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ABSTRACT
It is shown that the solution of magnetoat#tic problems in the presence
of distributed current sources may be expressed in terms of a scalar-type
pqtential and scalar-type quantities representing the current density. Applica-
tion is made to the solution of magnetostatic problems connected with scaling-

type magnetic fields employed in FFAG guide fields.
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1. INTRODUCTION

In the design of FFAG magnetic guide fields, it has been customary
to employ fields which scale, i.e., fields in which the equilibrium orbits
for various average radii appear as magnified and rotated images of one
another. A method is introduced which allows the determination of mag-
netic fields entirely in terms of scalar-type quantities. An idealized con-
figuration of current distributions and infinite permeability iron is treated
which gives rise to a scaling magnetic field, following which application is
made to a spiral sector FFAG magnet. The general treatment follows from

1 The

a discussion given for two-dimensional magnetic fields by Laslett.
notion of an operator representing the coordinate scaling transformation is

used following which scaling magnetic fields are considered to be eigenvectors

of the scaling operator.

II. SCALAR FUNCTIONS IN MAGNETOSTATICS

In order to produce a scaling type of magnetic field with distributed
currents in the presence of iron, it is necessary to consider current flow-
ing in essentially two different types of fegions. The feeder current lines
are considered to be located in slots that are bounded by scaling surfaces.
In this region the permeability may be taken as unity. The feeder lines de-
liver current to and return current from the potential grading slots. Al-
though, in practice, these slots are non-scaling, a limiting scaling situation
is envisaged in which the slots are increased in number and reduced in
width until a continuous current carrying medium is produced. The perme-

2
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ability of this medium may be represented by atensor which has the property
of allowing a finite magnetic field transverse to the fine-grained slots, re-

ducing to zero all other components.

The problem first considered is the determination of a magnetic field

in the scaling slots where AL =1. This problem is specified by
v H=uTT , VeB=0 , B=H. (1)

These equations may be treated without the use of a vector potential if one
el
considers an operator L defined as

.

L= urV, 2)

where 'ﬁ in general is taken to be the gradient of some scalar function.

For example, for problems in spherical coordinates i is taken to be the

-

. 2 . cr i e ,
radius vector I . For the problems to be considered, it is first conven-

-l -—b
ient to consider X =k , the unit vector along the z~axis of a cylindrical

coordinate system. In a later section it proves convenient to let g Tr ’

the radial unit vector in cylindrical coordinates. In particular the properties

of I allow solenoidal vectors to be written as, for example,

T= o+ LT, @)

A similar decomposition of the vector potential which would normally be
—
introduced to account for the solenoidal nature of B shows after using

Eqs. (1) and (3) that

H= yTL T+ VLU
J (4)
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where
-}
U = - 470, o
The operator VXI may be expanded to give for Eq. (4)
_ - 2U |
H::t;'no['T'-—‘HTkG"—Vaz 3 6)

b
if, for the vectorﬁ , one chooses K . Outside of the sources O~ and T~

the magnetic field is seen to be the negative gradient of a scalar function,

V', where

V=37 ° (1)

I, SCALING TRANSFORMATION

A consideration of the dynamics of a charged particle moving in a
magnetic field shows that much simplification of the orbit properties is
obtained if the magnetic field is an eigenvector of the scaling operator.
This operator may be considered loosely as a combined magnification and
rotation operator. Specifically, for cylindrical coordinates, the scaling
operation replaces the coordinates (r, 8, z) by (Xr, 6 +.;Lﬁbu0() XZ ).
Hence, although the magnification is arbitrary, the rotation is related to
the magnification in a definite manner. Powe113 and Laslett‘4 have shown

that the eignefunctions of the scaling operator may be put in the form

?P F_(k”?)) (8)

where




MURA-535

r ! - 2
e.:?; ,Q'—"-.‘;‘M{T‘. —N9) )7" r 3 (9)

and p is any real constant.
An eigenvector may be defined by a suitable extension of the notion
of an eigenfunction of the scaling operator. For example, in the case of the

magnetic field, the eigenvector form would be
- K
H = ¢ h (t) ’l) 3

-—h
where hQ ,q) may be considered as the scaled magnetic field. In this paper

(10)

the connection between ﬁ and J is considered such that H is an eigenvector
of the scaling operator. To this end, a mixed coordinate system is employed.
The unit vectors are those of a cylindrical coordinate system, whereas the
compdnents, which would normally be expressed in terms of r, 0, z are

considered as functions of the scaling coordinates € , k s 7 . Thus:

e

wN N (11)
2 -2 __'_.E____'Li.]
5?"%[’? Twedk T ooy |,

(12)

o0 _ N"é"
s = N3
26 § -
2 12 .
2z r,faon C O (14)
+ _ o T2 712
L =kV=lo5r ~ L7 55 5

or
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(15)
) 128 _ 1342\, 2
% 2/02\ e P+ ral
: =r_i€[ sss(®3%) + 3 s 4%y
s 7 2/ 2
) —
"’('P*Nl){ga —11-3-5?5,‘ AT (7;,1)] (16)

Finally, it is useful to define a unit vector along the spii'al curves
defined by the intersection of the spiral cylinder, % = constant, and the
cone, )Z = constant. 1 This is accomplished by first considering the differ-

ential displacement vector a';.

B _-—.-Trobr +T,I"de +-|:d42 . a7

Equation (11) may be used to express Eq. (17) as

I = (i Trnide - £, dy + e¥an| a8

For d.E = d;n: 0 ., the unit vector under consideration is seen to be

=

. (18)
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IV. SCALING MAGNETOSTATIC PROBLEM
As was stated previously, for the problem under consideration, it is
necessary to represent all quantities in cylindrical coordinates using the
variables @ 3 E’ n - The current density as given in Eq. (3) requires the

-l

use of I_ as given in Eq. (15). The operator Vx,( may be obtained from

?(fi— %,) - V;%

or

Z_ 7L
V*I=“2raraz oy 2622 : (20)

= (1 [g2T L1 30T _, aC _-E__?it
T e B ] e
(3 (ol 4 28 2T NN\ i
+ k{e,—?(e},—%;}%—,—t BENETFT +(W‘+N )ag&
_a it 9 /par
v ””l("”l))z : (21)

In order to express the current density in a scaling manner, it is sufficient

to put ¢~ and 7" in the form of Eq. (8). Thus, choose

o=r, e f(4,1), (22)

r=rieq(t,n).

7

(23)
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The magnetic field described in Eq. (6) may be expressed in a manner

similar to that of the current density:

ST (4N o1 _ 1 Ted¥Y 2V _31]
H:‘ng r,e 2% r,g[f’a? T Tan {
3 (arf 2T, 27 _,2r] N2V
+a§:§[¢a *wir G ]+r,ga }

(24)

To put this in a scaling form it is only necessary to use

Y = Q’M PlE,n) (25)

For reasons of mathematical simplicity, and in order to obtain prac-
tical methods of achieving the current distribution, the problem is special-
ized through the use of three conditions. The first restriction insures that
the magnitude of the z-component of current density is just sufficient to

-

allow the current to flow locally in planes defined by the unit vectors 2 and

acsadty
lp - This condition is specified by requiring that

Xa . —_—
(T‘ n) J 0 . (26)
If Eq. (19) is used for—n' , Eq. (26) becomes

J_z = )2 ‘]—r . (27)

The second condition actually is not restrictive and is introduced to permit

a unique determination of the magnetostatic potential in view of the fact that
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only one scalar function \/ is needed whereas two source densities, ™ and
T-, are to be specified. From Eq. (6)'it is to be noted that the condition,

that 7. ﬁ or }-T shall equal zero, can be insured by choosing5

7 V=0, (28)
if the source density - does not contain z. In terms of the variables

(9 E 5 1 ), this condition may be stated by requiring that Eq. (22) be

restricted to

a=r QK’;Q’) . (29)
If Eq. (29) for ¢ and Eq. (23) for 7" are substituted into Eq. (27)
us.ng Eq. (21) to obtain the components of the current density, a relation
for q(} n)results which is homogeneous in N to the first degree. For
simplicity then, a third condition is imposed which is consistent with prac-

tical wiring schemes. Let

>~ = r: gxﬂ’l q(%), (30)

Equation (27) then connects the allowed forms for -F(k) and g(k) according

to

N ) =kke)3G) +35 gl + (i +N*) gty 1)

Under the restrictions imposed, the current density in Eq. (21) be-

comes
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—

= "K—"g (T a3 Jo 1% [N%'(k)-kstk)—;'.; 3’(&)]

L[ i) 30+ 2 9] |

(32)
In a similar manner Eq. (24), for the magnetic field, becomes
= ¢ (1m0 - (conpos 3 -n3E)
= ) N BEF
oo ) 5]
Y I P
LD OR
[ ) o 21 . (33)
The total current flowing in the feeder slot is
- =~ - o( 6,
Izﬁl"Jer'z=r°?“2'°j’3((-r;))a't“’ (34)
or .
Yo %+ ' R
- L ~kg()-=q (V) (dxdn .
1= ¢ [([NFE)-K3W-5gW]drdn -
If Eq. (31) is used to eliminate -f.( é) , Eq. (35) becomes
& N
I= 3 g”'SS[k"g(t) w2 g0 +(arN)g (] d (36)

a relation which shows that a degree of arbitrariness still remains in the

disgt:ibution of current in the feeder slots.

10
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V. POTENTIAL GRADING SLOTS

As mentioned in Section II, the windings, which are used to grade the
potential, are to be considered as if they were continuously distributed
through a fine-grained slot region in order to use a scaling treatment through-
out In the limit these fine-grained potential grading slots are represented
by a permeable anisotropic medium where the relation between -FT and 'B

is given by
H=7-B.

For simplicity, the potential grading slots are considered to be in the

(37)

c.zimuthal direction. In this case
T L7797
/ = M rer ;
a dyadic which has the effect of reducing to zero all components of n except

Hr . It is to be noted that, for a given § . H may be determined but that,

-l
for a given H . the magnetic induction is not unique.

—

The magnetic field, H . may be found by considering the single
relation

TxH = ‘\"VT, (38)

where Eq. (37) shows that only H,. is needed. Thus

N a3
ZxH, = 4TT (39)
- — .
In general, as in Eq. (3), j: Lcr‘ +WVxji T . However, since the con-
e

struction of the operator £ is somewhat flexible, it proves convenient in

thie instance to choose

11
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L =0V, (40)

Since V¥ x 2r= 0 . Eq. (39) may be written as

LH.= -41d, (41)
-t

Taking the dot product of Eq. (41) with J , it is seen that
L (Hprsma) =0
r J (42)

and that the arbitrariness in the choice of 7 and 7~ is best resolved by
&
setting 7°= 0 . Since the operator J: operates only on the transverse

variables, the solution of Eq. (42) is simply expressed by

—
The current density J is given by

= 7 -+ _ T Lo _T T
J = LG’“:: )rlvcr-— k‘)!_-é? o5z ° (44)

For the azimuthal slots contemplated, it is desired to have the current flow-

ing azimuthally; hence, the form for = must be independent of  and linear
in z to match onto the form in the feeder slot region. If f= 'I, is the surface

"
bounding the depth of the azimuthal slot region, a choice of fir) =~ ‘r'\‘(kﬂ)ﬁ’ ;a

and

g = —Y‘, (’k(lz—p>ho b} (45)

gives a scaling current density. If furthermore, the magnetic field, Hr )

is set equal to zero for = n, . the depth of the azimuthal slots.

12



MURA-535

° 3 (46)

and

K
- -n)
H, = 47T, h,e (n-n), )

Equations (46) and (47) are both independent of fo o If _H- is expressed
in the general form of Eq. (6). it is seen that the magnetostatic potential
in this region may be taken as zero, the field being given entirely by the
supplemental terms in 0~ and T° .

The current flowing per unit increment in ¢ through the azimuthal

slots is given by considering

e1=((7-Tdrdz =r2((¢2% T dade,

(48)
K
E_I_- = Y‘:hoe (’2,‘710))
? (49)

where the surface = )20 is considered to be the beginning of the azimuthal

slot region,

VI. BOUNDARY CONDITIONS
The remaining problem is to connect the magnetic fields determined
in the previous two regions with one another and with the field in the free-
space region between the pole faces. In the scaling problem the boundaries
of interest are: (1) those for which ¢ and {: are constant; and (2) those

for which € and )) are constant. For case (1) the tangential component of

13
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e

H surrounding the feeder slot region is from Eq. (33)

P K ] N k 3? -

),-H=4Tre 'z[k8<¢)+#3<§>] MR T L 7= const. ] (50)
The tangential component of T'T for case (2) is from Eq. (33)

- - ; | K DT 4

k-H —~-a+7rr°§> f(E)—E y’—l— . [-Er Const,J (51)

- ==
For the E = constant boundary, n+H is also a tangential component, which,

from Eqs. (19) and (33), is

il ﬁ?"..,.-?{-—*:‘sv--wnnfm+ 2 s )T )
M 71 '
Y-\g = (ox-:'u’,l

In the azimuthal slot region, the relevant components of H for match-

(52)

ing purposes are

J,oH= 0 (53)
T{.T—I-_-. 0 (54)
n-H = . P (55)

I+(17‘;‘) +})"
where Hr is given by Eq. (47).

Finally, in the free-space region, the magnetic field is obtained as
the negative gradient of the magnetostatic potential. In this region let the

magr.etostatic potential\f be represented by
K+l
V= oL (),

in terms of which the relevant field components are

(56)

14
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o>k
x|
"
sv | =,
)
X
r)

o
X
N 2 2
K'H - Y.o D'l )
f‘K K+
A= — _ — . .
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(57)

(58)

(59)

The condition that the tangential components of the magnetic field be

continuous across boundaries gives the following results.

PoLe SECTION FOR ©=CONST.

n — SLLLLLLLLLLLLL L LLLLLLLLLLLLLLLLL L L L L L LY
l ! IN < ouT
77797997/ ~ . 794
ng | | ! g ] i
'E| ‘Eo o §o EI

At the boundary, E._- S
an
From Eq. (52), since W -H

4
|

=0,

15

ONE SECTOR

28 L urrtf(y)=0 .

since T(k R‘=o, Eq (51) gives

(60)
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- *—’%‘-—’l f§) - 475 "[ 3(@.)«» M+N‘)3(§\]

N(k+l (61)
Differentiate Eq. (61) and compare with Eq (60) to get
K =/ 2N -:\ ol
‘N¥<§) 1:3 Sy +L7U’~+"\J )3(§l)= . (62)

Substituting this into Eq. (61) gives for the boundary |

D(},n) + wmrinf(i)= 0. (63)

At the boundary, )§ = éc . since T{ ﬁ:c, Eqs. (51) and (54) give

g.% + amrtf(})= 0

From Eq. {55), (52), and (47)

(64)

g+ 4, Q{;(H fﬂ‘_[ﬁ-ﬁﬁ) (- +N;)3<H] ﬁﬂ}_k,()[_h)

k +1 N(k+) |V i+l 7 °(65)

Differentiation of Eq. (65) and comparison with Eq (64) gives
N + B4 +(Ga+N?) (L) = Nh
o) Tap 3 T W e/ = ° (66)

Substituting this into Eq. (65) gives for the boundary P

D%, ) + wrrf[nf(t,) - %9- =0 67)

At the boundary, N=1, . E"( ‘e( Q', the component },*H must be

continuous. Equations (50) and (57) give

ol ° ? 477"' n |
—_— . ——— — % 2l k Q O < j{
2% ag * N [ () - ) (68)
At the boundary, N =/, . § (E < E‘ . the potential in the iron is

constant. Hence, the boundary condition is

16
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a@ o H-Trroi}h L ! -—
i S ——F——[kﬁ(& .E‘JU‘Z)]-— o,

2% (69)
. o A
At the boundary, /= /], -§‘°< X:) < ¢ the component [,+H must
be continuous. Equations (53) and (57) give
2L _
2t ) (70)

In addition, n- H must be continuous; hence, Eqs. (55) and (59) give

! | K+!

T b (0,1, IS S—
1Tl b (2, )W(#:v)fw‘ Y S A (1)

or

Al g)= 2T (n-1)h, = O,

k+! 4 (72)

Equations (72) and (70) are seen to be compatible.

The boundary conditions for the remaining feeder current slot for
which ?( 0 may be investigated in a manner similar to that for the,
§ >0, slot. It is sufficient, however to note that the magnetic fields re-
flect the solenoidal flow of current down one spiral slot, across the azimuth-
al slots, and up the other spiral feeder slot. Although, within the scaling
requirement, it is possible to distribute the return current in a manner
different from that of the feed current, the most natural choice for the re-
turn current is to reverse the sign of the factor multiplying the n vector
and keep the same sign for the excess 8 component when E is replaced

by - ¢t From Eq. (32) this condition requires that

B _ ___Le'<)
NE®) -kQ(¥) —5- 3k a3

17
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be an odd function of é and that

KN FOE) + 5 908 + (& +NY) g'ty) (14)

be an even function of §

In order to remove the remaining arbitrariness in the specification
of the source functions {'(k) and g(k) , note that, for the §>C feeder slot,
the boundary condition in Eq. (62) demands that the excess 8 component of
the current density vanish at E:: E‘ . In a similar manner Eq (66) requires
that the excess 8 component match onto the current flowing in the azimuthal
slots, Apart from these two requirements, this excess current density may
vary in an arbitrary manner with 5 . The simplest variation is linear;

hence, from Eqs. (32) and (46) for § 5> 0 , if this condition is chosen,

KN )+ 808) + (3 +NYq'(}) = Nh, -:-‘—-E' - (75)

The simultaneous solution of Eqs. (31) and (75) subject to the symmetry

conditions of Eqs. (73) and (74) serves to give unique source functions F( ’9)

§."§+n(x|+:)w for §-<§<§|
— . ho
F(¥)= <G - ko)i § Y-

(76)

for —?l(§<‘§°

K(kﬂ)’hf

- for §‘<§<§|
TV an

IO = Tdd 1) ) 1 e - <beb,

18
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Equation (69) may be integrated to give Ep(§ '2') . It is to be noted
'

that the adjustment of a single integration constant is sufficient to permit

the resultant function to reduce to Eqs (67) and (63) at the respective limits
-\ - . s

\g_ ¥, and §=13 Thus for §°<?§< 3

"Blka [ ‘ L]
@(§ '[:) - :;Z*-lea:Z&o\) [.E‘_é " ~—”-- . (78)

Equation (68) may be integrated in a similar manner Again the adjustment

of the single integration constant allows the boundary conditions expressed
in Eqs. (63). (67). and (72) at §= §° and ¥ - T to be fulfilled Thus for

§.<i<y,

QGn)y=¢¢n) + »«Lx:-)(—k—& < { | J (79)

In summary the boundary potentials for §°< é < >| after using

7~ Eq. (72) to eliminate the constant ho are

‘I’(qu) k(§ ’s‘a)(’t'l"?){ E E:o K'w-] k(h )?)(E ?)} (80)

Qe
PO =T S ) @

Plon)= - kel [ -y + 0]

k( §| —to)( He — )(J) {82)
and
ﬂg Mo o ___4
Qb - k) = k-t ) [‘g' ; +'<|‘-'t“j : (83)

For ~\;: v ;. the boundary potentials are

Vild

..L’l o

~ %)= = ot g MY - < ey, )}) (59

19
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, Q, 7
Ji-t, '7> B
k(e =2 )4, 1) (85)
, 0.0 ‘ |
. - - I -
P(sn) k(8 =8 XN, 1) “' o ‘"’] > (86)

and

- ﬂQ)ZQ ) !
D) den= T s )

This completes the specification of the potential problem except for
observing that the potentials of interest in FFAG guide fields are odd func-

tions of // and periodic functions of E with period 27 .
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