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I. MOTIVATION 

In the design of circular accelerators it is often of dominating non-linear resonance being specifically 
very great importance to inject efficiently if satisfactory that for which Ur , the phase shift per sector of the 
performance is to be achieved, and this aspect of the radial betatron oscillations, approaches 2n/3 in this 
design certainly warrants explicit attention in consi­ case. 
deration of FFAG synchrotrons 1-3) intended for the 

r-- production of very high current beams 2,4,5). Many II. GENERAL DESCRIPTION OF METHOD 
of the considerations which apply to the injection
 
process also apply to certain extraction problems, since
 As is well known, the inherent non-linear character 
what is basically involved is an orderly transfer of of the equations for the betatron oscillations in 
phase space between regions exterior and interior to FFAG accelerators can impose very definite limits to 
the accelerator. the amplitudes of stable oscillations. In cases such 

In the present paper we direct our attention to a that the phase change of the radial betatron oscilla­
simplified problem which may be considered as the tions in one sector (ur ) is near 2n/3, the limitation is 
idealization of a possible method for injection into a primarily controlled by a quadratic term in the 
fixed-field synchrotron, employing a secularly-changing equations of motion and the stability limits are then 
(decreasing) perturbation of the magnetic field but typically indicated by the excursions of unstable equili­
without the intervention of acceleration mechanisms. brium orbits having a period equal to three sectors. 
It may be mentioned, however, that the specific pro­ The features of the radial betatron motion are conve­
blem considered here evidently constitutes a rather niently represented by phase-plots 1,2,7), employing 
realistic description, in reverse, of an attractive method as axes the quantities x == (r-ro)/ro and p == dx/d8 
of beam extraction from a (three-sector) spiral ridge with ro denoting a reference radius, on which the 
cyclotron in which the aforementioned secular change motion of a particular particle is depicted once per 
in effect is achieved by acceleration of the beam into period of the magnet structure to form closed" inva­
a region of modified magnetic field 6). With either riant phase curves" in the stable region. The unstable 
interpretation, a fundamental feature of the present equilibrium orbits are then represented by fixed 
work is, as we shall see, that the essential non-linear points, through which passes the separatrix which 
character of the equations of motion is exploited, the bounds the roughly trianguhr region of stability 
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Fig. 1 Phase plot, for s = 0 (mod n), of solutions to Eq. (5) 
with vr / N = 0.3 and B = 1.1 5. 

(cf Fig. I, in which conveniently scaled coordinates 
are used) (*). 

Tn the case which will be of interest here we shall 
impose a field perturbation, whose wavelength is 
equal to three periods of the magnet structure, suitably 
phased so as to " open up " tbe phase plot in the region 
of one of the unstable fixed points. The invariant 
curves which pass through the other two fixed points 
then no longer intersect at the first fixed point and a 
separate separatrix serves to define such stable area 
as may still remain when the perturbation is not too 
large (Fig. 2). A region of phase space is thus 
created within which the phase points move through 
substantially the entire region just outside the stable 
area. If the stable region is now caused to grow, as 
a result of decreasing the magnitude of the perturba­
tion, phase points may be expected to be transferred 
to the interior of the stable region with the same density 
as initially is present outside. 

It is attractive, then, to consider the application of 
a perturbation which initially is more than sufficiently 
large to cause the stable region to disappear completely 
and which is steadily decreased to create a region of 
stability which ultimately becomes that of the unper­
turbed accelerator. By an appropriately located 
injector, particles may now be caused to " flood" the 
boundary region which surrounds the stable area as 
it is created and one may expect thereby to fill this 

area with a phase density equal to that available from 
the injector. For efficient injection it would be desir­
able, of course, to inject only into that region of phase 
space from which particles will be captured. It would 
be convenient, moreover, if this region which must be 
covered by the injector were to behave in a sufficiently 
orderly way as to obviate the need to change the 
direction of the injected beam in accordance with an 
elaborate program synchronized with the changing 
strength of the magnetic-field perturbation. Tn some 
cases, however, the area of phase space which the 
injector can cover may be sufficiently great as not to 
be a fundamental limitation, although the phase 
density which it can provide should be used efficiently, 
and in such cases a programmed scan would either be 
unnecessary or, at worst, not critical. 

To examine the performance which could be 
achieved by this method in any particular case, a 
natural initial step is the determination of the phase 
plots associated with static perturbations represent­
ative of the time-dependent perturbation which it is 
intended to apply. Useful orientation in simple 
cases can be obtained at this point by analytic means 
although, of course, computer studies can be helpful. 

Fig. 2 Phase plot, for s ~ 0 (mod 3n), of solutions to Eq. (6) with 
vr/N = 0.3, B = 1.15, and it = 0.006. The curves through the 
upper and lower fixed points are seen to .. open up" in the 
neighborhood of the unstable fixed point situated at v = 
= - 0.44345, the stable region (shaded) has become smaller 
than for it = 0 (fig. 1), and the stable fixed point has shifted to 
v = 0.0838. The heavy arrow at A suggests a region from which 
injected particles would flow to flood the boundaries of the 
stable region. 

r"' (*)	 In this discussion we have tacitly assumed the gxistence of the so called" invariant phase curves", although actually over long 
intervals of time the motion may be found to show a considerable departure from such regular motion and, similarly, the 
boundary between ., stable" and" unstable" regions becomes imprecisely defined B). 



40 Session 2 A 

One may then proceed with computations in which 
the time-dependent perturbation is present, to deter­
mine the regions of phase space from which particles 
will be captured at various stages of the process. If 
these regions can be caused to fall at locations acces­
sible to an injector system, and if they neither shift 
about violently nor show more than trivial filamenta­
tion, then in principle the proposed method could be 
said to be practicable. Similarly, such an orderly 
transferral of phase space could be considered as 
indicating the potential utility of the inverse process 6) 

for beam extraction. 

In the following sections we describe the results 
obtained in some initial studies of this injection method, 
the work so far having been confined to analysis and 
computations (*) for equations chosen, for conve­
nience, to be of a rather simple form, but which it is 
believed should depict the essential features of more 
exact equations representative of particle motion in a 
spirally-ridged FFAG accelerator. Also, for reasons 
of simplicity, the field perturbation is taken to fall 
linearly to zero and to remain zero thereafter. 

III. THE DIFFERENTIAL EQUATIONS EMPLOYED 

In the theory of spirally-ridged FFAG accelerators, 
the radial betatron motion about the stable equili­
brium orbit may be conveniently represented by 9) 

(1) 

where u denotes the radial departure from the stable 
equilibrium orbit, in units of the radius, 

b =f/w, and	 (2a) 

b1(8) = -(f/w2
) sin N8 , (2b) 

in terms of the parameters f, w, and N characterizing 
the accelerator 2, 9). By introducing the scaled variables 

S = (N/2}O+1t/4 (3a) 

v = u/w	 (3b) 

Eq. (1) assumes the form 

d2~+4 [~+~ sin2S] v- t ( 4
/

2) (cos2s)v2 
= 0 . 

ds N wN wN 
(4) 

Although it is possible by a suitable transforma­
tion 10,11) to remove the alternating gradient feature 
of the linear term, we do not believe it necessary to 
make this transformation explicitly in the present 
work but may consider the essential features of interest 
here to be represented by use of the smooth approxi­
mation equivalent of this coefficient 1,11). Therefore, 
in what follows, we shall take the unperturbed radial 
motion as represented adequately by 

2
 
d v (2V)2 B
-2+ _r V--(cos2s)v 2 =o. (5)
ds N 2 

The type of perturbation which will be effective in 
implementing injection by the method previously 
described will be, in essence, a periodic variation of 
the field strength along the equilibrium orbit, with a 
period equal to the length of three magnet sectors. 
We thus include the perturbation in the differential 
equation by writing 

2 
d	 v (2V r )2 B 2 2s-+ - V--(cos2s)v -2cos- = 0 (6)
ds 2 N 2	 3' 

where 2 serves to measure the strength of the pertur­
bation. Illustrations of coupled motion may be 
obtained by considering the pair 9, 12) 

2 
d	 v (2Vr )2 B 2 2 2s-+ - V--(cos2s)(v - y )-2 cos - = 0 (7a)
ds 2 N 2	 3 

2
 
d y (2V)2

-2+ _z y+B(cos2s)vy = 0, (7b)
ds N 

which are derivable from a Hamiltonian 

Ii = p/ +p{ +2 (~YV2+2 (~yy2_ 

B B	 2s 
--(cos 2s)v3 +-(cos 2S)vy2_2v cos­ (8)
623 

(*)	 The computations were performed with the MURA IBM-704 computer, using programs prepared by J. N. Snyder, now at the 
University of lIIinois, and M. Storm, the present Head of the MURA Computer Section. We are indebted to Dr. Snyder, 
Mr. Storm, and others associated with the Computer Section, for their invaluable help and continual cooperation during all 
phases of the computer work. 
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with y denoting the axial coordinate, in units of the 
radius, and 

Pv == dv/ds (9a) 

Py == dy/ds. (9b) 

It will be observed that as vr / N --+ 1/3 the stable 
solutions to Eq. (5) will become increasingly limited 
by the 2n/3 resonance, in which the betatron oscilla­
tions experience a phase change of 2n/3 in progressing 
through one magnet sector. Similarly, in progressing 
through one period of the perturbed structure (i.e. 
through three sectors) the corresponding phase change 
would approach 2n and the stability limitation for 
the solution to Eq. (6) could be regarded in this sense 
as due to an integral resonance. In examining parti­
cular examples of solutions to Eqs. (7a, b) we shall, 
in what follows, specifically employ 

vr/N = 0.3 (lOa) 

vz/ N = 0.0992 (lOb) 

B = 1.15 (10c) 

and	 .Ie will assume values in the range 

0::;; A ::;; 0.023. (lOd) 

IV.	 THE SOLUTIONS TO THE RADIAL EQUATION 
FOR A STATIC PERTURBATION 

The solution to Eq. (5)-i.e. of solutions to Eq. (6) 
with .Ie = O-can be estimated by use of the analytic 
methods described by J. Moser 13) and the unstable 
equilibrium orbits alternatively can be obtained 
rather accurately by substitution of a trial solution 
and use of harmonic balance (Table I) 14). 

The direct application of the Moser procedure in 
the case .Ie ¥= 0 is more tedious, since the initial trans­
formation required to eliminate the forcing term 
-.Ie cos 2s/3 introduces time-dependent AG terms into 
the coefficient of v, but a similar, somewhat simplified, 
analytic method can be applied conveniently and 
moreover, the fixed points again can be estimated 
quite well by use of harmonic balance (Table II) 15). 

TABLE I 

Location of unstable fixed points for Eq. (5) at s = O. as obtained (i) by application of the 
Moser method. through (vIN-1/3)'; (ii) by harmonic balance with terms of argument 

2s13. 2s. and IOsI3; and (iii) computationally 

Point 

Calc. by 
Moser method 

Calc. with 
trial function 

-

Computational 
results 

V P" 

0.5238 0-

v Pv 

0.5132 0 -

v Pv 

0.5237 0I 
2 and 3 0.2256 ± 0.2667 0.2319 :!c 0.2783 0.2320 ± 0.2789 

TABLE II 

Location of stable and unstable fixed points for Eq. (6) at s = 0, with A. = 0,006 

Point 
Analytic calc. Calc. with 

trial function 
Computational 

results 

v P" 

- 0.08362 0 

v P" 

- 0.083803 0 

v P" 

- 0.083802 0Stable 
I - 0.44855 0 - 0.44336 0 - 0.44345 0 

2 and 3 0.2161 ± 0.2841 0.22451 ± 0.3023 0.22457 ± 0.3030 
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Fig. 3 Phase plot of solutions to Eq. (6), with the same values 
for the coefficients as were used in Fig. 2 but pertaining to solu­
tions at s = n/2 (mod 3n). 
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Fig.4 Coordinates of the stable and unstable fixed points 
situated on the coordinate axis, for solutions of Eq. (6) with 
Pr / N = 0.3, B = 1.15, s = 0 (mod 3n) VS A. These two fixed 
points are seen to approach one another as the strength of the 
perturbation is increased, becoming coincident when A assumes 
the critical value Ac = 0.01136. 

The detailed characteristics of phase plots which are 
obtained for any particular value of A depend, of 
course, on the particular value of s (mod 3n)-or 
of () (mod 6n/N)-to which they apply, but the 
topological features are independent of s (compare 
Figs. 2 and 3, which apply respectively to s = 0 and 

Fig. 5 Phase plot, for s = 0 (mod 3n), of solutions to Eq. (6) 
with Pr / N = 0.3 and B = 1.15 when A has the critical value 
Ac = 0.01136. The point designated F.P. represents the con­
fluent fixed point. 

to s = n/2 (mod 3n). Firstly, it is found that, as 
desired, the application of the perturbation (Ie > 0) 
does open up the phase curves which originally 
intersected at one of the unstable fixed points and, 
secondly, that this fixed point and the stable fixed 
point approach one another as the strength of the 
perturbation is increased (Fig. 4), to result in the 
complete disappearance of the stable region at a 
critical strength of the perturbation, A = 0.01136c 

(Fig. 5). 

It may be noted in passing that, for small Ie, the 
locations of these two fixed points which lie on the 
Pv = 0 aXIs when s = 0 (mod 3n) may be estimated 
by 15) 

(lla)
V 1(A) ~ - 4/9-(2v /N)2 

r 

A 
V 2(A) ~ V2 0 + 2 ' (llb) 

, 4/9-(2vr /N) 

where V2.0 denotes the coordinate value of the 
unstable fixed point when A = O. A parabolic fit. 
tangent to the lines (lla, b) at Ie = 0, may be written 

A = V' [V-V2,O]. [4/9-(2v,./N)2]. (12) 
V2.0 

for which the maximum value of A. 

(13a) 

is attained at 
(l3b) 
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With vr / N = 0.3 and - v2 , 0 = 0.5238, Eqs. (13a, b) 
suggest 

Icc = 0.01106 (14a) 

Vc = -0.2619, (l4b) 

which may be compared with the computational 
results 

Icc = 0.Q1136 (l4a') 

Vc = -0.2650. (14b') 

Finally, we note that suitably injected particles 
-e.g. with their initial phase points lying in the 
region A of Fig. 2- will move so that their phase 
points pass completely around the stable region which 
is formed as the perturbation is being removed. 
We may expect, therefore, that particles captured in 
this way will fill the stable region with a phase density 
equal to the maximum theoretically attainable. 

V.	 INJECTION WITH A SECULARLY-DECREASING 
PERTURBATION 

We imagine the injector situated physically at radii 
less than those of the stable region into which it is 
desired to inject-say with v:S; - 0.55 at s = 0 
(Fig. I)-to avoid any interference by the injector 
with the captured beam. With an assumed particular 
value for the rate of decrease of the perturbation, one 
then seeks to find, by digital computations, the regions 
of phase space within which particles may start, at 
various initial values of Ie, to become captured within 
the final stable region. The possible difficulties which 
conceivably could be discovered in such a search 
would be: 

(i) an appreciable fraction of the region of interest 
might be found not to pass through regions to the 
left of v = - 0.55; 

(ii) the location of the region with respect to mo­
mentum, Pv, might vary strongly with the initial 
value of Ie; 

(iii) the region in phase space might be found to be 
seriously filamented; and 

(iv) the coupling between radial and axial motion 
may be found to playa more dominant role than is 
usually the case with stable motion, with a consequent 
complexity of the four-dimentional phase space and 
of its projections onto the radial and axial sub-spaces. 

A.	 Characteristics when only radial oscillations are 

present. 

For an initial computational investigation it is 
convenient to confine one's attention to motion in 
the median plane (axial oscillations absent). One may 
then commence by finding the range of momenta, 
Pv, which, at v = - 0.55 and for various representative 
initial values of Ie, lead to capture into the stability 
region. From such values other suitable initial condi­
tions could be found by integration backwards in s, 
to obtain a transformed set of points situated at 
smaller radii, although with a three-sector accelerator 
(or with injectors located at every third sector around 
a larger accelerator) such a reverse transformation 
should only be carried through a three-sector interval 
in order to avoid the inclusion of points which would 
encounter physical interference by the injector struc­
ture. The region between these two lines in the radial 
phase plane-i.e. between the line at v = -0.55 and 
its transform through LIs = 3n-can then be explored 
to find the boundaries of the regions suitable for 
injection. 

Such a computational survey of the radial phase 
plane has been made for the case dle/ds = - 0.002/3n = 

= - 2.122 X 10- 4 
, which corresponds to a linear decrease 

of the perturbation at a rate such that the strength 
of the perturbation would decrease from its critical 
value, lec ' to zero in the time taken by the particle to 
traverse 17 sectors of the unperturbed machine. The 
results of this survey are summarized below. 

For the initial value v = -0.55, the range of 
"momenta ", Pv' within which particles are captured 
for various initial values of Ie, are as shown in Fig. 6. 
It is noted that the useful values of A extend consider­

Fig.6 Range of initial momenta, pVo' vs. the initial value, Ao 
of A,. f~~ captu reo of p~rticles into the stable area of Fig. 1 whe~ 
the initial coordinate IS Vo = -0.55. The results were obtained 
computationally for solutions of Eq. (6) with the perturbation 

decreased to zero at the rate	 dA = _ 0.002 . 
dv 3n 
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Fig.7 Range of initial conditions for capture of particles into 
the stable area of Fig. 1 when the initial strength of the perturba­

dA 0.002 
tion is Ao = 0.0165 and ds = --"'3n' The boundary ab trans­

forms, after three sectors (LIs = 3:71:), to v = - 0.55. 

ably beyond the critical value, 2c ' since 2 will decrease 
during the time the phase points of the particles 
progress through the region wherein the stable area 
is being established. As mentioned above, each such 
range of values was then projected backward in s to 
give a second locus of values, applicable three sectors 
earlier (and for a value of 2 greater by 0.002). The 
intermediate region of the phase plane, between 
v = -0.55 and its transform, was then surveyed to 
obtain results of which those portrayed in Fig. 7 
are typical. For the particular case studied, filamen­
tation of the "phase fluid" was almost entirely 
absent throughout the entire phase area which was 
mapped out in this way, although in a few cases the 
computations appeared to show definite evidence of 
an incipient filamentation developing along the lower 
edge of the region (Fig. 8). 

The areas of radial phase space which thus should 
be covered by the injector were obtained from curves 
of the type shown in Fig. 7. These areas, A(2), 
have been plotted, vs. the initial value of 2, in Fig. 9 
and lead to the integrated result

fA(2)d2 = 0.00046. (15) 

If the injector is capable of delivering n particles per 
unit area of radial phase space per unit time, the total 
number of particles which thus could be successfully 
injected by this means would be 

n= fnA(2)dt 

= IdA~dtl fA(2)d2 

= wnN IdA~dSI fA(2)d2 

n 6n 
= ---0.00046 

wN 0.002 

n 
=4.3-, (16)

wN 

where w == d()jdt denotes the angular velocity of the 
particles in the accelerator. This result may be 
compared with the maximum theoretically obtainable 

11.:­
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Fig.8 Detailed portion of diagram, similar to Fig. 7. for 
capture of particles with Ao = 0.0195. Particles with initial 
values represented by circles are captured and those depicted by 
the crossses are not. The boundary ab transforms after three 
sectors to v = - 0.55. The points denoted by c and d represent 
initial values which were found to lead to stable motion and thus 
provide evidence of incipient filamentation. 
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Fig.9 Area of phase space from which particles may be suc­
cessfully injected into the stable area of Fig. 1, as a function of 

dA 0.002
AD, for ds = -~. The ordinates were obtained from 

diagrams of the type illustrated in Fig. 7, in which one boundary 
r-- represented the locus of points which transform after three 

sectors to v = - 0.55. From the date shown here, the result 
SA (A) dA = 0.00046 was obtained. 

by direct injection, during a three-sector interval, into 
the stable area without violation of Liouville's theorem, 
namely 

n(6n)n= ~ N . [Area of stable phase plot] 

n(6n)= ~ N (0.223) 

n 
=4.2-. (17)

wN 

It is evident, from comparison of the results (16) and 
(17), that excellent efficiency of injection into radial 
phase space has been obtained from the region mapped 
in this example, although with injection through more 
than three sectors, or with more complicated diffe­
rential equations, a more pronounced filamentation 
of phase space might well develop to present practical 
difficulties. The transfer of radial phase space from 
outside the stable region to the interior appears to 
be quite orderly in the case which we examined and 
so encourages a continuation of the investigation of 

this injection (or extraction) method. The exact 
azimuth at which the injector might best be situated 
might be adjusted, in practice, to achieve a convenient 
match to the properties of the injector; it probably 
would be convenient to select a location where the 
usable values of Pv vary the least during the interval 
that the secularly-changing perturbation is being 
employed and for which the phase diagrams might 
be similar to that shown in Fig. 10. 

-0.1 

Fig. 10 Transformation of the shaded area depicted in Fig. 7 
from s = 0 to S = 3n/32, so that this region becomes more 
centrally located with respect to Pv = 0 (compare Figs. 2 and 3, 
for which the corresponding values of s differ by n/2). The 
segment a'b' of the boundary represents the transformation of 
the portion denoted as ab on Fig. 7. In either case the shaded 
region has an area esti mated as 0.042 vpv·units. 

B. The effect of axial motion. 

As in other accelerator investigations, the inclusion 
of the additional, axial degree-of-freedom in the 
present study introduces considerable complication 
and requires a rather extended amount of compu­
tation if a comprehensive picture is to be obtained. 
The importance of including the axial motion in such 
studies is clear, however, as has been emphasized by 
Terwilliger in connection with a computational 
investigation 16, 17) of a method which proved to 
afford a promising means of beam extraction from a 
spiral sector accelerator. Basically, this latter work 
was concerned with the use of a pulsed localized field 
bump which served to perturb the entire beam into a 
region of strong d.c. magnetic field, whence it would 
be bent down the spiral and out of the accelerator. 
Terwilliger's investigation 16) of combined radial and 
axial motion indicated considerable phase distortion 
(and, effectively, loss of pha~e density) in the unper­
turbed accelerator if one employed amplitudes com­
parable with stability limits. Specifically, with a 
beam for which the oscillation amplitudes were origin­
ally abJut one-half as great as the stability limits, so 
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that the coupling was not pronounced, and for which 
the amplitudes each were further damped by a factor 
of about 7 during the acceleration process, use of the 
pulsed field was then found to permit orderly extrac­

tion with high efficiency. The results which we are 
able to cite at the present time in regard to the inclu­
sion of axial motion in the problem reported here are 
certainly not sufficiently complete to afford a compre­
hensive picture-as we shall see, however, the preli­
minary results which have already been obtained do 
indicate that, as expected, the axial motion exerts a 
marked effect on the performance and may detract 
materially from the utility of the method if efficient 
injection into the entire stability region of the accelerator 
is required. 

A search for the y-stability limit for solutions to 
Eqs. (7a, b) in the absence of the perturbation indicated 
that this limit lay between 0.72 and 0.85 if the ampli­
tude of the radial motion was initially zero (i.e. 
corresponding to the origin of the radial phase plot 
shown in Fig. 1). For larger amplitudes the per­
missible initial axial amplitudes were somewhat 

r'- reduced, as shown in Table III. 

TABLE 1\1 

Computational estimates of limiting axial amplitudes, with various 
initial radial amplitudes, for solutions to Eqs. (7a, b) with A = 0 

Pvo =pYo = 0 

Yo 

Vo 
Stable UnstableI I 

0.850.720 
- 0.1 I 0.72 

L 
0.61 

- 0.25 0.52 0.61 
I 

To illustrate the influence of axial motion on the 
proposed injection method, we have made preliminary 
computations for the case in which the initial strength 
of the perturbations is 20 = 0.0165 (and d2jds = 

-0.002j3n) and for which Fig. 7 applies in the absence 
of axial motion. The y-stability limits for Eqs. 
(7a, b) were then sought for Vo = -0.55 and for 
Vo = -0.85, in each case assigning to the initial 
radial momentum, Pvo' a value near the center of the 
previously permissible range of values. The results 
of this search, summarized in Table IV, indicate 
that the axial stability limits for these representative 

cases were materially smaller than those shown in 
Table III. 

TABLE IV 
Computational estimates of limiting axial amplitudes, with 
representative initial conditions for the radial motion, for 
solutions to Eqs. (7a, b) with Ao = 0.0165 and dA/ds = -0.002/3n 

Pvrl = 0 

Vo pvo 
Yo 

Stable I Unstable 

G- 0.85 
- 0.13625 
- 0.22 

0.31 
0.19 

0.37 
0.21 

Guided by the results shown in Table IV, the range 
of permissible values of Pvo' leading to stable motion, 
was then examinaed at Vo = -0.55 and at Vo = -0.85 
for several initial axial amplitudes. The results of 
this survey are summarized in Table V. 

TABLE V 
Computational estimates of range of permissible radial momenta, 
with representative initial radial and axial coordinates, for 
solutions to Eqs. (7a, b) with Ao = 0.0165 and dA/ds = -0.OO2/3n 

pYo = 0 

Yo Vo 

pvo 

Unstable I I IUnstableStable Stable 

0 - 0.55 - 0.0775 - 0.0800 - 0.1925 - 0.1950 
0.19 - 0.09 - 0.10 - 0.19 - 0.20 
0.22 - 0.09 - 0.10 - 0.19 - 0.20 
0.26 - 0.10 - 0.11 - 0.19 - 0.20 
0.31 - 0.12 - 0.13 - 0.19 - 0.20 
0.37 - 0.14 - 0.15 - 0.20 - 0.21 
0.44 -­ 0.18 - 0.19 - 0.21 - 0.22 
0.52 - 0.22 - 0.23 - 0.24 - 0.25 

--­
0 - 0.85 - 0.190 - 0.195 -' 0.245 - 0.250 
0.19 - 0.21 - 0.22 - 0.25 - 0.26 
0.22 - 0.22 - 0.23 - 0.26 -­ 0.27 
0.26 - 0.23 - 0.24 - 0.27 - 0.28 
0.31 -­ 0.25 -­ 0.26 - 0.28 -­ 0.29 

It is clear that axial amplitudes much smaller than 
those which appear in Table III result in a material 
reduction of the useful range of PVD' The larger 
values of Yo listed in Table V are seen, moreover, to 
be associated with values of PVD differing from those 
suitable for )'0 = 0, and injection with values of Yo as 
large as those listed near the end of each section of 
Table V may be of rather limited utility. 
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VI. CONCLUSION 

The particular injection method discussed in this 
paper was found to permit efficient transfer of radial 
phase space between regions exterior and interior to 

the accelerator, although complications might be 

expected ro arise if the physical limitation imposed 

at the time the beam returns to the injector azimuth 

were deferred for longer than the three sectols con­

sidered here. The results of the method appear to 
show a close resemblance to those which previously 6) 

have indicated the potential utility of a similar pertur­

bation for the efficient extraction of a beam from a 
three-sector fixed-field accelerator. 

The preliminary studies of the influence of substan­

tial axial oscillation amplitudes on the particle behav­

ior indicated that this influence was pronounced 
and so might detract materially from the practicality 

of the method unless additional considerations, such 
as the limitation of axial amplitudes by the vacuum 

chamber or the damping of oscillation amplitudes 
prior to use of the method for ejection, served to 

limit the axial amplitudes to values considerably less 

than are dynamically stable in the absence of the 

perturbation. 

It is hoped that the method and results reported 

here will prove suggestive of other possible methods of 
utilizing a secularly-changing perturbation in conjunc­

tion with the non-linear dynamical properties of the 

orbits, including methods in which the perturbation 

may have a greater period than that employed here 
and so would interact with a machine resonance rather 

than with an inherent sector resonance. 
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