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ABSTRACT

On the basis of the scarce information available from cosmic ray experi-
ments, the energies and angular distribution of the particles resulting from the
collision of a high-energy proton with a nucleon at rest are determined.

Estimated values are presented in Table VI. It is remarked that the multi-
plicities as stated apply only to nucleon collisions with light nucle1.

Of some interest 1s tne fact that with the only exception of the low energy
gammas, all the particles are emitted in the forward direction in the laboratory

frame. For the highly energetic particles, this ejection takes place within a very

narrow cone,

Under more specific conditions, i.e.. when parameters as the pressure in
the tank and the circulating current are fixed, further use can be made of these
preliminary values for the following purposes:

(a). To estimate the number of particles to be expected per unit volume
in the neighborhood of the beam, due to its interaction with the

residual gas.
(b). To calculate the level of the radiation produced when the whole beam

strikes a thin target.

(c). To study the development of nucleon-nucleon cascades and photon-
electron showers in the iron, thus estimating the type and energy of
the radiation leaving the rnachine, of fundamental importance from
the point of view of the shielding

* AEC Research and Development Report. Research supported by the Atomic
Energy Commission, Contract No. AEC AT(11-1)-3384

** summer Participant, University of Michigan, Ann Arbor, Michigan.
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I. Number of Particles in the Beam

Considering a plane perpendicular to the direction of the beam, we express
the number of particles crossing that plane per unit time as a function of the

total current I. The proton charge is:

-10

e =4.8x10 esu=1.6x 10719

coulombs

i.e., a current of 1 amp corresponds to:

1019 particles

1.6 sec

and a current of I amp to:

N =.625 x 10191part./sec (1)

II. Residual gas

The residual gas 1s assumed to be diatomic, with a mass number A and
under a pressure of p mm. Hg. The number of molecules per cm3 is:

n = No P 6»025X1023p mol

m 22412 760 22412 x 760 oo @)

and the number of nucleons per cm3

6,025 x 1023 x 2 Ap

n= 22412 x 760

016

=7.07 x 101° Ap (3)

In particular, if the residual gas is nitrogen, A = 14 and;

16 17 18 nucleons
Xx14p=9.9%x10 = 10 4
p p P —ag— (4)

n="7.07x10

III, Expected number of collisivns

We study now the interaction of a 15 Bev proton with a nucleus of the
residual gas. At this high energy the nucleon in the gas can be considered as

independent and at rest, and the first problem is to choose a proper value for
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the proton-nucleon cross section, Unfortunately. very few experimental results
9
are available :1 the Bev energy range. Using Hess's excellent summary of
nucleon-nucleon cross-section data, we were able to obtain, by extrapolating
his curves, the following value for the total proton-proton cross section:
o =25 mb (3)

pp
We shall use this value for both the p-p and p-n total cross-sections, since it 1s
in good agreement with the generally assumed cross-section of the order of the
geometrical value (h/ran)2 ¥ 20.4mb.

Now the number of interactions is:

R =Nneo

Using expressions (1), (4) and (5),
11

R=1.56x10""1p (6)

where R = interactions per sec per cm. of path

I = total beam current, amp
p = vacuum tank pressure, mm. Hg.

If the residual gas is hydrogen (A = 1), the interaction rate is reduced by
a factor of ~10, and formula (6) becomes

R=1.11x10%1p (7)

IV. Nucleon-nucleon collisions - Multiplicity

The problem is to determine the particles resulting from a nucleon-
nucleon collision, as well as their energy and angular distributions. Again, in
the Bev energy range this 1s not simple since most of the information available
in the literature refers to cosmic ravs Although primary cosmic radiation is

8
composed mainly of protons (about 91%) = they are distributed over a wide range
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of energies, and the application of cosmic ray results to our case will imply
simplifications and assumptions not always well justified.

For incident protons with energy. Eo‘ of the order of several Bev. each
nucleon-nucleon collision will be inelastic To designate the secondary particles,
we use the following notction:

Nh = number of heavily 1onizing particles 1i.e. those protons that produce

grey and black tracks in photographic emulsions. The grey protons,
Ng, may produce stars as the primaries)do while the black ones,

Nb, are stopped by ionization. The corresponding energies are:

grey tracks 30 Mev < Ek < 500 Mev
black tracks Ek & 30 Mev
n_= shower particles, i.e., particles that produce thin tracks in photo-

graphic emulsions. They will be either charged pions, N, with

kinetic energy about 80 Mev, or protons, npf with kinetic energy

above 500 Mev. Note that at these energies it is not easy to dis-

tinguish protons from K-mesons, and np may thus include some

K-mesons.

Further, we assume that protons and neutrons are equally distributed in

number and energy. The number of neutral pions, n”,o , is taken as one-half of
the number of charged pions. and the number of protons in the shower particles

is assumed to be one-fourth of ng in the cases when no other experimental

information is available.
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Thus. we have:

ng=n, + 0 (8)
np = ns/4 (9)
Nh = Nb + Ng (10)
0o e (11)

In order to determine the multiplicity of the particles resulting from the
nucleon~nucleon collision, we consider data from three different sources of
information. According to Flansen and Fretterz,, the variation of the number of
secondary particles with the energy EO of the incident proton is as given in Fig. 1.
These results correspond to experiments performed in carbon and are in good
agreement with the predictions of the Landau-Belenky theory.

From Messel6 we take a set of theoretical results obtained on the basis of
the following assumptions:

(a) Every high energy nucleon-nucleon collision leads to the creation of

one,; and only one meson.

(b) The primary nucleon makes on the average more than one collision

in traversing the nucleus. The effect of the recoil nucleus is
considered.

(c) The mesms produced are simply emitted without any interaction with

the nucleons of the nucl/eus in which they are created.

Messel's results are for collisions in light elements. carbon, nitrogen

and oxygen, and for collisions in heavy elements such as silver and bromine.



umber of charged pions ng
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Fig.l.~- Shower particles resulting from nucleon-
nucleon collision in carbon. (Ref. 2). -
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5
The third source of information is Camerini et al. His results are obtained

from the study of the stars produced in photographic plates by cosmic rays and will
refer mainly to collisions in heavy nuclei (as silver and bromine), We use the

curves on page 11 of Ref. 5, which give the values N, , N, and n_as functions of

h" b
the kinetic energy of the primary, extrapolating to the value 14 Bev that corresponds

to EO = 15 Bev. From the value ng we obtain np as per Eqg. (9)

The data is summarized in Table I.

References
Hansen &
Fretter Messel Camerini
Particles A =12 12¢A <16 80 AL108 80<CAL108
n 0.9 1.06 , 68 1.16
p :
nr 1.85 2.72 4 58 3.50
ng 2.75 3.78 5,26 4, 66
n”,o : .92 1.36 2.29 1.75
N 6
g
Ny, 14
Nh 20

TABLE I

Before selecting the multipliéities that will better suit our case, several
considerations must be made. First of all, the apparently dispersed values of
Table I become more consistent when plotted versus the mass number A, Al-
though, in rigor, the data is not enough to justify the curves. the evident trend
of the variation of n_, and n_ has been indicated with dotted lines. As pointed

7 p

out by Messel, in order to make an adequate comparison of such heterogenous
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results it would be necessary to apply weight factors to the theoretical values,
in correspondence with the proportion of light and heavy elements in the
photographic emulsions where the experimental results were obtained. If that
is done, the agreement between experimental and theoretical values is good.

The values of Hansen and Fretter refer essentially to nucleon-nucleon
collision for light elements. They are small when compared with the values
obtained by Camerini and seem to confirm the nucleon-nucleus character of
most collisions in emulsious,

For our purposes, we are interested in interactions of nucleons with
light nuclei which are the ones that will be found in the vacuum tank. Hence,
the choice of multiplicites is restricted to either Hansen and Fretter or Messel's
values. Messel's theory was developed for cascades of cosmic rays rather than
for nucleon-nucleon collisions as such. On the basis of that consideration, the
best choice is indeed given by Hansen and Fretter results; for Ny, in good

agreement with Messel's value, we feel justified to take:

For n,_ we round the value of 1.85 to n__ = 1. 90 since the gas in the

4 »

tank will be probably nitrogen of somewhat higher mass number. From the

above numbers, finally:

n =2,90
s
n =0,95
70

V. Energy distribution of the pions

Let us consider a nucleon-nucleon collision in which one pion is produced.
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We want to determine the maximum cnergy of this pion.

In the CMS the kinetic energy of the meson will be maximum when, after
the collision, the two nucleons have equal and parallel momenta. Then, the
momentum of the meson is equal in magnitude and opporife in direction to the
combined momentum of the two nucleons.

The total Energy E' in the CM when a particle of rest energy mlc2 and
kinetic energy Ek collides with a target particle of rest energy mzc2 is given
by the expre ssion3

2m_c% E
E' = (m, c® 4 mzcz)\/l + 2 k

1
2 2,2
(mlc +m,c ) (12)

1

Here, with mlc‘2 = mzc'2 953. 87 Mev and "Ek =15 - 0,938 = 14.06 Bev we

get

E' = 5.47 Bev CM

th

Hence, discounting the rest energy of the 3 particles, the available

kinetic energy is
K = 3.45 Bev.

Now, for each particle, in any frame of reference

4
E2 - czp2 = mzc (13)
where E represents the total energy

E = Ek + mc'2 (14)

From (13) and (14)

E2 2 2"‘22 15
et Ekmc =c p (15)

Eq. (15) will hold for the pion and for the nucleons. If we denote by Ek the

10
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kinetic energy of the nucleon and for E», the kinetic energy of the pion, we have

2 2 22
nucleon Ek + ZEkMC = Cp (16)
pion E”Z, + 2E m c2 = chZ {(17)
> v

Consider the case in which the 27 has the maximum possible energy. Then,

_ _ P»
pn - pp - 2
Multiplying (16) by 4 we obtain
2 2 2 2
4Ek + 8Eko = E,” + ZEWch (18)
But also
E” + ZEk = K
By substitution in (18) and solving for E%’ ;
2 2
K + 4K Mc
E”, = v >— = 2.28 Bev (19)
2K + 4Mc™ + Zmﬁc

Then, the maximum total energy of the pion in the CMS is
E' =2.28 + .14 = 2,42 Bev,

Of course, if more than one meson is created, this maximum energy
will be less. The energy spectrum depends upon the differential cross-section,
of which little is known.,

In order to determine the energy distribution of the pions, we again use
data obtainéd from cosmic rays, and assume that the energy distribution is more
or less independent of the primary energy. We use the curve given by Camerini
et al. (Ref. 10, p. 418). Let N(E)dE be the number of mesons with energy in

dE about E, expressed in arbitrary units, in the laboratory system. As stated by

11
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those authors, between .25 Bev and 2. 9 Bev, the spectrum can be represented

within experimental errors by a power law of the form E"L1'5  Thatis
N ‘
N (%) = F‘3/2 + B (20)

where if the constants are taken as

A=24x 105
B = .57
the analytical expression (20) will fit the experimental curve for E = .25 and

E = 2.9 Bev.
We divide now the energy range in three intervals of interest
(a) 140 &£ E <500 Mev
(b) 500 E =1 Bev
{(c) 1 BevsE £ 2.9 Bev
and evaluate the proportions n,, ng and n, of the mesons produced with energies

(in the LS) in each interval. We find that

n, =, 561 per meson produced
n, o= 235 per meson produced
n, = 204 per meson produced

VI. Angular distribution of the pions

2
For a particle of rest energy m, ¢ and kinetic energy Ek’ colliding with
2
a target particle of rest energy mzc , the relativistic/gc and D/C for the

3
center-of-mass are expressed

2
u\/l+2mlc /Ek

/gc“

2 2
1+ (mlc +1mc ) Ey

12
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and 5
1 1 + Ek/(mlc + mzcz)

Y = — e = -
¢ V1 mﬂi Vl + Zrnzc:ZEk/(lrnlc2 + mZCZ)L
2

For an incident proton of 15 Bev total energy, then, with mlcz =m,C .

the above formulas yield:

A, =939 and ¥ =2.913.

c
According to Hansen and Fretter25 the average energy for the pions is 420 Mev
in the CMS while the average value of the transverse momentum is of the order
of .3 Bev/c. Using the formula

2 4
E2 = p"cz + mzc (21)

valid in any frame of reference, we calculate the momentum that corresponds
'to the average energy

|p'| =.396 Bev/c.
The‘longitudinal component is then

Py = . 258 Bev/c
and the angle 8' in the CMS with re spect to the line of flight of the incident
particle is given by

tan 9! = Pp  _ - 307 =1.19 or @' = 49°58!

Py . 208

Now, in the CMS the distribution of secondary particles of any kind must satisfy
the symmetry principle (Ref. 4, p.449). Unlike the conservation principles,
the symmetry principle does not apply to an individual collision, but to the
average of a large number of collisionis . and states that the secondary particles

must have not only a cylindrical symmetry with respect to the direction of the

13
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incident particle, but also a specular symmetry with respect to a plane
perpendicular to that line. Hence, for each pion emitted forward with an
angle 0% = 49958 there will be a pron emitted backwards with an angle
6’ = 13002

Let us calculate the energies and angles that correspond to these pions

in the laboratory system. We use the expressions

E=@®+p B Y (22)
and

sin O

H d (23)
XC(COS 0 +/yc//€i)

tan 6 =

/
Whereﬂic represents the velocity of the pion in the CMS.

Thus. for,the forward pion we obtain;

E = (42 + .396 x.939 x cos 49°58" )2.91 = 2.05 Bev

and
/ 1
/&,:—p—: .396=¢943
1 El .42
so
tan 0 = 0. 643 = .1225
. 939

2.91(0, 766 +—ﬁ—9—43—)

For the backward pion, similarly

E =(.42 - .396x.939x.766)x 2.91 =,392 Bev

and
643

‘ = . 967  therefore 8 = 44°02F
2 91 (-.766 +

tan 6 = 7939)

. 943

14
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To proceed further, we make use of the energy distribution of the
2 :
77 -mesons os presanted by Hansen and Fretter and of the experimental fact
that the transverse mo:nentun 1s constani, and indepzndent of primary and
secondary en.r_12c  {Thiz rosu’t 1s mierasting and confirms previous work
wiih photograpiic eiaulsichce).  On Tiis basis, we calculate energies and

angles in the LS, suimmarizing the results in Table II.

E', pion Forward in CMS Backward in CMS
energy in E' 1in € in E' in 6 in
CMS. Bev LS. Bev| LS LS, Bev| LS
L 42% 2.05 659" . 392 44°02!
. 60 3.10 5943 . 390 57°925!
. 80 4,31 | 4%05: . 346 76°33!
. 90 4. 90 3036! . 344 83%45!
1.00 5,48 | 3913 . 340 91°21"
1.10 6. 07 2°541 .338 98931!
1.20 6. 64 2°38! .349 |101°18'
1.50 8. 36 2906 .375 117923
TABLE II

* Average energy.

Inspection of this table and of the energy distribution in Fig. 3 leads
to the following conclusions,

In the CMS, the majority of the pions are produced with the average
energy of 0.42 Bev. Those that are ejected forward will appear in the LS within
a very narrow cone, of half-angle, 70, and with an average energy of 2.05
Bev. The ones ejected backward, on the other hand, will have low average
energy in the LS. about . 39 Bev and will appear within a cone of half-angle 90°.
Notice that the last values in Table III can be neglected since only a few & ~-mesons

are produced with those energies.

15
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Therefore, in the LS, the# -mesons are distributed in two definite
groups, one with energies about 500 Mev, the other with energies below that
value, their number being approximately equal. This confirms the distribution
in energy for the mesons obtained in #5 by a different way.

Hence, we conclude, in the laboratory frame

| (a) Low energy case. The number of mesons with energies less
than 500 Mev is nn. = 1.90 x . 561 = 1.065, They are pro-
duced within a cone of half-angle 9003 i.e., within a solid

angle of

A =27(1 - cos 90°) = 6. 283 sterad.
Thus, if we assume an isotropic distribution in the cone, we

have
1,065 _ |
e TR 17 mesons/ sterad.,

per interaction, with an average energy

<E1> =z .39 Bev

(b) High energy case. Similarly, the number of mesons with
energies above 500 Mev is
n”( 1 -~ na) =1.90 x .439 =.835
produced within the solid angle
A = 2771 ~ cos 8°) =.0611

that is

. 835
n, =511 ° 13. 67 mesons/ sterad

with an average energy

{E,> =2.05 Bev

16
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VII. Energy and angular distribution of heavy particles

In order to obtain an idea of the energy and angular distribution of the
heavy particles, we use the experimental results of Hansen and Fre‘cter"2 for
primary energies ranging between 10 and 1000 Bev, Those results are presented
in two curves: the first one, Fig. 3, gives the energy distribution of protons and
K-mesons resulting from the interaction, with an average value of 1. 26 Bev; the
second one gives the angular distribution in the CMS, Fig. 5, and is very
anisotropic with most of the particles being ejected in the forward and backward
directions. Further, it is observed that the ratio of the backward to the forward
particles is about 2. We also make use of the experimental conclusiém that the
average transverse momentum for all secondary particles is independent of
primary and secondary energies and has the value

p, = .31 Bev/c
for the heavy particles.

Using formulas (22) and (23), then, and following the same procedure as
in the case of pions, we determine the kinetic energies and angles of ejection
in the laboratory system corresponding to heavy particles of different energies.

The results are indicated in Table III.

E' total energy| 6!'in Forward in CM Backward in CM
in CM Bev CM KE in LS, | 6, LS KE in LS, 8, LS
Bev Bev
0.8 (%) 290287 3. 333 49411 . 337 27945°"
0. 988 900 1.932 60331
1. 000 60° 2.42 5926! 1.48 g°
1.26 (+) | 21937 4. 86 3°06! .596 14°49!
1.50 15922 © 6.5 2%25! . 344 20°48:
2.00 10°06! 9.63 1942 .039 41°19'
TABLE III
(**) K-meson (+) Average energy

19
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Observation of this table leads to the following conclusions, valid under

our assumptions:

(a) Even the most energetic particles, ejected backwards in the
CMS, will appear as ejected forward in the laboratory system
with a maximum angle of about 42°. The kinetic energy of those
particles in the LS is in general low, of the order of 500 Mev for
the average particle, or less, so we identify them with Ng' We
assume that they are isotropically distributed within a cone of
half—arlgle 42°,

(b) The particles ejected forward in the CMS appear in the laboratory
frame under very small angles, at the most about 70, and will
have energies of the order of Bev. We identify them with np, and
we further assume that they have an isotropic distribution within the
cone of half-angle 7°.

(c) From Hansen and Fretter data for the angular distribution in the

CMS, reproduced in Fig. 5, it is evident that about double numbers

* ~ of heavy particles are ejected backwards than ejected forward. Thus, . -

after (a) and (b), we write;
2n. = N 24
p g (24)

and since np =1, we have

Considering now in more detail the above cases, we distinguish grey pro-
tons - with an average kinetic energy of

LEY =.500 Bev.

21

- .



MURA-530

they are produced within a solid angle

J'Lg =27 (1 - cos 42) = 1.612 sterad.

i.e., we have per interaction

. 906
o =7 612 = ° 31 protons/ sterad.

High energy heavy particles. This group includes protons and K-mesons,

with an average kinetic energy
(E ) = 4, 86 Bev
that are ejected within a cone of half-angle 70, that is, within a solid angle

‘n'4 = 277 (1 - cos 79) =.0468

Hwnce, per interaction

1.000

Ny = fips = 21. 35 heavy particles/ sterad.

VIII. 2#° mesons

For the #° mesons the following assumptions are made;

(a) The energy and angular distribution is equal to those of the
charged mesons and their number is equal to one-half of the
number of charged me sons.

(b) Practically as soon as born, they decay into two gammas which
share equally the rest energy and are emitted in opposite directions
in the meson frame of reference.

We are interested in the energy and angular distributions of these photons

in the laboratory system. We start with the second, and as before, let 8' be the

angle of ejection of a particle in the CMS, while 6 is the angle at which the

22
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particle is observed in the laboratory system. The angle transformation between

the two frames of reference is given by Eq. (23)

sin 6°

tan € = ;6’
Yicose + £ ) (23)

B
{:1/;/1 /9(2:

is always a positive number, and Where/gie 1s the particle velocity in the center-

where

of-mass system.
We call /ec//ﬁi’ = yl . Two cases can be considered according with the
values of D/1
(a) )/i 2 1. Then, the denominator of (23) will be always positive, and
the sign of tangent © will depend only on the sign of sin 8'. We study
the behavior of the hfunction tan 6, The maximum occurs when

d

— %an 8) =0
92
i.e., when
d(tan 0) 1+ D/i cos 6!
‘ = =0
de’ (cos ©F +3/’i)2
or
L A
cos @' =-~g = - (25)
A A

_Since yié 1, the maximum exists and tan € will increase up to the value of 8’
defined by (25) and then will decrease until 8' = 180° where tan 8 = 0. Therefore,
the corresponding angles € are between 0 and ?f/Zb and the particles are ejected

only forward in the laboratory system.

23



MURA-530

(b) yi< 1. This is the case of practical interest when the ejected parti-
cles are gamma rays, (for which ﬂ:: 1). Here, Eq. (25) indicates
that the function tan © does not have a proper maximum. The
function will increase all the time becoming infinite for the value
of @ that makes the denominator of 3) zero, i.e., for

cos ' = - Yi (26)

Let Q‘m be the value of ©' that satisfies Eq. (26). We observe that e‘m is such
that -g Lgin < 77. For values of 8'less than ei'n, the function tan © is
positive, hence tﬂe angles © are between 0 and /2, and the corresponding
particles are ejected forward in the laboratory system, For values of 8' such
that 9"m< 8' £ 77, the tan B8 is negative, thus

Z <o
and the particles are ejected backard in the LS. Note that % > 0, sothe

behavior of the function tan 8 is as indicated approximately in Fig, 6.
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The important result is that for an isotropic distribution in the CMS the
ratio of forward to backward photons in the laboratery system depends only on
91Vrn“ that is, on the value of ﬂc, which in turn depends upon the energy of the
original particle. For high enough initial energy, ﬂc-?lé hence G‘m-—> 7. and
all the photons will appear as ejected forward in the LS. On the other hand, if
the energy of the initial particle is small, the ratio Yi = ﬁC//Bl will decrease,
e;n will approach #27/2, and the number of particles ejected backward and
forward will tend to be equal. These considerations can be expressed more

precisely if we define a parameter.

_ n° of forward particles 27)
total nO of particles

Now, the fractional number of particles emitted within the cone in d6! about 6!
is, for an isotropic distribution in the CMS

n(e') do' = 1 sin @' de’

o~

so that the total number of particles emitted within a cone of half~angle 8' is

given by the integral

4

6’ 8
- Q!
fn(Q') gor = L /sin or dor = 1089
2 7 2

0
In particular,if 8! = 77, the integral is 1. In equation (27), then

1 ~-cos 6°
2

r =

which will take the value .5 for 8' = %/2, or 1 for ol = /A
m

Eq. (27) will give also, for an arbitrary 6', the fractional number of

particles emitted within a cone of half-angle 8'.

L S
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Recalling the energy distribution of the pions determined in #6, we
consider two cases of interest.

Case (a). Low energy 7%

We understand by this all the 77 ° with total ene rgy less than
.5 Bev in the LS. As indicated before, they have an average energy
E =.39 Bev, with ﬁ £0.93and ¥ ¥2.72. Therefore, using
0 c c
Eq. (26)
cos ' = -0,93
m
or 8' =158026'.
- m
The percentage of forward photons is then

1+ 0.93
r="5  =.965 or r = 96.5%.

Further, we assert that most of the particles will be ejected within a
cone of relatively small half-angle, To show this, we proceed as
follows: giving values to r;, using Eq. (27) we calculate the value of the
half-angle @' of the cone of emission in the CMS. Then, using Eq. (23),
we evaluate the corresponding 8, i.e., the half-angle of the cone in the
LS for those particles The results are summarized in Table IV, while
Fig. 7 indicates the percentages of particles emitted within different

cones in the laboratory frame,

r% 8' (CMS) tan 0 9 (LS)

50 90° .395 219331

75 120° . 741 36932¢

80 1269521 . 892 41944

90 143908 1. 698 59°30¢

96.5 1580926¢ ® 90°
TABLE IV

26



MURA-530

Figure 7.
Angular distribution of gammas in LS, for case (a).

Inspection of the figure leads to the following conclusion. Most of the photons are
ejected in the forward direction, and among these, a great majority is within a
cone of half-angle of about 42°,

Case (b). High energy #°.

We assume for this case an average energy for the pions of 2 Bev |
in the LLS. Then, the corresponding values of the parameters are

A = .9975 Y =14.152

and

cos ' = - ¥ = -0.9975 or 8' =176° andr = 99.8%.
m 1 m

We repeat the calculations the same way as before, obtaining the numerical

results indicated in Table V and in Fig. 8.

r% 1 &' (cMS) tan 6 6 (LS)

50 90° . 0708 4903s

75 120° .123 7°01°

80 126°52¢ . 142 805!

90 143008! ., 2147 12907

99. 8 176° ® 90°
TABLE V
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Figure 8.
Angular distribution of gammas in LLS for case (b).

w

Heré-.again, the conclusion is that practically all the particles are ejected in
the forward direction, the most of them within a cone of half angle 8°,

We study now the distribution in energy of the gammas, finding at the
same time, in a more sophisticated way, a corroboration of the previous

conclusions. In the frame of reference of the meson (CMS), each photon has

an energy
2
E' = E' = ¢
1 2
and a momentum equal.to
Voo oot = MgC
Py b, >

where m is the meson rest mass. In the laboratory frame, the energy is

—- 1 . 2
E, = (E] +p ﬂcc)z/c . (22)
or also
E _E; P _p!
E =_©°1 9! cos @ (28)
1 moc2 m_

Replacing Ei and pi by their values

=1 '
E; = > (EO + p_c cos er) (29)
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where E,. b, are the total energy and the momentum of the #°. Thus, the
minimum and maximum energies of a gamma ray are

1
(B) = (B < pe) (30)

1
(Ei)max =5 (EO + pOC) : (31)

In the frame of reference of the WO, the probability of emission of a photon is
the same in all directions. Therefore, the average value of cos 6! is zero, and

the average value for E, is
i

<Ei)= é— Eo (32)

By conservation of energy

2 2 22 2,2
E, =(E; + E;) =pc’ + (mc”) (33)
and by conservation of momentum
Elcos 91 + E2 cos 92 = pc . (34)

]
o

E1 sin 91 - E‘2 sin 92 (35)

where ei are the angles of emission of the photons with respect to the meson

line of flight. Eliminating p c between Eqgs. (33) and (34), we get
o)

2,2 _ 2 .2 2 . 2 _ _
(moc ) = Elsln 91 + E2s1n 92 + ZElE2 ZElEzcos elcosG‘2

and using Eq. (35)

2.2 - . 2 6
(moc Yo o= 2E1E2(1 cos 8) = 4E1E2 sin >
where 6 = 91 + 92. Solving for sin e
2
0 mc?
sin— =_0"
zv/ElEZ ' (36)
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The minimum value of € wwill correspond to the case E1 = E2 = _ch , that is,

when each photon has the average energy. In that case, Eq. (36) becomes
Gm - mocz

sin .
2 E

(37)

O

Let n{67)d8’ be the number of gammas emitted in d6' about 6', per photon

produced. Since the distribution is :sciropic in the CMS, then it follows
Il I 1 : : ]
n{2') dé' = -2 sin €° d6’ (38

The photons emitted in d8' aboui 6° will have energies between E1 and E1+dE1

in the LS. By differentiation of Eq. (29) we obtain in absolute value

dE =
1

poc sin §! d@! (39)

V|-

Observing that
n(E YdE_ =n(0') de!
1 1
by combining (38) and (39) we get

1
d o —=
n(E,) dE b dE, (40)

This equation expressed the fractional number of cases in which either
one of the two photons has energy in dE1 about El' But we want to relate this
number to the angle 0 = @1 + 92. For that, we make use of Eq. (36), re-

written as

( e m c2
sSin —2—"— = __ o
2 -
El(Eo El) (41)
By differentiation
o m c® 2E. - E
cos = dé = _o 1 o dE (42)

2 3/2
2 @1(E0“E117 / !
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Solving (41) for E, we obtain

1
2 / 2
m cC
2E, -E_ = 9 0 sin® 2.1
1 o e 2,2 2
sin — (m )
2
and also
8
1 ngin3 E
3/2 —~ 23
[E,(E, - Elﬂ (m_c?)

By substitution i1n (42)

cos (6/2) de
-1

dE, =_©
1 4 X Z
sin? &Jf Eo ) sin® (43)
2 c
o

Again, if we represent by n(8) d© the fractional number of cases in which the

v ©

angle between the two photons is between 6 and 6 + d6, we notice that

n(e) do = n(El) dElg and combining Eqgs. (40) and (43) we have

@) = m,C cos (8/2)

E Z
4pOSin2 2 o ) sin? & -1 (44)
2 1‘1’)002 2

We observe now that this function becomes infinite when

2
sin'Z E = rnO—c
2 E

o

that is, according with (37), for 0 = Qm. Therefore, although the value of

Gm depends on the initial energy E0 of the 7{0, in all cases the great majority
of the photon pairs produced f(;rm an angle close to Gm in the L.S, Hence, for
each individual photon the angle 8, with respect to the meson line of flight will
range between 0 and @m‘ that is, most of the photons will be within a cone of
half-angle Gmu Furthermore, we saw that when 6 takes the minimum value Qm
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the energy of each photon is equal to EO/Z, i, e., the average energy. Thus,

if most of the photons form the angle emg they will also have the average energy

EO/ZQ We also assume an isotropic distribution within the cone of half angle ©
m

We apply this result to the two cases of interest.

Case (a). Low energy 7Ou

The average energy of the pion being .38 Bev, we obtain

m _ .140

sin L = = 0.368 or 6 = 43912

. 380 m

and the average energy of the photons is

<Ei> =z .19 Bev.

Case (b). High energy zfo.,

The average energy for this group was assumed to be 2 Bev. Then
sine_zni :—’Eli;.m or9m=8°
and the average energy of the photons is
<E‘1‘ 7 =1 Bev.

We observe that there is a perfect agreement with the results obtained before.

This far, we have considered the distribution of the photons with respect
to the meson line of flight, but we are really interested in the angular distribution
of the gammas in the laboratory franme If Ny (Gx ) deb, represent the number of
photons emitted within the cone in d@b, about Ob, , we can predict some conditions
that this function must satisfy.

(i) It is a function rot only of the angle 97 ., but also of & and 91, where

0 is the angle of emission of the photon with respect to the #Cline of flight, and has
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therefore a maximum value Gm, and 91 is the angle between the direction of the

77~ and the direction of the incident particle, with a maximum value of & . Thus

ny :nx(exé e 91)

(ii) It is a positive number : nv > 0.
(111) For each pair of values 6, Glj the angle 9)’ can take any value such

that
6, - 8< 0 <8 8
1 < Nl +

(iv) The maximum value for ex is 9), =8 + &
» m

Hence,
n 06 +o&) =0,
) 4 ( m )

Nevertheless, we are not interested in an exact expression for ny , and

we assume that the photon distribution is isotropic within the cone of half-angle

"
Gm_ + 041, where i = 1, 2 refers to the iwo cases considered above.
i
Let n be the number of #’mesons produced per interaction, f_the

fraction of them with energies below 500 Mev, f2 =1 - fl the fraction with

energies above 500 Mev. The number of photons per interaction, per steradian

will be .
f inO

N)/ =
7/[1 - COS (emi +oéi)]

Using numbers:
2.25/2 =1.125

Case (a). n0 =
f = 0.56
1 N = 1 photons
o - 43° 1 sterad
mil
@ < = 90° and eb,=43° + 90° = 133°

33

(45)



MURA-530

Case (b). f2 = 0,44
_ photons
emZ = 8° Nz’z =3.21 sterad
X, = 10° and 0, = 8% + 10° =18°

IX. Neutrons

The energy and angular distribution of the neutrons is assumed to be

equal to those of the protons, as analyzed in detail in paragraph #7.

X. Interaction of secondary particles.

We are interested now in determining if the secondary particles can
suffer a second interaction before reaching the walls of the vacuum tank., For
that, we estimate the mean free path, using the same value for the cross-section,
and assuming a pressure of 10-8 mm. Hr. Then,

E = no =10'% por = 25 x 10717
or
A=4x 1015 cm.
Hence, secondary particles will reach the walls without further interactions.

In particular, the charged mesons could decay in flight into & -mesons.

Let us calculate the average distance traversed before decay. If T = 2.6 x 10—8

sec. is the mean life of the Z-meson at rest, its apparent half-life when moving

with a velocity of ﬂc is

1 =¥

and the distance traveled in the laboratory frame before decaying is

- == B E
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For the fof average energy E = 0.39 Bev, then

d1 = 1970 cm,

and for the pions of high energzy. E = 2 Bev,

d, 1 11 x 10% em.

Thus. no /A -raesons will be formed within the tank, although they will appear

in the iron and -vill have to be considered 1a further calculations.

XI. Summniary of results

In Table VI are listed the particles resulting from the interaction of

one 15 Bev proton with one nucleon at rest, as well as their estimated energies

and angular distributions.

It must be emphasized that the results are valid

provided tne target is a light nucleus otherwise the multiplicities will be

different.
TABLE VI
Type | Average Half-angle Number Number per
of energy of cone of per collision per
particle in LS., Bev lejection, LS collision sterad
rt .39 90° 1. 065 17
m¥ 2.05 7° 835 13. 67
p (2) 50 (b) 429 .50 .31
por K G
meson (a) 4,86 (b) 7 1.00 21.35
photon .19 133° 1.26 .119
o
photon 1.00 18 . 988 3.21

(a) Same for neutrons

(b) Kinetic energy
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