any t!, ~! tend to 
1 1 

infinity. By the Lagrange method of undertermined mu1tip1i er s , this 

minimum occurs when 

b', + \ ( :t J.'l. '1 )1,,,-
A, 1\ Yv\; ~ . -+ t. 

~ ~ ~ l. :. 0 
(i t j) (A. 3)

fA (~~ -t R.~~ 1- t~ )1/')... 0 
l. l. l. 

The solution of (A.3) is 

- .e. '. (A. 4)- L. - (L,~ f j)
J -

and from (A.2) 
JI - V't'\ Il.

L. .' t. ~.
l. 

= h'I' A' 
l. - t·J (A. 5)~(or WI.) (to \'Y\.)

t1 j ~ L:#oJ L-

Substituting (A.5) in (A.l) and squaring both sides, we find that 

(~$ + 'Mi - (t-+ j WI l )'
(A. 6), 

.l E c.1'1~ 
-22
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FIGURE CAPTIONS 
I 

Fig.11 Mapping of '0 onto 9 for various d' . Corresponding angles are 

sllown with the same number of arrowheads. 

cos~' = -1/ Sf cos 'i}.J. 
I 

= 
m 

I 
Fig. iii Tan fi1 as a function of ~ 

Fig. i v. LS energy as a function of LS angle for given CMS energies 

SI >1 implies E' <:: mtc 

~I <1 implies E' > mt
c 

Fig. v. LS angles and energies allowed when transverse momentum is 

bounded. Points marked ±... correspond to the solutions (E+, '9+) 

of (3. 17). 
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