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ABSTRACT

It has been found here that Sturrock's perturbation
invariants are approximate quantities obtained by
truncating the perturbation series expansion c¢f the
familiar Poincar€'s integral invariants. Application of
the second order invariant so constructed has been

examined in a simple example.
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ON STURROCK'S PERTURBATION ifHEORY

W. N, Wong
January 22, 1960

INTRODUCT 1ON

This report summarizes a study, at the suggestion of Dr. Cole, on

Sturrock®s Perturbation Iheory,(l) in anticipation of its possible

application to future work,
I+ is proved here that Sturrock'®s perturbation invariants, which

2),

he constructed by solving partial differential equations( can also

be obtalned from the conceptually more familiar integral invariants
of Poincar@.(s)
Some practical aspects regarding +the application of the theory
are discussed and the sample equation (4]
2
A A TR R
studied by Dr., Laslett in great detail in the neighborhood of
the third subharmonic resonanceyis used as a test. Actual calculation
up to the second order in perturbation and first order in the dis-
placement of the working point from the third subharmonic rescnance
(i.e., to first order in &,defined by 9= %%+ €} indicates that the
invariant obtained is in acceptable agreement with Laslett's result

by Moser®s method.
11 THEOREI'ICAL CONSIDERATIONS

We consider a one dimensional problem. The unperturbed problem,
supposed %0 have been rigorously _olved, is described by a Lagrangian

LCZ z’f) while the perturbed problem is represented by the

0.
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Lagrangian

*x * X, %) ¥ o ¥/ .
L (f*j ‘t) = L(i i t)+ "‘L(f Z t) (1)

wherein 4/ 1s regarded as small in the sense that If the solutions
of the two problems are related as
A B A (2)

“hen .Ai ie so small that its higher powers are negligible
for all time within our interest, Both of these Lagrangians are
periodic with the same period.

We fix the initlial time at t=0 and calculate the difference of
actions expended ziong actually possible trajectories of the two

problems after a time T . This is given by

= v v = * - /
av s vy at[;_ (7r7x ") -Ligq t)j -

if[a[(gjff‘)'fz ni (4231+"23i') L% (f?’t }
"=t
The symbol J:E}';'h is used to designate the variational opera-
tion with respect to variational parameters enumerated by o and
implicit in 9 8 i (e.g. the initial parameters in the solved
problem). The recognition that this variational operation and the

perturbation are independent of each other implies the equality
day = a(dv). (4)

The right hand side can be evaluated in the usual manner taking into
consideration that the Euler-Lagrangian equations pertaining to the
two problems must be satisfied. With the introduction of the following
definitions,
alegg't) e oLT(g%g1't) *
PE 2541 /, z b & fgff-df
)ff J af‘l‘i (5)

R
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we arvive at ~
J;AV(*T) =(A/>t£ﬁi+/aé:m;+4f:c£ai)/a (6)

We may conceive a closed curve C in the Q-P phase space as generated
by varying X 15) and note that the operation é- is contemporaneous,
Then by integrating {6) alung this C whirh at time t=0 corresponds

to C_, say _we have
¢ 7 “a d ag
§Lave fopdyep L@ @lppopr .
Cc c c

The question whether this integral exists for at least some choice of
C will be discussed later. Let P(i(gf)} ?de—)){-) be the abbrevi-
ation ot the whole integrand in {2) then
- ~ T, , ‘
f{{,_«v -)ﬁd,gf d+ F(f(d,f-),g(-gr),f)
y

T T ) !
foef o, i, 9 < fut [Fgengn]

e
where the limits «, and %, , by definition of C, satisfy
/ s
T = (%), ?'(d,)= 7 (o ) for fixed t ,
so the integrand of the last result is zero; consequently
§ doav = ko)

where K{(c) is a constant depending on our choice of C., Hence (7)

teils ue that
sF = f (plgr pisyrapdags do) "
C

is an integral invariant for any arbitarily chosen closed C in f-i

space, G being any arbitrary g:u.ge function of’ﬁ7;T o Although we are

.
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1 Ca.T v e - £ Rk PR EA s o R
supposed *o have Ul know.edge of tte funcfhlons ?‘ﬂf') end fﬁ

2 Lrable to evoluate {8) gue =& “he rresenze of rerturcatlicn

A1)
[}

we

7

months A‘l and AP whose funoblon -1l dependente uu»zar:d P hao yeh

ne

H
()

!—'o

I
)

“h

ound in come approximate manner, Lhe approxima*tion ls done

c

€2

O
e

cukdividing the Incremenis as

49 =fzf€ + 451 + 4?7 + o
ap = A'Pﬁ*d:r, + A5P+

A|y+éav + ABV* S

il

and 4y

The notion of order of a quantity is defined as the total incremental
power appearing 1n it. In the followin we shall not subdivide
k Js
Al pbut consider it as of inzrement power f

L

For example

2L (g* * r) JL(39't)
oA Ji' (10)

and the first two square brackets define 43P and Aﬂb respectively.

A similar expansion of a4¥Y in (3) iss

AV=[¢£—[AL+(A’ fal 2 )L )+ /dt(a —+47_. yal

o 1? (ll)
G AR N C A C RN A
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- 2 .
and the first two integrals are respechively A'V and A”v. By expanding

formsra (8) 1ikewise, we find that the nth" order invariant is given by

. 0/ - (12)
Wadte) = y M » ] Aﬁ=k
4" P ) if%ﬂtd f? &Ai where 4’? . ?,

With these prescriptions and the specification,without loss of

Rk
~Y

gernersllity, that at t=0C, L\?’ =0 & A(b =0, we may write down the first

two orders of equation {6):
fdf[AL+(A?;i+41 g)L-/bédff*A/’J? (13a)
[l s ey
+ (a 73?+d? L)L = PJdi-rdpJ-A?*f A/’Ii

The two invariants aSSOCLated with (i3) are just integrals of the left-

(13b)

hand sides along a closed curve C, However to save labor in actual
evaluation, we should first eiiminate any total differentials
existing under the integral signs since they eventually will contribute

nothing to the integral. For example, in (13a), by definition

;c)‘ L ! ﬂ_l[? d‘g é_ i
i ) -Ai F R }7 d-t—(di P)
and in ‘;3b) by virtue of (L0) and the Euler-Lagrangian equations

)DL

(A?""Z«-ri ;)ZL=A¢Z(A7,;€+ 1)1 a +A?(ACVCI i
_ i(d.zs‘ )““l (4/)_ )AL

A, g , s
G (494p)- (‘i%*df'ag'
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so that the first and second order invariants are
! T )
¥al = d + = tal ]
3 f;yid .ﬁL_fdA (14)
2z _ S (Tye L (a "'-!'A’))AL Jdt (A —+4 ’)A(_
£F = §&[Tar @y ey lel 2 fut 152
They are in complete accord with Sturrock“s results obtalned by
solving partial differential equations,

With the separation of the total differentials, we note that (13)

can now be more symmetrically put as:
{[farar = dpdy-a4dp
(1
d:[u [+ (A?‘?vmi Dal Jo 2(aqddp-apday )= A?,é -&5dp

It we stop the approximatior at 209 order, then equations (15)

5)

are the eqguations of motlion for the perturbation increments 4# },41

and formuias {l4) supply a recipe for the construction of perturbation
invariants to study the stability of the perturbed dynamical system
in the usual way,

For actual application, let us consider the solution
= 14 = (-1-6)
T ppllne)

where )’,J are initial parameters which for periodic problems may
be chosen to be the familiar angle and action variables. We shall
regard (16) as a transformation from fri space to 7C'J space and
shall choose the Jacobian of the transformation to have its determinant

equal to one:

’q

}, ( i iy (17)
1 % 2 _
E (;g and det.} ~/




MURA - 556
Internal

cso that we bhave for thls fransformation:

P) ;
aply-aydp=o7sr-sfs | aprpreqic =Thprelsy o U9

If we agree to deiine &r Lncrementa: Jacoblan matrix of the »th
. »
order dAyCZ 4 f
» —_ —
A) = r e
v
2w 2ap
T 31
then the differentiali form Aﬁ;{)ij-aiddr can be symboliically
expressed as Ny ~ ———

(aT -aY) ;"’ (44 (dr 61)

with [ aJ mAf ) representing a row matrix and the tilde, the transpose
operation on the matrix under it. We now delete the label « and
write equations (15} as

fffd-u = a7y -dr Sy (19a)
Jf ¢+*(11,$+4¢31/,)AL -2 (aF -al) j" (AJ)(JY 5t )
_-_AJ fr - 4(3'3- . (19b)

In (193}, if we identify ¥ with the variational parameter

X , we have

sk day

of ~ aL—'E'_ (20a)
and if J is identified with o |, we have

sat  ddr (20b)

27 T At

These are the equations of motion of the first order perturbation
increments. These A'J‘andd'r are used in (19b) for the second order
calculations or in (l4) to evaluate the second order invariant. In the

following, several aspects in connection with the operation:
~8-
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(21)

¢

T may be pointed out that the wariatlional parameter * employed

prev.ousiy can be identified with the angle wvariable Y while the closed

curve C here 15 mdost convenientiy faken

To investigate whether this choice of C
of the integral (21), let us assume the

T, and the period associated with the
T
Q= =
T

due to the variation in ¢

=5 the number of oscillations
and for each
the phase of i undergoes a shift equal

where N is an integer or zero and 5

§ is zero, then {21) certainly exists since
it from O o IL and at these limits
Then for

a repetirtlon of the first Lagrangian period.

that there exist two integers

A
S"—"-,'I'

the remainder less than 1.

to be J = const. in Y -J space.
will guerantee the existence
Lagrangian to have a period

angle variable be T, . Then

of 9

additional Lagrangian period,

N +d

per Lagrangilan perioed
to 2MQ. Let Q =
If

we just have to integrate

g & p each azsumes equal values,

2ll subseguent Lagrangian period, the state of affairs is just

If §xo0

let us say

r<n such that

Tnen the operation in [22) is equivalent to

n T
) [t F k)
¥ o °

Y, = Y+amvQ

r 1% an 1integer, the phases of g & p at

where so that

oniy by O {mod. 27 }.
&

integral {22) does not exist.

In the case that

Or,

-G

of more practical

Yn = Y+ AT and since

the integration limits differ

1s not expressible as a rational fraction;

interest to us,
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n it
when = we wanz ( to be expressed as J-=—1;+e- , &<« 37

with a preassigned n, in order wo study tne problem in the neighporhood
of the nD sibharmonic resonance, we must reformulate the unperturbed
problem and treat the efrfect of €& ag anpther source of perturbation.

11T PRACTICAL CONSIDERATIONS

To apply the results just developed, we shail formulate the
problem in such a way that the starting point of the problem is made
ag simp_e a= possible, The unperturbed probiem is supposed to be
a linear problem,

2 2
/ - Lgr_ 4L
where K{%}) is a general focussing function. The perturbing Lagrangian

may very generally be put as

al (2?%') = i F(t) +23CH’) + 24003')-# et (23)

where F{+)! is a forcing function (e.g. caused by field deviation
from ideal case) and the others are nonlinear contributions. Since
the linear problem has been solved, the relevant instantaneous wave
length G(*ﬂ connected to the focussing function K(t] through the
equation /2 "
K (t) = {;’;-r .;%’- - ’—?% {where prime denotes ed

and the characteristic phase shifi per Lagrangian period?}ﬁ,defined as

/U 3 fn 4t { where T_ 1is the Lagrangian period )

N

are rigorously known, Therefore we may carry ocut a slightly.mpdified

Courant-Snyder transtformation: (6)

~10=
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.5" L 2, :éi:
Vpm > T=[ /9/»- i24)
which reformilates the probliem to one described by a new Lagrangian

/\(}3)_:) = %}’l'f)"‘}z
and

aN(33'Tt) = c/:rs)%} Fr) + (y(a)!/ljjc(t).

So wivthout loss of generality, we always can take a simple
harmonic oscillator probliem as the starting point of our problem, 1In

the followirg, a standard liﬁéar problem Lagrangian is considereds
LGgg't) =g - Lwy (25)

the soplution of which is represented by

9= /3 (o (WT+T)

i

The Jocobian matrix connecting qp to YJ as defined earlier satisfies

det. 5?2 1.

Following Sturrock, we investigate the situation in the neighbor-

(26)

- AW Su:n (Luf*r)

th . . . n
hood of the n subharmonic resonance by introducing a variable &
defined by
Q= §=.+ (= where r is an integer <« n

and € << %%

All calculations wi:l stop at the first order of & and wherever
terms involving €& appear -wifh terms without € of the same pertur-
bation order, the former will be dropped.

Now we take the equation which has been studied by L. J. Laslett

in some detall using Moser':s method, as zan example to test the present
1]
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method. The equation is
4’ Lot ot 2,0 (27)
dt,_+(N)ci+2&m- § =0 v o (27)
correspondirg 10 & Lagrangian
*Cqg g7t) =F¢* L - $omat 3 we 1 (28}
£°(99 =29 -2%9 f e 7 N

and +he 2* 9 sibharmonic resonance is under consideration, We note here

that the Legrargian has a period T = m and the oscillation has a

. , 2 e e
period T = g? therefore the number of oscillations per
Lagrangian period isclg_%f; = J%_ and the oscilliation phase shift

per Lagranglan period is 2FQ = MW = _%._JI' if q):_g_ .

Consequently, for the unperturbed probiem, 1f at time t = O, 1~:c05¥3

ther in the firs: Lagrangian period ga~cos (wt +¥ ) and in the (n+l)th

Lagrangisn period ¢ ~ Cro(wltY, ) where Y, =7+ dnrmQ ;
For the present problem, at the end of the 3rd iagrangian period

p & g come back to aszume their values as at t = 0, so a closed curve

in the pq phase space is associated with a time interval of three

Lagrangian periods, viz. 3 -

To start the calculation, we transform pg into y’Ja This trans-

formation is canoniczl, so we have |
apdy-agdp = aTSY-ar 87, (29)
The perturbing Lagrangian is taken as
AL(??'t)z-zl (61+§G)Zl-zf&u;.2'f' is (30)
where thafaterm is immediately dropped, so that the first two terms

in {9), with the aid of (8), are given by

1D
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3
$ (57821570 = 2. [at al 0, )
nzt 4

3w 3k 3
= Zf,trf -'3-16- (%—,‘:”)a:(wﬁn)-g/. Sonat (2:;7)/1&0 (‘01'*-7,.,)}

]
wherein the argument w in the c¢osipe function 1s taken equal tow%m ,
The resw .t of the evaluation 1is L
-,zvrej+ (,. 3/“ 3/"_,%.&,...‘3)/ (31)

Sturrock's fizst order perturbetion theory stops right nere. To
calculate the second order co*‘*:_}:ibumiong we note in this porticular
probiem the operation (A' 147 ,1 equals AJ‘F + & yd(

Acenrding to (20

%J’ = }JA{L JJ/‘-( )3/-"'-&, zt'c,,,(mf‘-ﬂ)&m (awt p2r)

dely _ . aAL_ L 2z

Ly - u. } o (2 P2 oot GRO(wtrr),
We bha.e neg_ected the efiect of €& in these calculatlons of high order,
~herefore d Ay 2 r

a
Aé-if“( NZ-4TE )
T () 3 *
=~ I_E__ o(* where X T 286
Ao4 §

The detailed calculation is shown 1in the Appendix,

Hence, to second order by thils method

4F = -3meTe (2)P5 /‘3"'&3( LT 2y o

45

which on dividing by =31 becomes

fﬂg EE'PJ* E;T ( )

-3T 2
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This HQ* compared with Laslett's calculation (H2 in equation (35),

MURA - 452) differs in the coefficient of J2 - term by nearly a
oL’
factor —p— = 1.6 (Laslett's oX is approximately 1.79)s This
discrepancy 1s imputed to the fact that the ohd order calculation
here has neglected the € contribution in 4| . Furthermore, the notions

of order in the two methods may not be the same.

-14-
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APPENDIX
We first resoive the trigomometric functions as in the following:
3 — ' ' t- t _5.“;"((-01.- J.'t'-l'r)
S 3l L’ (wt+y) - - S 37 > S (3wt at+3r)

+ 3 S (wl+at+ r)]

Sic st Catwtr Y)si Gutea¥) = 7 [ Co3/-tn Gut+at+3r)

Flolwt-rt +r) = (e (Wt Fat+0)

Con (30T +2T+3Y0-L0n3y
fdf [ ;{'cn (Wwt+¥) = .!- [—t&..bf— 392

gc,,(wf‘-z't‘-i-rj -3Cnl¥ _ 3o lwteater- 3¢pr]
t w=2 W

€ (3whratedr o &.3Y
3w+

ffdt Sin 3t (o (WE+7) S (auT427) @ j'['tCnBX—

&;(w‘t-;t‘-r‘f) -Sun Y S (WlT-atar)_sau v ]

+ -
w-2 wta
- =wlaxal
For abbreviation, let ‘é z 3wt+aty 3, %:t: = +7
then in the lengthy expression (“I .14( we first

T

pbserve that

waa&:v%:jaf dt =o foré)¢+ andé
3 °

i T A R 1L

3ITL

In ail of them #=Z 2/3 is substituted in the argument.

~15-
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- 3.,1-
t (4 -A'.i Z 3T L)
Zfa(u sy g (BT
3T,
e Ll Loyt T SL3Y (Y - S (T ) mel3Ver- i)

Then

W+ -1

wl =L W+

3T 37 (o V=G (FTay) 37 Co3Y (G (3747 )= 1 ) }
+

o+ 2 - 2

- 3
where A= 57%: 7 [;‘f)

*

On carrying out ;;; the 4 last terms will vanish and on putting
L
in oa~§' for the surviving terms, we have

> 15
Loyl u)AL 2 3 3 j‘(;)bn" ‘
fdtz&sr“, )= ,” T () 3¢ (h43) = Y 2-56

—16-
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