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ABSTRACT 

It has been found here that Sturrock's perturbation 

invariants are approximate quantities obtained by 

truncating the perturbation series expansion of the 

familiar Poin cart) s inte9ral invariants. Application of 

the second order invariant so constructed has been 

examined in a simple example. 
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W. N. Wong 
January 22, 1960 

INTRODUCTlON 

This report summarizes a study, at the suggestion of Dr. Cole, on 
(' )Sturrock's Perturbation Theory, ,,1., in anticipation of its possible 

application to future work. 

It is proved here that Sturrock's perturbation invariants,which 

he constructed by solving partial diFferential equations(2~ can also 

be obtained from the conceptually more familiar integral invariants 

of Poincarli. (3) 

Some practical aspects regarding ",he application of the theory 

are discussed and the sample equation 

o ;J, 

+ w"q + f S~ 2 t ~ 2, :: 0" 
elt~ I-

studied by Dr. Laslett in great detail in the neighborhood of 

the third subharmonic resonance/is used as a test. Actual calculation 

up to the second order in perturbation and first order in the dis

placement of the working point from the third subharmonic resonance 

(L e., to first order in Eo, defined by w ",2.+ €) indicates that the
3 

invariant obtained is in acceptable agreement with Laslett's result 

by Moser's method. 

II THEORETICAL CONSIDERATIONS 

We consider a one dimensional problem. The unperturbed problem, 

supposed to have been rigorously 061v~d, is described by a Lagrangian 

while the perturbed problem is represented by the 
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Lagrangian 

w'lerein ",L is regarded as small in the sense that if the solutions 

of the two problems are related as 

is so small that its hj.gher powers are negligible 

for all time within our interest o Both of these Lagrangians are 

periodic with the 3ame per~od. 

We fix the initial time at t=O and calculate the difference of 

actions expended along actually possible trajectories of the two 

problems after a time 7:' • This is given by 

.<1 V = V"f_ V = ;;!J..t!L'Jf(t:t'1;1t'tJ-L(f9 JtJ} (3) 

T ( [00 ..L (). ,,) )"L* ,) 
== [ d.,t ",L(11,tJ t /... , >-l! .tJ,f,~+JJtJf' (H't-. 

The symbol ~ ~"'1;. is l,;sed to designate the variational opera

tiDn with :=espect to variational parameters enumerated by 0< and 

implir;.it in 1 & 'I J (eog. the initial parameters in the 'iolved 

problem). The recognition that this variational operation and the 

perturbation are independent of each other implies the equality 

(4 ) 

The right hand side can be evaluated in the usual manner taking into 

consideration that the Euler·-Lagranglan equations pertaining to the 

two problems must be satisfied o With the introduction of the following 

definitions, 
'*' JL*(~ttf~'t,) 

t= J = dfJfI (5)) 

~3~ 
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'l:' 

= (~f{1+PJ;tJ~+ IJt£IJ~)lo (6) 

We may conceive a closed curJe C in the ~-p phase space as generated 

by var}lng .X (5) and note that the operation J 
eX 

is contemporaneous,
" 

Thero. by integrating (6) alung thl,s C which at time t=o corresponds 

to C say we haveo'9 , ; 

The quest:lon whether this integral exl ST.," for at lec:st some choice of 

C will be discussed later. Let be the abbrevi-F (1 (", t) , tt' (0(, r ) ) +) 
atiol1 of. tf,e whole in'tegrand in (3) then 

where the limits 0(, dnd 0(0 ,by definition of C, satisfy 

for fixed t ) 

so the integrand of the last result is zero; consequently 

i. 0: 4V ::: kCq 

where K(c) is a constant depending on our choice of C. Hence (7) 

te.'-ls us that 

LJ~ Cc) =f (L>f~ ~ -to P.;,-dl-t"c"f f~~'" ef4') (8) 
c 

is 211 integral invariant for any arbitarily chosen closed C in f-~ 

space, G being any arbitrary 9',:,ge function of/'.?" Although we are 
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SU,pposcd ·~c }".'J-"~c -.~"_::.~_ knQ"'",~,_edge ;)f ·~..~.e £'In:::;+:.i.ons ?l{~ 1--) ?:'1d t' '~, t) 

we 3~S ~~Qb:e to ev~luate (8) dt;e '~0 '~~e cresen:e of rert~r~a·tlcn 

'tc ~G fOCGd ~n serne approxima'te manner~ ':he approxima~:on Is done 

by ~c;l;dL-l.ding the increments as 

<5.7 -= Ll.'i -r 4:J.'t T A
3 't + •. , 

6.r ::: til p-j- 112p T ,l'i> + .. 

and Ll V ~,11 V + iv + J V + '" 

The notion of order of a quantity is defined as the total incremental 

power appearing in it. In the following, we shall not subdivide 

L1L but cons:Lder it as of in~rement power 1 • 
For example 

and t.\-,e first two square brackets define Coif respectively. 

A similar expansion of 4V in (3) is: 

.1V:::f~f [AL-t(d~:~ t/i'J'J~)L ) +-[~t[(/ilf:~ T6'J'J~)'IL 
(11) 
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Clnd the first two integrals are respectively Ii/V and i:J.v. By expanding 

forITL:.'.a (8) iik.ewise, we find that the nth order invariant is given by 

where 

(12) 

Wi~h these prescriptions and the specificatio~without loss of 

generality" that at t"'O, LJt"O & .df =0, we may write down the first 

two orders of equation (6); 

{I~t [I.L + (61 :~ + .d/~/j~/) L '= />'/.'1 t t!>f c£~ (13a) 

~ (tiLt [(L1'~ ~ TA'r1r )L>L t 1 (A.'9 t~ +L>'f4, ).2.L 
(13b) 

+(A~1:~+4~r:r)L = f{.d2.~T~~£A'~+ £f[~· 

The two invariants associated with (13) are just integrals of the left-

hand sides along a closed curve C. However to save labor in actual 

evaluation, we should first eliminate any total differentials 

existing under the integral signs since they eventually will contribute 

nothing to the integral. For example, in (13a), by definition 

(A'Qi:-t.t>'QIL-)L :A'q <!I + d~JL.. = 4.(4'9 J,) ,Jt ~ ~f y ,1 t" d t {" 1ft" t" 
and in (13b) by virtue of (10) and the Euler-Lagrangian equations 

-6
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50 that the first and second order invariants are 

.6'1 - ~ ~ {Cdt' 4L ; ~ ,U" J5L (14) 

A~a; '= l rJ j'tr:i+.L r"'q.{:-f4'q,L)"L =.fclt +{.~: .. dq'J..)",,
"-' ..L c '" ,. 2. ~. I' 'f, ~ ~f ~ ~ I df 

They are in complete accord with Sturrock1s results obtained by 

solving partial differential equations, 

With the separation of the total differentials, we note that (13) 

can now be more symmet.rically put as: 

{t,/.-t J5 L - J5''J, d,.p= Llf ~'i 
• (15 ) 

c[ (it [i (~'~ :~ t.dfJi.>oL J+ t (t.'~ !A'p-d/>1A''j.)= f~i-l·~~f 
2ndIf we stop the approximation at order, then equations (15) 

are the eqJations of motion for the perturbation increments ~ }- .6~ 

and formulas (.14 ) supply a recipe for the construction of perturbation 

invariants to study the stability of the perturbed dynamical system 

in the usual way. 

For actual application, let us consider the solution 

) 

(16) 

where r ,J are initial parameters which for periodic problems may 

be chosen to be the familiar angle and action variables. We shall 

regard (16) as a transformation from f-'t space to Y- J space and 

shall choose the Jacobian of the transformation to have its determinant 

equal to one: 

(17) 

and det. r t'" 
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50 that we have for th:s ~ransformation: 

) 

If we agree ·~.o defi.ne ar, .cn.crementai Jacobian matrIx of the ,)Jth 

• 1/
order ~'t 

>( 

, All'!. 

d-j 

can be symbolicallyth.en Ule differential. form 

expressed as ,..., ,~-_/ 

(tiJ) (fy 

wi th ( Ll. J -A t ) representing a row matrix and the tild e, the transpose 

operation on the matrix under it. We now delete the label 0< and 

write equations (15) as 

(19a) 

(19b) 

In (19a), if we identify t with the variational parameter 

, we have 
)AL 

(20a)- =ilt 

and if J is identified with 0(. ,we have 

(20b)
• 

These are the equations of motion of the first order perturbation 

increments. These ~'Jandil.'¥ are used in (19b) for the second order 

calculations or in (14) to evaluate the second order invariant. In the 

following, several aspects in connection with the operation: 
~8~ 
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i dt FCH'f) (2_d 
c 

I: may be poInted out that the va!:iatioP31 parameter 0( employed 

prev~ocsiy can be identified with the angle variable I while the closed 

CLrI:e C here i_os most conveniently -:aKen to be J ,=- const. in t ~J space. 

To investigate whether this choice of C will gUEr3ntee the existence 

of the integral (21), let us assume the Lagrangian to have a period 

orI L and the period associated with the angle variable be 'w Then 

0= -T.. 
'l:1.. S the number of oscUlations of per Lagrangian period

T... 
due to the var::'ation in 't and for each additional Lagrangian period, 

the phase of ~ -undergoes a shift equal to 2-rrOo Let 0 = N +.[ 

where N is an integer or zero and J the remainder less than 1. If 

~ is zero, ~hen (21) certainly exists since we just have to integrate 

it ::rom 0 to T
L 

ilnd ilt these limits q & p each a_o,~umes equal values. 

Then for all subsequent Lagrangian period, the state of affairs is just 

a repetltion of the first Lagrangian period. If [~O ,let us say 

that there exist two integers r < n such that 

f = ~ • 
T,hen the operation in (22 ) is equivalent to 

I
>t "
~ tlt- FeT, r.. , t)
 

)/-=0 

where Y., t .. ,;lTpJQ so that Y,,= y.,. ~7r/t and since-
r is an integer, the phases of q & p at the integration limits differ
 

only by 0 (mod. 21r)'
 

In the case that d is not expressible as a rational fraction,
 

integral (22) does not exist. Or, of more practical interest to us,
 

-9



MURA ~ 556 
Internal 

when we wane ;- to be expressed as ("=~+<:-
Cl 'Iv ' 

with a preassigned ~tn order "0 sc~dy cne problem in the neighborhood 

of t.he r:- 'hL - s1_bharmonic resorunce, we mest reformu!_ate the unperturbed 

prob~em ~nd trede ene efiect of • as another source of perturbation. 

III PRACTICAL CONSIDERATIONS 
.=~.~,~~~..~.. ~~~~~~~.~~=- 

To apply the res~lts just. developed, we shall formulate the 

problem in fuch a way t.hat the starting point of the problem is made 

as sj.mp~e a e poss~ble. The unperturbed problem is supposed to be 

a linear problem. 

(22) 

where K(t) is a general focussing function. The perter bing Lagrangian 

may very generally be put as 

(23) 

where F(t) is a forcing function (e.g. caused by field deviation 

from ideal. case) and the others are nonlinear contributions. Since 

the linear p=oblem has been solved, the relevant instantaneous wave 

length ~ (t) connect.ed to the focussing function K(t) through the 

equation 

k (tJ .1. T £ £ (where prime denote,s "d )= p3. dt4t ~~ 

and the characteristic phase shift per Lagrangian period.)'-" defined as 

(wheI'e TI- is the Lagrangian period) 

are rigorously known. Therefore we may carry out a slightly,~dified 

Courant-Snyder transformation: (6) 
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I 
J= IF ~ . 12.4) 

which Ieformulates the problem co ORe described by a new Lagrangian 

1\03"1:) =' fJ/~-tpJ~ 
and :'1~ sA J 

.1'1\ (JJ/"() =CJ"f) J F(-c) + (vr) J at). 

SO W.1 '>hout ~o,:s of generality, we always can take d 3imp~e 

harmonic oscillator pIobiem as the starting point of our problem. In 

the following, a standard linear problem Lagrangian is considered 1 

(25) 

the solution of which is represented by 

1- =% (A (wt"+- f) 
(26 ) 

r= -r S~'" (wt"+ r) 

The Jocobian matrix connecting qp to IJ as defined earlier satisfies 

deL 9'= .1.. 

Following SturIock, we il1'/estigate the situation in the neighbor~ 

th
hood of the n subharmonic resonance by introducing a variable ~ 

defined by 

where r is an integer <:: n 

j:and f ~< Ii --. 

All calculations wi~l stop at the first order of Eo- and wherever 

terms invoLd.ng if- appear· wi th terms wi t.hout.... of the same pertur~ 

bation order, the former will be dropped. 

Now we take the equatioD which has been studied by L. J. Laslett 

in some detail using Moser's method, as an example to test the present 
"·,i1= 
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method. The equation is 

(27)1-1~ + ( W) ~~ -r f ~ :d:" ~.::: 0 , 
corresponding to a Lagrangian 

J,J,i
I.V: - (28 )L~(~ ft) =t~'J--i If,~-t {~lt ~3, - N 

Ld 0and the 3 A~bharmon~c resonance is under consideration. We note here 

that the ::"agIangian has; a period T,= 1f and the o~cillation has a 

period therefore the number of 05ci:lations per 

Lagrangian period is Q::: t '" and the oscillation phase shift 

22:1T" ifper LcJgrangian period is 2fT Q '" = W= •-r 3 

Cons,eql~.ently. for the unperturbed problem, jf at time t = 0, ~." cos'l~ 

the!'. in the firs':: ~agrangian period q""CO(; (wt +'( ) and in the (n+l)th 

Lagrangian period where 'ttl. ::. 'f T' «i'I. Tr q 
For the present problem, at the end of the 3rd Lagrangian period 

p & q come back to assume their va:ues as at t = 0. so a closed curve 

in the pq phase space is associated with a time interval of three 

Lagrangian periods, viz. 37(" • 

To';tart t.ne calculation, we transform pq into y J. This trans

formation is canonical, so we have 

(29) 

The perturbing Lagrangian is taken as 

.1 24)2./ 'f 1 (30 )
.t>.U~ 1/ t) = - Z (E ... ; (,' Z - r -r...:.-l ~ 

where th~-term is immediately dropped, so that the first two terms 

in (9), wl.ch the aid of (8), are given by 

", 
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The resl::: of ~he evaluation is 

( 31 ) 

St~rrock'~ fi=st order pertJrbation theory stops right ~ere. To 

C3lc~late the second order co~trib~~ion. we note in this particular 

pc obIem the opera~i 01" (~I~ t ,4',' ~/) 

The detaL'-ed calculat.ion is shown in the Appendix. 

Hence, to second order by this method 

..4 j e:: - 3-rr- Ii J -+- (3:.l/~ !/~ .Er ~ 3 (- -3 7i J"~( 3:/' -. * 
uJ 48 ~o It i' I» 

which on dividing by ~3 rr become~ 

2. )3/1. 312. - EJ- ( w T 
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-

This H

2 
* compared with Laslett's calculation (H

2 
in equation (35), 

MURA - 452) differs in the coefficient of J2 ~ term by nearly a 
0(1'


fa ctor _ 106 (Laslett' s <><. is approximately 10 75). This
<l( 

2nddiscrepancy is imputed to the fact that the order calculation 

here has neglected the € contribution in 4L Furthermore. the notions 

of order in the two methods may not be the same. 

-14
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APPENDIX 

We fast resolve the trlgonome~rlc functions as in t.he following: 

&:v.:a.t CA3cwt'-l- r'J = i [- ~3Y' .... ~ (3 ..... t -l- .~.:t -/' 3 y" ) - 3 ~ :a.t.j. r)(W t 

T 3 "s;.;.. (wt .j.. .;l r+ y") ) 

~ ~t c,. (W~~ O~ (al4lt" i".2Y") ::.~ [c..~r-Cn G Wt T 2.t + 3Y ) 

.j-Cn{wt-~t' .1"1") - ~ (w t to Sot + t' ) 

t c,." (~<-.)1" ... ~ T -t 31'") - Gr.3Y


! J'" £..:,.. Jt en3 {Wt +'() .. 1 [- k~]d-
~. S JW+~ 

D ~Ca(lo'Jt"-1t'+V")-3c..r' _ J e",(wt"",.f<t'()-3C-P( ]
 

t w-. w~.
 

, ~ {i wt'~~t"+o3f J- £.:-3Y 
s.;,... ate- c",t+ ( ) s.- (aw t +'&"('). i [t c,., ~'I - ...:::::;..:.:.,----

.3W+~ 

~ ~ (wt-~~+y") -.t.,;.. y'_ ~ (wt-.at'-l-Y")_~ r ] . 

3 wt--rl-t-l-?t) t='S:"l>J t d:2.t+(For abbreviation, let
 

then in the lengthy expression we first.
.5.'(./:_..'.r ,J.:? 
observe that 

ct;t :::0 

-Lt 

In all of t.hem /1.)::: 2/3 is substitd.ed in the argument 0 

-15
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Then 

31t'" Co-> 3( Cc." Y- c.,., (1 JT"+() ) 31T"Gn~( (Un c1 TT TYJ-C=I) } 
t + w ... w-z. 

where 

On carrying out 2.- the 4 last terms will vanish and on putting31i. 
in for the surviving terms, we have 

-16~ 
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