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ABSTRACT 

It is shown that the solution of magnetostatic problems in the presence 

of distributed current sources may be expresled in terms of a scalar-type 

po.tential and scalar-type quantities representin, the current density. Applica­

tion is made to the solution of magnetostatic problems connected with scalinl­

type magnetic fields employed in FFAG guide fields . 
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I. INTRODUCTION 

In the design of FFAG magnetic guide fields, it has been customary 

to employ fields which scale, i. e., fields in which the equilibrium orbits 

for various average radii appear as magnified and rotated ima.es of one 

another. A method is introduced which allows the determination of mag­

netic fields entirely in terms of scalar-type quantitie.. An idealized con­

figuration of current distributions and infinite permeability iron is treated 

which gives rise to a scaling magnetic field, following which application is 

made to a spiral sector FFAG magnet. The ,eneral treatment follow. from 

a discussion ,iven for two-dimensional magnetic fields by Laslett. 1 The 

notion of an operator representing the coordinate scaling transformation i. 

used following which scaling magnetic fields are considered to be eilenvectors 

of the scaling operator. 

II. SCALAR FUNCTIONS IN MAGNETOSTATICS 

In order to produce a scaling type of magnetic field with distributed 

currents in the presence of iron, it is necessary to consider current fiow­

in, in essentially two different types of regions. The feeder current lines 

are considered to be located in slots that are bounded by scaling surfaces. 

In this region the permeability may be taken as unity. The feeder lines de­

liver current to and return current from the potential grading slots. Al­

though, in practice, these slots are non-scaling, a limiting scaling situation 

is envisa,ed in which the slots are increased in number and reduced in 

width until a continuous current carrying medium i. produced. The perme-
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ability of this medium may be represented by a tensor which has the property 

of allowing a finite magnetic field transverse to the fine-grained slots, re­

ducing to zero all other components. 

The problem first considered is the determination of a magnetic field 

in the scaling slots where f4 = 1. This problem i8 specified by 

-.a. -a. ~ ~ Tt 
V(H:: J+fTJ , V-8=0 , .o=n. (1) 

These equations may be treated without the use of a vector potential if one-considers an operator L defined as 

~ -1.. = u.. 1'7 -' (Z) 

~ 

where U. in general is taken to be the gradie~t of 80me scalar function. 

For example, for problems in spherical coordinate8 -U is taken to be the 

radius vector r ,Z For the problems to be considered, it is first conven-· - -..ient to consider U = k , the unit vector along the z-axi8 of a cylindrical 

coordinate system. In a later section it proves convenient to let it =Tr ' 

the radial unit vector in cylindrical coordinates. In particular the properties 

of 1 allow solenoidal vectors to be written as, for example, 

(3) 

A similar decomposition of the vector potential which would normally be 

introduced to account for the solenoidal nature of -B shows after using 

Eqs. (l) and (3) that 

(4) 
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where 

:
\7U=-~1fcr" (5) 

...... 
The operator '\7xJ... may be expanded to give for Eq. (4) 

_ - _ ~V 

H ~ If 11 1.. 'r - Sf"'" k a- - '7 az ' (6) 

..a. ­if, for the vector lL lone cho'oses k . Outside of the sources a- and I 

the magnetic field is seen to be the negative gradient of a scalar function, 

V, where 

all 
V= i3z • 

(7) 

III. SCALING TRANSFORMATION 

A consideration of the dynamics of a charged particle moving in a 

magnetic field shows that much simplification of the orbit properties is 

obtained if the magnetic field is an eigenvector of the scaling operator. 

This operator may be considered loosely as a combined magnification and 

rotation operator. Specifically, for cylindrical coordinates, the scaling 

operation replaces the coordinates (r, 9, z) by (0( r, e+¢~d..J 0( Z ). 

Hence, although the magnification is arbitrary, the rotation is related to 

the magnification in a definite manner. Powell3 and Laslett4 have shown 

that the eignefunctions of the scaling operator may be put in the form 

(8)
 

where 
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(9) 

and p is any real constant. 

An eigenvector may be defined by a suitable extension of the notion 

of an eigenfunction of the scaling operator. Fer example, in the case of the 

magnetic field, the eigenvector form would be 

(10) 
~ 

where h(~,~)may be considered as the scaled magnetic field. In this paper 

.- .­
the connection between Hand J is considered such that H is an eigenvector 

of the scaling operator. To this end, a mixed coordinate system is employed. 

The unit vector s are those of a cylindrical coordinate system, whereas the 

components, which would normally be expressed in terms of r, 9, Z are 

considered as functions of the scaling coordinates eJ _ , 'l . Thus: 

r =f. ~ J B=~1Au ~ -lJ ~ J Z r; fit .J (11)11: 

~ - -'-[..L + -'-.L- - ..!L.L. ]
~ r - f o 3 ~ 1V t ~ ~ ~ d ~ J 

(12) 

dd- = -Naf7J9 
(13) 

d I ~ .­-aZ rof (J~ (14) 

-Jo -I d- ;)1. - -- kx'l = l,~ lrr~ J 

or 

5 
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(15) 

or 

Finally. it is useful to define a unit vector along the spiral curves 

defined by the intersection of the spiral cylinder. ~ • constant. and the 

cone. 17. =constant. 1 This is accomplished by first considering the differ­

ential displacement vector a:-. 

(17) 

Equation (11) may be used to express Eq. (17) as 

(18) 

IFor d.~ =~ ll. =0 the unit vector under consideration is seen to be 

(19)• 

6
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IV. SCALING MAGNETOSTATIC PROBLEM 

As was stated previously, for the problem under consideration, it is 

necessary to represent all quantities in cylindrical coordinates using the 

variables f, ~ ~ '1 . The current density as given in Eq. (3) requires the 
..... 

use of 1. 
~ 

as given in Eq. (15). The operator 'VI /( J.. may be obtained from 

or 

(20) 

Thus: 

(21 ) 

In order to express the current density in a scaling manner, it is sufficient 

to put c:r and 7" in the form of Eq. (8). Thus, choose 

(22) 

and 

(23) 
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The magnetic field described in Eq. (6) may be expressed in a manner 

similar to that of the current density: 

(24) 

To put this in a scaling form it is only necessary to use 

(25) 

For reasons of mathematical simplicity, and in order to obtain prac­

tical methods of achieving the current distribution, the problem is special­

ized through the use of three conditions. The first restriction insures that 

the magnitude of the z-component of current density is just sufficient to 

...... 
allow the current to flow locally in planes defined by the unit vectors nand -~,. This condition is specified by requiring that 

(26) 

-.. 
If Eq. (19) is used for n , Eq. (26) becomes 

(27) 

The second condition actually is not restrictive and is introduced to permit 

a unique determination of the magnetostatic potential in view of the fact that 

8
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only one scalar function V is needed whereas two source densities, 0""' and 

'I, are to be specified. From Eq. (6) it is to be noted that the condition, 

~ - 5that V· B or \7. H shall equal zero. can be insured by choosing 

7Y=O J (28) 

if the source density 0- does not contain z. In terms of the variables 

( ~, ~ ,>2. ), this condition may be stated by requiring that Eq. (22) be 

restricted to 

(29) 

If Eq. (29) for 0- and Eq. (23) for r are substituted into Eq. (27) 

us·..ng Eq. (21) to obtain the components of the current density. a relation 

for ~ (t)t) results whieh is homogeneous in n to the first degree. For 

simplicity then. a third condition is imposed which is consistent with prac­

tiCAl .,-iring schemes. Let 

(30) 

Equatit>n (27) then connects the allowed forms for f(~) and Cj(~) according 

to 

(31) 

Under the restrictions imposed, the current density in Eq. (21) be­

9
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J: ~<-I i (r.+..:"r.+fk)[fff'(~)-kg(,) -~ g'm] 

+ )9 [ kW)+Mi;. +»~) a'm + !N ~ mJ } . 
(3Z) 

In a similar manner Eq. (Z4), for the magnetic field. becomes 

(33) 

The total current flowing in the feeder slot is 

(34) 

or 

I = -ff2-

~K+'))L N (\)-kg(,)-t~I(\)J~' ~~ · 
(35) 

If Eq. (31) is used to eliminate f (• ~), Eq. (35) becomes 

I =:t\1<+') ~ t/~n) +~ g'('~) +(~. +JV)'3 'h)] c/, ~ c/, ~ J (36) 

~. relation which shows that a degree of arbitrariness still remains in the 

dist:.·ibution of current in the feeder slots. 

10
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V. POTENTIAL GRADING SLOTS 

As mentioned in Section II, the windings, which are used to grade the 

potential,. are to be considered as if they were continuously distributed 

through a fine-grained slot region in order to use a scaling treatment through­

out In the limit these fine-grained potential grading slots are represented 

by a permeable anisotropic medium where the relation between Hand $ 

is given by 

-V.E • (37) 

For simplicity, the potential grading slots are considered to be in the 

:.zimuthal direction. In this case 

::* ,--­
I=filrlr) 

a dyadic which has the effect of reducing to zero all components of Hexcept 

H.. It is to be noted that, for a given B , H may be determined but that,-for a given H , the magnetic induction is not unique. 

-
The magnetic field, H , may be found by considering the single 

7]xH= If7rT I 
(38) 

where Eq. (37) shows that only Hr is needed. Thus 

~ .­
'\;Jx 2r H = *rr,J (39)r • 

-::f:'- ~ 
In general, as in Eq. (3), v ~ La- -to V' X..l 'i . However, since the con­

struction of the operator J..-is somewhat flexible, it proves convenient in 

this instance to choose 

11 
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(40) 

Since V' x 
-""
2\"'= 0 Eq. (39) may be written as 

..... ­fH =-£+.1T"J (41)J... r • ...
 
TR.king the dot product of Eq. (41) with J.. , it is seen that 

(42) 

p.nd that the arbitrariness in the choice of 'T and 7" is best resolved by 

.1. 
setting r= 0 . Since the operator i. operates only on the transverse 

variables. the solution of Eq. (42) is simply expressed by 

(43) ... 
The current density J is given by 

(44) 

For the azimuthal slots contemplated. it is desired to have the current flcw­

ing azimuthally; hence, the form for a- must be independent of 8 and linear 

in z to match onto the form in the feeder slot region. If I'l at ~, is the surface 

bounding the depth of the azimuthal slot region. a choice of f{r). - .l.(kT')e"'io
r. 

and 

(45) 

gives a scaling current density. Ir. furthermore, the magnetic field, H\",. 

is set equal to zero for ~:: t'/, ; the depth of the azimuthal slots, 

12 
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(46) 

L K ( _ \H = Jf rr ro no ~ 7l. ~ II • 
r (47) 

Equations (46) and (47) are both independent of f . If His expressed
o 

in the general form of Eq. (6), it is seen that the magnetostatic potential 

in this region may be taken as zero, the field being given entirely by the 

supplemental terms in 0- and ..,.. . 

The current flowing per unit increment in f' through the azimuthal 

slots is given by considering 

(48) 

or 

d r 1. K( _ )
d \ = r. h. ~ ~, ~. , 

(49) 

where the surface n::: '!I. 0 is considered to be the beginning of the azimuthal 

slot region. 

VI. BOUNDARY CONDITIONS 

The remaining problem is to connect the magnetic fields determined 

in the previous two regions with one another and with the field in the free-

space region between the pole faces. In the scaling problem the boundaries 

of interest are: (1) those for which ~ and 'i; are constant; and (2) those 

for which \ and 'I. are constant. For case (1) the tangential component of 

13 
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H surrounding the feeder slot region is from Eq. (33) 

[~='O~5t..J (50)
 
...... 

The tangential component of H for case (2) is from Eq. (33) 

(51 ) 

}. ~-. 

For the ~ =constant boundary, \'\. H is also a tangential component, which, 

from Eqs. (19) and (33), is 

-n."H = t.-"L "r"" f- '1I"r.l!f(~)+ >lfV; nr~ ~(tHil +ll)~'(t)l) 
F+(~~J~~~ 1 · Jl L J5 (52) 

L~ ~ (~,. ~ OJ.L 
In the azimuthal slot region, the relevant components of H for match­

ing purposes are 

- -~ o2, · H - (53) 

o (54)
 

~ -- Hr­
(55)

n· H = I' +(':'Ht+lJ~' " 
where H is given by Eq. (47).r 

Finally, in the free-space region, the magnetic field is obtained as 

the negative gradient of the magnetostatic potential. In this region let the 

magr..etostatic potential V be represented by 

(56) 

in terms of which the relevant field components are 

14 
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~.... .N l< dD. 
(9"H= ~ ~ o~ -' (57) 

-... _ ~I{ ~.n 
K· 
~ 

H ­ Y'o d '1.. ) (58) 

and 

(59) 

The condition that the tangential components of the magnetic field be 

continuous across boundaries gives the following results. 

'Po L E" SEC T ION FOR ~ = CON S T. 

,~ ONE SECTOR 

......\. .... 
At the boundary, ~ = ~ I ' since k· H= 0, Eq (51) gives 

.1.i. 1'" '+1Tr"f(~)=o 
d 'l 0 ~ I • (60) 

~ --. 
From Eq. (52) .. since 1\" H::: 0 , 

15 
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(61) 

Differe!1tiate Eq. (61) and compare with Eq (60) to get 

(62) 

S'_lbp;ltituting this into Eq (61) gives for the boundary r 

At the boundary, ~ ~ ~ e' since k' H.: G. Eqs. (51) and (54) give 

(63) 

J Jj
~ 

+ '+ If' r.t t ( ~ ) ': 0 
0). (64) 

Prom Eq. (55). (52), and (47) 

Differentiation of Eq. (65) and comparison with Eq (64) lives 

(66) 

Substitutin, this into Eq. (65) gives for the boundary iJ 

- (67) 

.... 
At the boundary, II =' '1. ' ~o <~< ~" the component Is- H must be

0 

continuous. Equations (50) and (57) give 

dD... = d P + Jf7froJ..'1/..[kq().) +..L. O'().)]
d ~ ~ ~ .N .. ~ 7JI ~ t • (68) 

At the boundary, >z = ", 't<. ~ <. ~" the potential in the iron is 

constant. Hence, the boundary condition is 

16 
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(69)- ... 
the component 1.· H must 

be continuous. Equations (53) and (57) give 

dn. 
---- 0 
~~ - .. (70) 

In addition .. n~ H must be continuous; hence. Eqs. (55) and (59) give 

or 

(71) 

(72) 

Equfitions (72) and (70) are seen to be compatible. 

The boundary conditions for the remaining feeder current slot for 

which ~ <. 0 may be investigated in a manner similar to that for the, 

~ >0 J slot. It is sufficient, however. to note that the malPletic fields re­

flect the solenoidal flow of current down one spiral slot, across the azimuth­

al slots, and up the other spiral feeder slot. Although, within the scaling 

requirement, it is possible to distribute the return current in a manner 

different from that of the feed current, the most natural choice for the re­

turn current is to reverse the sign of the factor multiplying the n vector 

and keep the same sign for the excess 9 component when ~ is replaced 

by- ~ From Eq. (32) this condition requires that 

(73) 

17
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be an odd function of ~ and that 

(74) 

be an even function of ~ . 

In order to remove the remaining arbitrariness in the specification 

of the source functions f (~) and ~ (~), note that, for the ~ >C feeder slot, 

the boundary condition in Eq. (62) demands that the excess 9 component of 

the current density vanish at i = ~ I' In a similar manner Eq. (66) requires 

that the excess 9 component match onto the current flowing in the azimuthal 

slots. Apart from these two requirements, this excess current density may 

vary in an arbitrary manner with ~ . The simplest variation is linear; 

hence, from Eqs. (32) and (46) for i >0 , if this condition is chosen, 

• (75) 

The simultaneous solution of Eqs. (31) and (75) subject to the symmetry.
 
conditions of Eqs. (73) and (74) serves to give unique source functions f( l) 

and ~ (~) 

( ~,-.~ 

f(~)== 
-!< (~~"=- \.) 1~! T ~ 

A.nd 

-I tor t.<~<~, 
(77) 

~. ~ - ~ I <~ <- fo 
• 

(76) 
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Equation (69) may be integrated to give p(~ '7 ). It is to be noted 
1

th'J,t the adjustment of a single integration constant is sufficient to permit 

the resultant function t,:) reduce to Eqs (67) and (63) at the respective limits 

Thus for ~ 0 <. ~ <~ I 

, -1 

;~ J • (78) 

Equation (68) may be integrated in a similar manner Again the adjustment 

of the single integration constant allows the boundary conditions expressed 

in Eqs. (63) (67); and (72) at ).. :=;.. and 'c - ~ to be fulfilled Thus forS ~., :>-/ 

~II<~<~I 

n(~ '1» PC' '1 0 ) + k7~:;;\~~~ Pi -~ + ,~.l .c= (79) 

In summary the boundary potentials for ~ 0 <~ .( ~ I after using 

Eq. (72) to eliminate the constant no are 

(80) 

(81 ) 

(82) 

and 

SL(~ID)-\!i(t'l.)= k(~~~D _~ I~,-~ +k'".J 
J II (1/ ItJl • 

(83) 

For - ~ " ':.: <- ': the boundary potentials are 
~ t '.>' ~ 

III (-t~) =- 1«1 _....~;( If-If) f 11[ L-t -.'-,,/- k (;,-1)(~, -~.) ~ (84) 
I C I <) ~ - JJ 

19
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J 

(85) 

(86) 

and 

(87) 

This completes the specification of the potential problem except for 

observing that the potentials of interest in FFAG guide fields are odd func­

tions of 1. and periodic functions of ~ with period 27T 

ACKNOWLEDGEMENTS 

The author wishes to acknowledge his indebtedness to R. O. Haxby 

for introducing him to the magnetostatic problems of interest to MURA and 

for many clarifying discussions. In addition, discussions with R. S. Christian 

and E. S. Akeley have been helpful in regards to the nature of scaling magnetic I
 
fields. 

20
 



MURA-535
 

REFERENCES
 

L Use of a S~alar Potential in Towo-Dimensional Magnetostatic Computations 

with Distributed Currents, L. Jackson Laslett, MURA~Zll (unpublished) 

2. Static and Dynamic Electricity. W R. Smythe.. McGraw-Hill Book 

Company: Inc" Second Edition (1950), Section 7 04. 

3. Mark V FFAG Equations of Motion for Illiac Computations; J. L Powell, 

MURA-80 (unpublished). 

4, Character of Particle Motion in the Mark V FFAG Accelerator, L Jackson 

La. lett, MURA-75 (unpublished). 

5 Use of a Scalar Potential in Two- Dimensional Magnetostatic Computations 

with Distributed Current•• L. Jackson Laslett, MURA-Z11 (unpublillbed). 

/ 

Zl 


