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I. INTRODUCTION 

The geometry of RF accelerating cavities in spiral These results stimulated us to explore the numer
sector accelerators has raised serious problems. If ology with as careful an analytic treatment as possible. 
the cavities are introduced along spirals, electric We envisage a structure with N spiral sectors and P 

fields perpendicular to the equilibrium orbits are radial straight sections per revolution. G, the greatest 
engendered and the resonance excitation of betatron common divisor of Nand P, is the number of periods 
oscillations by the accelerating voltage is greatly of the combined magnetic field per revolution. 
enhanced. On the other hand, radial straight sec Q = P/G is the number of radial straight sections 
tions for RF cavities destroy the scaling properties and R = N/G is the number of spirals per period 
of the magnetic guide and focusing field. The straight of the magnetic field. 

r- sections appear at different phases relative to the 
Our main result is the following: if we assume

field spirals at different energies and the numbers 
that the field with straight sections is generated

of betatron oscillations per revolution, V and vyx from the spiral field without straight sections by
for radial and vertical motion, respectively, will 

multiplying it by a function of period 2n/P in the 
vary periodically with particle energy so that reso

azimuthal angle 8 representing the straight sections 
nances may be crossed. 

and if we neglect all harmonics n of the original
The problem of calculating the changes of Vx spiral field such that n ;::: tQ, then the linear betatron 

and vy with energy has been treated for special oscillation "frequencies" Vx and vy are independent
cases by several authors. Elfe and Kerst 1) found, by 

of energy. This result is independent of the form 
matrix methods that the changes in Vx and vy decreased of the straight sections. 
markedly when the number of radial straight sec
tions per spiral sector was increased from 2 to 3. We believe that our assumption that the field 
Ohkawa 2) confirmed this result with a smooth with straight sections is generated by multiplication 
approximation estimate. The Harwell group found 3), of two periodic functions is accurate and physically 
with digital computation and approximate analytic reasonable. Such multiplication produces a periodic 
treatments, disastrous changes of Vx and vy with field whose harmonics have the form m N + nP, 
one radial straight section per spiral sector, but with m and n integers or zero, which is in accord 
were able to reduce these changes greatly by putting with intuition. Further, this multiplication gives a 
five straight sections in four sectors. Of course, field which "bulges" out into the straight sections 
in this case the number of periods of the field per farther at a maximum of the spiral field than at a 
revolution is reduced by a factor 4, so that new minimum, which is again in accord with intuition. 
stopbands are introduced, which must be avoided What is neglected is the effect of the finite size of 
to preserve stable motion. the forward and backward current windings around 

(*) On leave from the State University of Iowa, Iowa City, Iowa. 
(U) Supported by the United States Atomic Energy Commission. 
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each spiral, which must Jom m the radial straight 
sections. We know from experience with the MURA 
electron accelerators that these effects of winding 
size can be very much reduced by carrying the wind
ings in the straight sections rapidly away from the 
median plane. 

In Section II, below, we outline an analytic treatment 
of the equilibrium orbit motion and linear betatron 
oscillations for general fields; in Section III we 
develop the form of the field with straight sections; 
in Section IV we prove the result stated above and 
in Section V we give digital computer evidence relating 
to our result. 

II. ANALYTIC ORBIT THEORY (1If) 

We expand the median plane field, which has only 
a vertical component, in powers of the relative 
deviation ~ from a reference circle of radius '0 (~ is 
defined by , = '0 (1 + ~») and in Fourier series 
in (). That is, 

CD 

BZ = BQ 
" LJ " L. Zm,ne;• me in8. (2.1) 

m=O n 

All sums whose limits are not given are to be taken 
to extend from - 00 to 00, as, for example, the 
sum over n in Eq. (2.1). 

The field of a scaling FFAG accelerator 

1Bz = BoC1 +~)kn~o (gn cos n'P +fn sin n'P) 

1'P = K In (1+~)-N()	 (2.2) 

can be written in the notation of Eq. (2.1) by taking 

m-l 

Zm,nN = Pn n (kn- r) , (2.3) 
r==O 

where 

fln = -r(gn + ifn) , II> 0, 

I = go, n =0, 

t(gn.- ((n) , n < 0,I = 

kn = k-mK.	 (2.4) 

The linearized equations of motion about the 
equilibrium orbit, which we wish to solve for Vx 

and vy, are well known 4). They are 

d2 x 1- n 
-2+-2-X =0 
ds p 

(2.5) 

where x is the normal deviation from the equilibrium 
orbit in the median plane, z is the deviation from 
the equilibrium orbit normal to the median plane, 
s is the arc-length along the equilibrium orbit, 

cp 
p= -

eBz 

is the radius of curvature of the equilibrium orbit 
of a particle of kinetic momentum p, c is the velocity 
of light, e is the charge of a proton, and 

p' (JRz 
n= ---.

Bz ax 

Both p and n are to be evaluated on the equilib
rium orbit. We rewrite Eq. (2.5) in a dimensionless 
form by measuring all lengths in units of R o, the 
length of the equilibrium orbit divided by 2n. We 

define " 1] and ¢ by 

(2.6) 

and Eqs. (2.5) become 

(2.7) 

where 

(2.8) 

(*)	 The treatment we outline here is not original; it is perhaps most accurately described as an extension of the work of G. Parzen. 
Significant contributions to the methods outlined here have also been made by D. L. Judd, L. J. Laslett and T. Ohkawa. Their 
work is recorded in various (unpublished) MURA reports. 
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A is a dimensionless constant which for a given 
field and momentum is a measure of Ro, and 11o 
and 111 are to be evaluated on the equilibrium orbit. 
Therefore, we must find the equilibrium orbit in 
order to know 11o and 111 in terms of the given field 
coefficients 2 m, n' 

The equilibrium orbit is the solution of the median 
plane equation of motion about the reference circle, 

(2.9) 

which has the period of Bz • In Eq. (2.9), primes 
denote derivatives with respect to the azimuthal 
angle 8 and 

z = [(1+~)2+er!-

{r:x = -eroBo/cp . (2.10) 

r:x is a dimensionless constant which for a given 
field and momentum is a measure of ro- We expand 
Eq. (2.9) in powers of ~ by expanding the Lagrangian 
from which it is derivable (in order to preserve the 
Hamiltonian character of the motion). Correct 
through second order in ~ and t, Eq. (2.10) is 

)'1=1+~~"+1~'2_r:x"ein6{Z +(Z +Z )~+'> ~ 1... O,n l,n O,n 
n 

+ (Z2,n+ Z l,n)e} . (2.11) 

The solution we seek has the form 

(2.12) 
n 

We substitute Eq. (2.12) in Eq. (2.11) and equate 
terms of the same frequency, obtaining an infinite 
set of algebraic equations: 

-n2~n = Dno-r:xZo,n-r:xL (ZI,m+ZO,m)~n-m 
m 

-r:x L (Z2,m+Zl,m)~p~n-m-p 
lm,p 

-1-L m(n+m)';m';n-m , 
m 

n = 0, ± 1, ± 2, .... (2.13) 

Eqs. (2.13) can be solved for the ~n by an approxima
tion method, which assumes that the terms depending 
on the ~n on the right hand side are small compared 
to the terms independent of the ~n' This is equivalent 
to assuming that the change of field across the 
equilibrium orbit is small compared to the peak 
field on the equilibrium orbit. The p th approxima

tion, ~~P), is calculated by substituting ~~P - 1) on the 
right hand side of Eq. (2.13). There is a difficulty 
with ~o, whose size depends on the reference radius 
chosen. We circumvent this difficulty by choosing 
r:x such that ro is the average radius of the equilib
rium orbit. Then ~o = 0 and the n = 0 equation 
of (2.13) gives a value for r:x. 

Our assumption is then 

~~O) = 0 

and by substituting this on the right hand side of 
Eq. (2.13) 

(1) r:xZO,n 
~n = -2

n 

)'(2) = ~{Z +r:x" (Zl,m+Zo,m)Zo,n-m+
'>n 2 O,n 1... ( ) 2 n mo/=n n-m 

+-!r:x L m +n Zo,mZo,n-m}. (2.14)
mo/=O,n m(m-n) 

r:x satisfies Eq. (2.13) with n = 0 and ~n substituted 
from Eq. (2.14). Correct through terms quadratic 
in r:x, we then have 

(z + 3/ Z )Z - ]1-Z ,0r:x- L I,m 2 O,m 0, m r:x2 = O. (2.15)o [ 2 
mo/=0 m 

In practice ~~2) agrees with computer experiments 
to within a few per cent, while ';~l) differs from ~~2) 

by 10 - 20 %. The method of solution seems a 
posteriori to be justified. 

Parenthetically, we may remark that the term of 
Eq. (2.15) linear in r:x is due to the bending of the 
equilibrium orbit by the average field, while the 
term quadratic in r:x describes the additional bending 
due to the fact that the oscillations of the equilibrium 
orbit carry a particle into regions of different field. 

'70 and 111 can now be expressed in terms of the 
2 m,n' In calculating 111' we must take note of the 
fact that the ~ (radial) and' (normal to the equilibrium 
orbit) directions are not parallel. A little partial 
differentiation and geometrical exercise give 

(2.16) 
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with all quantities to be evaluated on the equilibrium 
orbit. 

We must take note also of the fact that YJo and 
YJ1 are given as functions of e. They can be converted 
to functions of ¢ simultaneously with their Fourier 
analysis. Thus 

YJi = L YJi,m eim 
¢ (2.17) 

m 

and 

From the definition of ¢, 

d¢ ro -1
-=-Z 
de Ro ' 

which we can expand in powers of ~ and t and 
integrate to give 

In a conventional spiral sector accelerator, the 
periodic terms are of order N- 3 compared to unity 
and the coefficient of the term linear in e differs 
from unity by terms of order N- 2

, both of which 
are negligible in cases of interest. Eq. (2.18) also 
gives Ro in terms of ro, since ¢ and ehave the common 
values 0 and 2n. Thus 

(2.19) 

Eqs. (2.18) and (2.19) can be expressed in terms 
of the Zm,n by substituting from Eq. (2.14). Approx
imate expressions for the YJi,n are found to be 

'" Zl,mZO.n-m 
YJo,n = ZO,n + oc L. -(--)2

m=j=n n-rn 

_. 2oc '" [(Z2,m +i Z1,m)ZO,n-m + 
YJ"II- Z 

l.n+ L. ( )2m=j=n n-rn 

rnZo mZO n-mJ+ " (2.20)
2(n - rn) 

These expressions can be recognized as being 
essentially expansions in powers of OC kFN- 2 or 

ocKFN- 2 
, where F = [ L f3nf3-n ]t is the flutter,

n=j= 0 

quantities of order 0.2 in either radial or spiral sector 
accelerators, so that the neglected terms are only 
a few per cent of the leading terms. 

More generally, we have given the first terms of 
an expansion of YJi,n in terms of the Zm,p' This 
expansion is a sum of products of the Zm,p' In each 
product, the sum of the second (e) subscripts of the 
Zm,p must be n (The e-indices in oc always sum to 
zero). 

To calculate the betatron oscillation frequencies, 
we shall use a method developed by Walkinshaw 5). 

For a Hill equation 

(2.21) 

the solution can be given as a series 

00 

ru(¢) ~ .r,t:(¢~ 

1p.+,(¢) ~ -;;; Jn(a) sm w(.-¢)p.(a)da 

t Po(¢) = A cos w¢+B sin w¢ . (2.22) 

The convergence of this series has been proved by 
Vogt-Nilsen 6) under the assumption that In(¢) I 
is bounded. We can expect it to give accurate results 
for stability zones higher than the first. Through 
the second order (rn = 2), this method gives for 
the phase change per revolution L = 2nv for the 
case w =1= 0 and 2w different from any integer n 
for which an a_n i= 0, that is, when L is not at the 
edge of a stopband: 

n sin 2nw " ana_ n cos 1: = cos 2nw - L. 2 2 • (2.23) 
W n=\cO n -(2w) 

III. FORM OF THE FIELD 

As the energy of a particle changes, the phase 
of the straight sections relative to the spirals changes. 
Rather than examining the dependence of Vx and vy 
on energy directly, we shall examine their dependence 
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on this relative phase 't of the straight sections and 
the spirals. We take a straight section function 
of the form 

(3.1) 
m 

with P periods per revolution. The field without 
straight sections, a conventional scaling field, has 
the form, from Eqs. (2.3) and (2.4), 

B;O) = BoL f3il + e)knei.N8 , (3.2) 

with N periods per revolution. We generate the 
field with straight sections by multiplying Eqs. (3.1) 
and (3.2). Then 

B = BoL A f3.(1+e)knei(mp+.N)8e -imPt,z m

m,'
 

which we can write as 

B =B "ei' 8{"Af3 (I+ F)k(n-mp)/N e -impt}
z °L. L. m (.-mP)/N ., , 

• m 

(3.3) 
so that 2 m,. has the form 

1 [am ] e- irPtZ =-"Af3 _(I+):)k(n-rP)/Nm,' ,L. r (.-rP)/N ~.m .. 
m. r 0(, ~=o 

,,-irPtf.( )= L. e J' m,n,r . (3.4) 

IV. PROOF OF THE THEOREM 

We assert that if 13. = ° for In I ~ t Q, then 
vx and vyare independent of 't and thus of energy. 
To prove this, we show first that if 13. = ° for 
In I ~ t Q, and fern, n, r) # 0, then fern, n, r') # ° 
only if r' = r. 

If fern, n, r) # 0, then f3(.-rP)/N # 0. Then, since 
13m # ° only for integral rn, n - rP must be an 
integral multiple of N, say n - rP = sN, with s 
a positive or negative integer or zero. Similarly, 
jf fern, n, r') # 0, then n - r'P = s' N. Then 

(r' -r)P = (s-s')N , 

or 

or 
(r' -r)Q = (s-s')R . (4.1) 

But G is by definition the greatest common divisor 
of P and N, so that Q and R are relatively prime 
numbers. Since they are, the diophantine equation 
(4.1) has a solution only if s - s' is an integral 

multiple of Q, say (s-s') = tQ, with t a positIve 
or negative integer or zero. But lsi < t Q and 

Is'l < t Q, since 13. = ° for Inl ~ t Q. Therefore 
Is-s'l < Q and t must be zero. Then s = s' 
and r = r'. 

Thus only one term of the sum (3.4) is different 
from zero. 2 m•• is different from zero only for 
n = tN+rP, with t and r positive or negative 
integers or zero. Then if 13. = ° for Inl ~ t Q, 

(4.2) 

cos Lx and cos Ly are given by Eq. (2.23) as sums of 
products over the 1]i,m' In each product the sum of 
the ¢-indices of the 17i,m must be zero. But 1]i.m is a 
sum of products of the 2 p,., with the a-indices of 
each product summin~ to rn. Then any product 
17i,m 17j.-m must be a sum of products of the 2 p ,n 

with the a-indices of each product summing to zero. 
The most general sum which can appear is 

L Zml,nlZm2' .2···· ZmT-l, nT-1ZmT,-nl-n2-"'-'(T_l)' 
mi, ml, "'J mT 

nJ, nz, ••.• n(T_ d (4.3) 

Since the 2 m,n are different from zero only for 
n = tN + rP, this sum can be written 

L Zm" r,P+IlN Zm2. r2P+12N'" 
mi, m2, •.• , mT 

rl,r2, •.•• r(T_d Z Z (44) 
11,12, .... I(T_ d ... m(T_ d' r(T_ dP+I(T- d N mT.-M' . 

where 

M = (r1+rrl- . . .+rT - 1 P)+(tl +t2 +· . .+tT - 1) N. 

If we now substitute the form (4.2), valid when 
f3n = °for Inl ~ tQ, it is clear that the form (4.4) 
is independent of 't and thus of energy. Since all 
terms of cos Lx and cos Ly have the form (4.4), Lx 
and Ly and therefore V and vy are independent ofx 

't and thus of energy. 

We can use this result to interpret more clearly 
the earlier work 1-3). In each case, the changes 
of vx and vywere reduced greatly when Q was increased, 
from 2 to 3 in the work of Elfe and Kerst and from 
I to 5 in the work of the Harwell group. Since the 
field harmonics f3n decrease with n at least as rapidly 
as n- 1 in most accelerators, the first few harmonics 
are responsible for the major part of the change of 
V and vy with energy. x 

In closing this section, we remark that in the 
fields we have discussed here, the phases of the 
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spirals continue uninterrupted across the straight 
sections. We have proved the same theorem in the 
case where the spiral phases do not change at all 
across the straight sections, with the approximation 
that the straight section function (Eq. (3.1)) is a rec
tangular wave 7). 

V. DIGITAL COMPUTER EVIDENCE 

Orbits were integrated numerically on the IBM-704 
through enough periods to find the equilibrium 
orbit and measure Vx and vy, using the "Spirit" 
program developed for the purpose. This program 
multiplies the scaling field (Eq. (2.2)) by the straight 
section function (Eq. (3.1)) to find the field and 
integrates the exact equations of two-dimensional 
motion by the Runge - Kutta method. 

The straight section function was chosen from 
approximate magnetostatic calculations. It is not 
claimed that our choice of See) is necessarily realistic 
in all cases; it suffices for our purposes that it can 
give rise to changes of Vx and vy with energy. The 
field drops to about 80 % of its full value in straight 

I""'	 sections and the total length of straight sections is 
about 10 % of the length of the spiral sector, thus 
giving a total straight section length per spiral sec
tor of about 1m in a 10GeV accelerator. Table I 
gives the Fourier coefficients of the straight section 
function. 

TABLE I 

Fourier coefficients of the straight section function 

).~I 'YJ 

1 

±1 

0 

-0.03105 

±2 -0.02274 

±3 -0.01499 
I 

-0.00872 

±5 

:1:4 

-0.00477 

±6 -0.00242 

±7 -0.00117 

±8 -0.00053 

The first scaling field we investigated had the 
parameters N = 30, k = 53, K = 280, go = 1, gl = 1, 
and, when they were inserted, g2 = g3 = 0.2. In 
Table II, Q is the number of radial straight sections 
per period of the structure, R is the number of spirals 
per period, G is the number of periods of the structure 

per revolution, nmax is the maximum harmonic 
number of the scaling field, <vx ) and <vy) are the 
mean values of Vx and vy (averaged over 't' or energy) 

Ltv Ltvy
and	 --x and -- are the maximum relative 

<vx ) <vy) 
deviations of Vx and vy in per cent. Each datum point 

Lt V 
x and Lt vy 

) requires about 2 hours of run
( <vx ) <vy) 
ning time on the computer. Points marked U were 
found to have unstable radial motion, due in all 
cases to the stopband near Lx = 1t introduced by 
lowering the periodicity from 30 to 15. When the 
radial motion is unstable, it is quite difficult (and 
not very interesting) to investigate vertical motion. 

From our experience we would judge that digital 
computation gives values of V and vy with errorsx 

of ab::>ut 1%. Values of -
Ltv 

less than a few per
<v) 

cent may be regarded as negligible. 

Because of the stopbands, which occurred at some 
points of interest, we have also investigated the 
same effects in an accelerator with k = 30, K = 210 
and all other parameters unchanged from above. 
Table III gives the same quantities as Table II for 
these points. 

TABLE II 
Digital computation results on effects of radial straight sections 

Ltvx (%) Ltv v %Q R G nmax <vx ) <vy ) <v;)( 0)<vx ) 

1 8.266 5.818 0 0
 
0 1 30 2 8.261 6.379 0 0
 

3 8.226 6.144 0 0 

1 8.060 5.788 24.50 38.021 1 30 
2 8.060 6.283 29.89 33.20 

I 

1 8.204 5.832 12.24 4.042 1 30 
2 8.231 6.399 15.69 13.14 

1 8.220 5.821 3.19 0.83 
3 1 30 2 8.256 6.383 7.90 1.64 

3 8.192 6.144 9.87 13.38 

1 U
 
3 2 15 2 U
 

3 U
 

1 8.223 5.820 0.58 0.134 1 30 2 8.258 6.380 2.66 0.33 

1 8.044 5.830 1.86 0.26 
5	 2 15 2 U
 

3 U
 

1 8.069 5.617 0.43 4.455 3 10 2 8.027 6.294 0.94 4.45 
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TABLE III the theorem would predict. This effect is presumably 

Digital computation results on effects of radial straight sections due to some detailed cancellation of terms of cos Ey , 

Q R G nmax (vx ) (vy ) Llvx %)
(vx )( 0 

Llvy (%) 
(vy) 

0 
1 
2 
3 

1 
1 
1 
2 

30 
30 
30 
15 

1 
1 
1 
1 

5.891 
5.703 
5.886 
5.916 

4.391 
4.338 
4.399 
4.397 

0 
27.02 
10.40 
0.92 

0 
42.46 

2.86 
1.06 

but we have not yet gained an understanding of it. 
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