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I. INTRODUCTION 

FFAG accelerators afford the possibility of high 
energy beams of considerably higher intensity than 
are produced by existing accelerators. Because of 
the possibility of stacking, there is inherent much 
more flexibility in duty factor than in pulsed-field 
accelerators. The purpose of this paper is to review 
the MURA work as it affects muIti-GeV accelerators 
and to summarize the designs which are of interest. 

It is convenient to express the magnetic field in 
terms of quantities which are directly related to 
focusing. We write the median plane field in cylin
drical coordinates as 

Br = Be = 0

I BO(:oYJo (gn cos mP+fn sin mp)Bz = (1) 

I'" = Kln!.--NO. ro 

The field off the median plane can be developed 
from Eq. (1), with the several components expressed 
as power series in zl,. 

k is the relative gradient of the average field, or 
the "mean field index". K, which has often been 
called IIII' in MURA work, is related to the angle' at 
which field spirals cut radial lines by 

K = N tan' . (2) 

If the parameters k, K and the Fourier coefficients 
are constants (independent of radius), the field is 
scaling. A scaling field is the simplest means of 
insuring that Vx and vy , the numbers of radial and 

(*) On leave from the Stale University of Iowa, Iowa City, 10. 
(**J Supported by the United States Atomic Energy Commission. 

vertical betatron oscillations per revolution, are 
independent of radius, so that resonances are not 
crossed during acceleration. In a scaling accelerator, 
the orbits of particles of different energy are geo
metrically similar and are related by 

P1 
(3) 

Po 

where '1 and '0 are the radii of corresponding points 
on orbits of momentum P1 and Po, respectively. 

Many of the orbit properties are determined to 
good approximation by the quantities 

(4) 

F is called the "flutter", while G is anonymous. 
Note that the scale of the Fourier coefficients In and 
gn can be chosen arbitrarily by choice of the constant 
Bo. In cases where go # 0, it is customary to fix 
the scale by taking go = 1. For the Ohkawa two-way 
accelerator 1), the scale will always cancel. 

F is a measure of the size of the azimuthaIly
varying field relative to the average field. For spiral 
sector accelerators, usually F ""' 1 in units of go, 
while for radial sector accelerators, F < 6. (Note 
that the definitions of k and flutter differ from those 
given by Symon et al. 4) in that here these quantities 
are specified with reference to a circle, rather than the 
equilibrium orbit.) 
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II. REVIEW OF RESULTS 

1. Magnet design 

In the first two FFAG accelerators constructed 
by MURA, the radial gradient k was achieved by 
backwinding the forward energizing currents of the 
magnets across the pole-faces in order to terminate 
magnetomotive force surfaces appropriately. To 
make the flutter independent of radius, the vertical 
gap was constructed to be proportional to the 
radius. Since k > 0, the gap is larger at high field 
than at low, which increases the back wound current 
necessary to achieve a given k. 

In higher field accelerators, this " scaling" pole is 
highly wasteful of gap and current. The radial 
variation desired can also be achieved by shaping 
the pole-face, as, for example, in an AG synchrotron. 
But in the FFAG accelerator the shaping must be 
three-dimensional in order that the flutter be inde
pendent of radius. In the M LIRA two-way electron 
accelerator, the curvature is critical only in the radial 
direction. In larger accelerators, where the vertical gap 
is smaller relative to the magnet length, so that In and 
gn do not decrease as rapidly with n, pole-face shapes 
will be more critical. 

It does not appear to be feasible to attempt to 
achieve the radial gradient by pure pole-face shaping, 
because the large gap at low fields makes it exceedingly 
difficult to produce the desired flutter. It appears 
that some compromise between pole-face shaping and 
backwound current is the optimal way to build FFAG 
magnets. Pole-face shaping can be used to best 
advantage in saving winding and power at the high 
field end. For example, in the MURA two-way 
electron accelerator, the shaped pole-face at the high 
field end extends over only about 15 per cent of the 
radial aperture, but saves a factor of over 2 in back
wound current. 

In AG synchrotrons the large gradients limit the 
attainable guide field on the central orbit because 
they give rise to much larger fields at the chamber 
edges. There is an analogous effect in FFAG accel
erators. The poles must extend about one vertical 
gap length beyond the maximum energy orbit in 
order that the field be correct on that orbit. 

Analytical and digital calculations 2) show that 
short (of order 30 cm in a multi-GeV accelerator) 
radial straight sections can be introduced in spiral 

sector accelerators for RF cavities, backwinding 
return currents, etc., if some care is taken, without 
introducing too great changes in Vx and vy • Present 
spiral and radial sector designs are similar in that the 
magnets are built up from radial slabs, whose thick
ness (about 15 em) is chosen to be readily available 
from rolling-mills. The spiral field is achieved by 
spiraled pole-face grooves, forwardwound and back
wound to increase the flutter. There appears to be 
a considerable saving of steel by placing the return 
yokes at the outside, near the high field region. 

The volume of steel in the magnets can be estimated 
by calculating the flux carried by the poles and return 
yokes. The flux carried per unit azimuthal length 
from the return yoke to radius r is 

r 

1 f rB (r)k+2(/>(r) = - Bzrdr = ~ - , 
ro k+2 ro 

o 

where Bo and r 0 are as in Eq. (1). The pole thickness 
necessary to carry this flux with a density B 1 is 

(/>(r) 
t (r) =-~ 
p B 

1 

and the volume of the poles is 

rma.x 

Vp~4n Jrtpdr, 

o 

where rmax is the maximum good field radius. If the 
return yoke is to have a flux density B2 , its thickness is 

and the total volume of the return yokes IS 

Then the total magnet volume is 

(5) 

To this must be added extra steel for spirals (if any), 
for mechanical strength at the low field end and for 
extra return yoke to go around the forward winding. 
Even with these corrections, a rule of thumb result 
is that the magnet volume varies as rm

3
axlk 2 

• 
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2. Betatron oscillations 

Particle orbits have been investigated by a com
bination of analytic and digital computer methods. 
A detailed discussion of our computer methods is 
not pertinent here, but we shall remark that most 
of our computing time is spent in direct numerical 
integration of the equations of motion, which we 
customarily write in terms of the relative deviations 
x and y from a circle of radius '0 defined by 

, = '0(1 + x) . (6){ z = 'oY 

The equations of motion of betatron oscillations, 
including the oscillations of the equilibrium orbit, are 

,. (x'Z)' = (1+x)Z-~[(1+x)B%-y'BB] 
Bo (7) 

1(y'Z)' = ~[(l+X)Br-x'BB] ,
Bo 

where Z = [(1+X)2+ X,2+ y'2]-1/2, primes denote 
derivatives with respect to 0 and 

e'oBo 
(X = - -- (8) 

cp 

is a dimensionless parameter which determines '0' 

Computer time of order some hundreds of hours 
has been spent on each of the three MURA accel
erators and on each of several designs of high energy 
accelerators. We have also used algebraic trans
formations to investigate theoretical questions not 
specific to a particular accelerator 3). 

One of the most striking phenomena occurring in 
work with a digital computer is the rapidity with which 
masses of data are accumulated. The interpretation 
of these data would be most difficult without two aids. 
The first is the appearance of regularities, the most 
noteworthy of which in our case is the existence for 
short times of invariant curves in one-dimensional 
motion. The rigorous existence of such curves over 
long times is moot, but for the number of revolutions 
usually of interest in an accelerator, they accurately 
represent the motion. They enable one to distinguish 
between stable and unstable motion with a small 
sampling of initial conditions. 

The second aid is the guidance of analytic theory, 
which can give a physical understanding and predict 
phenomena of interest. In two-dimensional motion, 
we cannot plot invariant curves in four-dimensional 

phase space, but analytic theory leads us co study 
growth rates of the amplitude of one dimension as a 
function of the amplitude of the other, which is a 
systematic method of studying coupling effects. 

The periodic solution which represents the equili
brium orbit can be found to arbitrary accuracy by 
variation-iteration procedures and the agreement 
between analytic theory and computer results is excel
lent. We customarily discuss separately the linear 
and non-linear motion about the equilibrium orbit. 
In the linear motion we are guided by the smooth 
approximation 4). For one-way machines (with 
go = 1), the radial and vertical betatron oscillation 
" frequencies" (number of oscillations per revolution) 
are given by 

V; = k+ 1+k2a2 

(9)2 2 2{ vy=-k+kG +F2(KN2

2
+i1) ' 

where the terms in k alone are the constant gradient 
focusing of the average field, the k 2G2 terms are 
alternating gradient focusing, the tF2 term is the 
Thomas (constant edge) focusing and the term depend
ing on K is the spiral (alternating edge) focusing. 
The effects of Thomas and spiral focusing on the 
radial motion cancel because of the oscillations of the 
equilibrium orbit. In a spiral sector accelerator, the 
alternating gradient and Thomas focusing terms are 
small and are usually neglected. Then we must have 
k > - I for radial stability. 

For a two-way accelerator, 

(10) 

The radial focusing is all alternating gradient focusing, 
while the vertical focusing has only Thomas and 
spiral focusing. Neither radial nor vertical oscilla
tions are stable for k < O. It can also be shown that 
equilibrium orbits do not exist in the two-way accel
erator with k < O. The formor the smooth approxi
mation used here is accurate for v ;$ iN. It is well 
known that approximate formulas with wider ranges 
of validity have been developed by many workers. 

Non-linear equations of motion are inherent in 
FFAG accelerators. Fields of the scaling type 
(Eq. (I» clearly have non-llnear terms in x, which in 
turn give rise to such terms in the equations of motion. 
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It has been shown 51 in the smooth approximation 
limit that no field linear in x can keep both V and vyx 

constant over a reasonable range of energies. 

Many styles of analytic theory of non-linear effects 
in accelerators have been developed. They are all 
in agreement that non-linear forces give rise to stability 
limits - amplitudes beyond which the motion is 
rapidly unstable. For very small amplitudes, the 
frequencies of oscillation are determined by the linear 
forces. As the amplitude is increased, the frequencies 
of oscillation change because of the non-linear forces 
until a resonance relation of the form 

(11) 

is satisfied, with mx , my and m integers. For larger 
amplitudes, in many cases the motion is unstable. 

In practice, in FFAG accelerators, the radial motion 
is dominated by the Vx = tN resonance. The largest 
stable amplitude is roughly 

(12) 

where for radial sector accelerators B~t glk2
, while 

for spiral sector accelerators B~tglK2. Eq. (12) is 
accurate only for Vx close to tN. Digital computa
tion or a more accurate analytic treatment show 
that, farther from the resonance, A is considerably 
smaller above tN than below. 

Coupling resonances, where bath mx and my are 
different from zero, are more important in practice 
than vertical resonances. Such coupling resonances 
introduce thresholds. There is a radial amplitude 
below which the two-dimensional motion is stable, 
but abave which the vertical amplitude grows ex
ponentially from any initial value different from zero. 
The general effect is thus to decrease the radial stability 
limit. 

The properties of the linear motion are determined 
in an ideal accelerator by the phase changes per 
sector 2nvx / Nand 2nvy/N. The non-linear stability 
limits in an ideal accelerator are determined by 
resonances where m is a multiple of N - " essential" 
resonances. If we vary the parameters k, K and N 
in such a manner as to keep v,jNand vy/N constant 
(thus keeping the same distance from the essential 
resonances), then from Eq. (9) or (10) we must keep 
k/N 2 and K/ N 2 constant. Then the non-linear 
stability limits vary as N - 2. 

The same integral and half-integral resonances 
exist in FFAG accelerators as in AG synchrotrons. 
In addition, there are non-linear effects which are not 
yet well-explored. The deleterious effects of mis
alignments in the linear approximation vary in 

1 1general as k/vN
1

/ in radial and K/vN
1

/ in spiral 
sector accelerators. If we vary parameters again to 
keep v"'/ Nand vy/ N constant, the misalignments and 
field errors which can be tolerated vary as N-1/l. 

The more rapid variation of the non-linear stability 
limits usually halts the increase of parameters before 
misalignment and error effects. The general mag
nitude of tolerances in FFAG accelerators is similar 
to that in AG synchrotrons. 

3. Acceleration 

There is remarkably little interaction between the 
design of the RF accelerating system of an FFAG 
accelerator and that of the rest of the accelerator, 
which is just a reflection of the great flexibility in 
acceleration possible in an FFAG accelerator 6). 

Aside from the problem, trivial in principle, but some
times non-trivial in practice, of providing enough 
straight section room for the desired number of 
cavities, there are few problems which reflect at all 
on the rest of the design. The only important prob
lem is the transition energy given by 

(13) 

in a scaling accelerator, where Eo is the rest energy. 
For the values of k practical for betatron oscillations 
in a large proton accelerator, the transition energy 
is usually between about 7 and 12 GeV. Acceleration 
over the transition energy is not too difficult, but 
stacking close to it is not easy, because it becomes 
increasingly difficult to keep processes adiabatic as 
the transition energy is approached and the rate of 
change of frequency with energy approaches zero. 

4. Intensity considerations 

It is obviously desirable in most cases to accelerate 
as many particles per acceleration cycle as possible. 
At the same time, it is desirable to accelerate a beam 
with as small an energy spread as possible, since a 
larger energy spread requires larger RF voltage for 
phase stability and, in the case of stacking, reduces 
the current density attainable. In other words, the 
injector should fill betatron phase space as efficiently 
as possible before the RF is turned on. Present-day 

~--------
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injectors have emittances which are small compared 
with accelerator admittances, so that many turns must 
be injected to fill betatron phase space. Liouville's 
theorem puts an upper limit on the number of turns 
which can be injected, since the phase space density 
in the accelerator cannot be greater than that in the 
injector. (It can be worse because empty space can 
be mixed in.) 

All the systems to accomplish multi-turn injection 
which have been studied involve time-dependent field 
perturbations. In most such schemes, the equilib
rium orbit is moved adiabatically away from the 
inflector during injection. Laslett and Symon 7) have 
studied schemes which employ non-linear instabilities 
to move the beam radially. If the acceptance of the 
radial (vertical) betatron phase space is nx (ny ) times 
the emittance of the injector, a total of nx ny turns 
can theoretically be injected and contained in the 
accelerator. At the present time, it is certainly 
feasible to inject about tnx turns into the radial 
betatron phase space and to gain further a factor of 
about 3 turns in vertical phase space, so that, in 
effect, about n turns can be injected. x 

The current which can be injected into an accelerator 
is also limited by space charge, which lowers the 
frequencies of betatron oscillation, so that a resonance 
can be reached. The maximum circulating current 
which can be contained in a toroidal tube of major 
radius r and minor radius a is 

1= 10Vt1v GY(py)3 , (14) 

where 10 = mc3/e = 3.129 x 107 A for protons, 
v is the relevant betatron oscillation "frequency" 
(usually the smaller), Ltv is the allowable" frequency" 
change, P= vic and y = EIEo. A beam which is 
bunched has a space charge limit smaller than that of 
Eq. (14) because the local current is larger at the 
position of a bunch. A beam which is neutralized by 
charges of opposite sign which are not synchronous 
with the beam has a space charge limited circulating 
current 

1= Iovi1v (;ypy , (15) 

because the relativistic cancellation of electric and 
magnetic forces no longer takes place. The current 
given by Eq. (15) is smaller than that of Eq. (14) at rela
tivistic ener ies. It is therefore usually desirable to 

sweep out the trapped charges with clearing fields. 
Image charges and currents in the conducting surround
ings of the beam also affect the space charge limit, parti
cularly of a stacked beam. These image effects can 
be largely cancelled by suitable currents above and 
below the stacked beam. 

There are also space charge effects on the synchro
tron oscillations. For a stationary distribution B), 

the longitudinal space charge limit is usually greater 
than the transverse limit given by Eq. (14). 

LiovilIe's theorem also limits the current density 
which can be stacked. One can increase the current 
density by overlapping betatron oscillations up to the 
radial width of the stack. If we assume that this is 
done with groups which are space charge limited at 
injection and adiabatically damped, the maximum 
current density is 

akvLtv/
J'='!.lo 3 j, (16)

Pr 

where f describes the lowering of the space charge 
limit at injection due to bunching, P is the relative 
energy spread at injection, and a, y and r are evaluated 
at the stacking energy. In the derivation of Eq. (16), 
it has been assumed that the injection energy is non
relativistic, the stacking energy ultra-relativistic and 
k ~ 1. 

Terwilliger has shown 9) that perturbations can be 
introduced to overlap equilibrium orbits of different 
energies (thus making the accelerator locally non
scaling) to increase the current densities attainable. 

III. A TYPICAL RADIAL SECTOR DESIGN 

In the design of radial sector accelerators the 
overriding consideration is magnet weight. Raising 
k reduces magnet weight in three ways; magnet 
weight varies as k - 2, the scalloping contribution to the 
net guide field on the equilibrium orbit increases with 
k, so that the circumference factor and radius are 
reduced for a given peak field and the radial aperture 
necessary for a given momentum spread decreases 
rapidly as k increases, so that the steel need for 
mechanical strength at the low field end decreases. 

As k is increased, the average field and alternating 
gradient terms of v; in Eq. (9) approach each other 
in magnitude. The vertical focusing is due mostly 
to the Thomas term, as in a radial sector two-way 
accelerator. Thus a large radial sector accelerator 
can be a two-way accelerator at little extra cost. 
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Tn Table J we give parameters and dimensions of 
a 10 GeV two-way radial sector proton accelerator, 
together with those of a 10 GeV spiral sector proton 
accelerator which we discuss in the next section. 
Both accelerators use as an injector a 50 MeV linear 
accelerator which is assumed to give 5 rnA current 
for one-half millisecond with an emittance of 
10- 3 cm x rad per betatron oscillation mode and an 
energy spread of 50 keV. The repetition rate is cho
sen to be 10 cis, easily achievable by conventional RF 
systems. It may be noted that fewer volts per turn 
are required in a spiral than in a radial sector accel
erator for the same repetition rate because there volu
tion frequency is higher. 

TABLE I 

Possible parameters and dimensions of 10 GeV 
radial and spiral sector proton accelerators 

I Radial l Spiral I Unit 

Maximum orbit radius 126 50 m 
17.5 14.4Peak field kG 

Circumference factor 6.0 2.0 
Radial aperture 3.25 4.0 m 

N 62 30 
k 212 53 

84.3°0~ 
'V x 24.75 8.4 

4.3 7.2v, 
Radial stability limit em+ 16 ±5 
Vertical stability limit ± 3.5 em± 12 
Minimum vertical gap 15 15 em 
Magnet weight 20000 13300 tons 
Copper weight I 330 I 140 tons 
Magnet power 20 17 MW 
Peak RF power 4.3 2.3 MW 

These data enable performance figures to be estim
ated. We give in Table II n" and ny, the number 
of turns which can be accommodated in radial and 
vertical betatron oscillations phase spaces by Liou
ville's theorem (assuming the given injector), IsC' the 
space charge limited circulating current which can 
be injected, assuming Llv = t and the azimuthal 
bunching factor f = t, Pi' the number of particles per 
pulse and (J)av, the time average accelerated current, 
both assuming the space charge limited current at 
injection and J, the maximum attainable stacked 
current density with Terwilliger's equilibrium orbit 
superposition, which determines the interaction rate 
density of colliding beams. 

TABLE II 

Estimated performance data for 10 GeV 
radial and spiral sector accelerators 

I Radial I Spiral Unit 

nx 
I 400 40 

n, 0.25 15 
I.e (*) 70 0.25 A 
Pi
<I)av 
J 

1.2xl013 

19 
190 

5 X 1012 

8 
470 

itA 
A/em' 

(*)	 Both accelerators require 50 turns to be injected to reach 
the space charge limit. 

IV. A TYPICAL SPIRAL SECTOR DESIGN 

The spiral sector design is dominated by the influence 
of non-linear restoring forces, which force the adoption 
of small N, k and K. The flutter is unity (in units 
of go). If it were lowered, the circumference factor 
and the radius would decrease, but K would have to 
be increased to keep the same Vv and the stability 
limits would be smaller. 

It is important to realize that large stability limits 
are desirable at injection, but perhaps not at high 
energy, because adiabatic damping decreases the 
betatron oscillation amplitudes as the energy is 
increased, while circumference factor is important at 
high energy, but not at injection, because the fields 
at injection can be increased, while the fields at high 
energy are presumably already as high as is practical. 
A non-scaling spiral sector accelerator whose flutter 
decreases and whose K increases as functions of radius 
will have both virtues - large stability limits at injec
tion and small circumference factor at high energy. 
It must still be true that Vx and vy remain constant, so 
that resonances will not be crossed. Study of such 
non-scaling accelerators has begun at MURA and 
preliminary results encourage us to believe that Vx 
and vy can be kept constant. It certainly seems clear 
that the spiral sector design is open to improvement. 

The spiral sector accelerator cannot provide collid
ing beams by itself, as can the two-way accelerator. 
It appears that the best way to produce colliding 
beams is to transfer the accelerated beam from the 
FFAG accelerator to a pair of storage rings in which 
oppositely circulating beams collide. The concentric 
storage ring of O'Neill 10) is well suited for this 
purpose. 
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The combination of FFAG accelerators and storage ments from all sides and eases the problems of main
rings has some advantages. With an FFAG accel taining the ultra-high vacuum desirable for colliding 
erator one would stack an intense beam before beam experiments. 
transferring it to the storage ring. No RF accelera Designs of concentric storage rings have been given 
tion would be required in the storage ring. This by O'Neill 10

} and are similar in many respects to AG 
would reduce the radial aperture of the ring. Stacking synchrotron designs. 
in the storage ring, as is necessary with a pulsed field 
accelerator, requires extreme precision in the fre
quency of the RF at pickup in order that phase density Acknowledgments 
should not be lowered by mixing in empty phase 
space. The precision required has been estimated to This paper is an account of the work of the entire 
be about one part in 105 

, which might be done by MURA group and the author acknowledges with 
beam control of the radio frequency. In contrast, gratitude the contributions of MURA workers too 
in the FFAG accelerator, the control needed at the numerous to thank individually. In addition, it is a 
injector to preserve RF phase density is one part in pleasure to thank Dr. G. K. O'Neill for communica
103 

• The small aperture of the storage ring offers tion of his results before publication and for many 
easy access to the colliding beam region for experi- illuminating and enjoyable discussions. 
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