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ABSTRACT

An analytic and computational study has been made of the equation given
in the title, specifically for the fixed points in the case ’M/N =0.3, b=1.15,
and A\ usually equal to 0.006. The equilibrium orbits and the fixed points are
found to be obtainable quite accurately by a variational method or by use of
harmonic balance if a numerical solution of the simultaneous algebraic equations
for the coefficients of the trial function is performed. A straightforward applica-
tion of the Moser procedure is seen to involve as a first step the elimination of
the stable forced equilibrium motion--as is given by the appropriate trial-function
solution--and the new differential equation is then found to involve an s-dependent
(A-G) coefficient for the linear term. The solution is carried through, by con-
tinuation of the Moser method to the same order as in previous reports of this
series, aided where appropriate by numerical work for the particular example
considered. An alternative, and considerably simpler, analytic method similar
to the Moser procedure is also examined and is found to lead to results of reason-

able accuracy without requiring extensive numerical work. This last method also

permits one to estimate without great effort the critical value of A at which the

stable fixed point and one of the unstable fixed points become coincident.
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A. MOTIVATION

Computer studies, to be reported in detail elsewhere, have been in
progress to examine the regions of phase space from which injected particles
may be captured into a stable region whe;n a secularly-changing perturbation
(decreasing field bump) is applied to an FFAG structure characterized, under
certain simplifying assumptions, by a simple non-linear differential equation
whose stability limits are determined by the ﬂ/N —>1/3 resonance. In
parallel with the computer studies an analytic investigation has been made of

unperturbed differential equations, similar to that employed in the computer
*

work, and the results summarized in a series of MURA reports. 12,3 It is
the purpose of the present report to investigate in a somewhat similar way

the character of solutions--particularly of the limiting-amplitude solutions--to
an equation of this same form but containing a static perturbation (field bump

free of secular change).

B. PROCEDURE

The differential equation which which we shall be concerned in the present

report will be taken to be4
2 2
dv 2 7/ b 2 2's
- = 2 - cos — = 0.
352 (N > v > (cos 2s)v h 3 (1)

If one visualizes the application of the Moser procedure5 to Eq. (1), in the spirit

of previous reports in this series, 12,3 one realizes that the first step which it

*References are given in Section I at the end of this report.
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would be natural to undertake would be the removal of the forcing term

- /Ncos ZTS , from Eq. (1). * This step, which may be regarded as making

a transformation of the dependent variable so as to measure displacements

from the stable (forced) equilibrium orbit, appears to require, then, determina-
tion of this periodic solution (period 37( ) by harmonic balance or some similar
method. It may be remarked that the very steps which are then employed to
determine this stable equilibrium orbit are substantially those which also can
serve to give unstable equilibrium orbits and hence, to a degree, may provide
the solution to the questions of major interest with respect to Eq. (1).

The elimination of the forcing term from Eq. (1) results, by this pro-
cedure, in the new differential equation containing a s-dependent (A-G) co-
efficient for the linear term, thusremoving any simplification which it might
have been supposed would result from selection of the simple non-AG coefficient
for v in Eq. (1). A continuation of the analysis would then require removal of
this A-G feature from the linear term, by a transformation of the dependent and
independent variables through use of the function /5’ (s), in a manner paralleling
that illustrated in a previous report. 3 Following completion of such preliminary
steps it should then be possible to proceed with the Moser method, as it was
applied in reference 2, to obtain results which may be interpreted in terms of
the original variables after application of the appropriate reverse transformations.

It can be remarked, if one may anticipate, that the preliminary steps

mentioned above can typically be performed with acceptable accuracy more

*The writer is indebted to Dr. F. T. Cole for discussions concerning the straight-

forward method of applying the Moser procedure to equations of the form of Eq. (1).
4
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satisfactorily by numerical solution of the algebraic equations, which serve
to gpecify the coefficients of the various functions which are required, than
is possible conveniently by purely algebraic means. In view of this situation
it is understandably difficult to expect that one can obtain satisfactory final
results in a simple closed algebraic form.

In what follows we undertake to carry through the analytical procedure
outlined above for a specific example, using numerical solutions of algebraic
equations where desirable but attempting also to note approximate handy
formulas which may serve to indicate roughly the magnitude of the quantities
with which we are concerned. As a second undertaking, we also attempt to
follow, in Section H, a somewhat less logical procedure which, it is hoped,
may have some merit in circumventing the inconveniences mentioned above.

C. THE FORCED MOTION
(Stable Equilibrium Orbit)

The solution of equation (1) which describes the forced motion, or
stable equilibrium orbit, may be sought by harmonic balance or by application
of a variational procedure similar to that empléyed to find the periodic (un-
stable) solution to the equations of references 1 et seq. We thus replace Eq. (1)

by the variational statement

Y [((dv/ds)2> - (2 u/N)24v2> + (b/3) <v3 cos 28> + 2ALvV cosz—;’- ] = 0,
(2)

in which the symbol £ 3 denotes that the average value of the embraced
quantity is to be taken. For the present purpose a trial function of the form

v = A cos 2 s/3 + A,cos2s + Ajcos 10 s/3 (3)
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is substituted into Eq. (2) to obtain

S Ale-C& Lozl (S Tar e 4230 - [ o
b .3 b 2

b 2 b
T BL T A Ayt AL By Agt Ay Ag
b 3 b 2
+§A2+ZA2A3+7\A1}=0, (4)

or

b
A +Z A2A3 = ->\ (5a)

27 b 2 3b 2. b b ,2
[4 (N7]A2+4A1+—8-A2+ZA1A3+ZA3-0 (5b)

2
100 /27 b 2., b b B
T-(-—)JA tg ALt A1t AjAg = 0. (5¢)

Equations (5a-c) admit, of course, the solution A=A, = Ag=0 when

A = 0, corresponding to the equilibrium orbit v # 0 which applies in that

case; with A not necessarily zero, the corresponding solution is such that

~ A
A, 2. , 6
1 4/9 - (2 ZZ/IN)2 (6a)
with
~ b 1 2
A, = _ D A 6b
2 4 4-@dmn2 ! (eb)
and
Az - b L N 6
3 8 100/9 - (2 Z/N)? 1 (6e)

Somewhat more satisfactory results than can be obtained conveniently from

Egs. (ba-c) by algebraic means are obtainable numerically--in the particular

case that
2N = 0.3 (7a)
b = 1.15 (Tb)
A = 0.006 (7c)
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we find values of Al’ AZ, A3 such that

v =-0.0831620 cos 2 s/3 - 0.0005469 cos 2 s - 0.0000937 cos 10 s/3, {8a)
while a computer investigation6 leads to the result

v=- 0‘,0831604 cos 2 s/3 - 0.0005467 cos 2 s - 0,.0000937 cos 10 s/3. (8b)
The corresponding location of the stable fixed point, for s = 0 (mod. 3 7T),

is at

<
i

-.083802, from Eq. (8a)
and at

v -. 0838023 from direct computer studies.

The results of the numerical solution of Eqs. (ba-c) are thug found to be in
excellent agreement with the computer results, while the stable fixed point
computed from the simple forms (6a-c) would be ~.07105 ~. 00040 -. 00007 =
-.07152, or about 85% of the correct value. .
D. LIMITING-AMPLITUDE SOLUTIONS
(Unstable Periodic Orbits)

1.
In addition to the solution of Eqs. (5a-c) discussed in the previous

section, these equations admit a second solution--a solution with which the
unstable fixed point lying on the symmetry axis of the phase plot (for s = 0,
mod. 3 70) is associated. The coefficients given by this second solution

have values given roughly by
o[t -]
A 219 \N s A
b 4
s (z ﬂ)z
N

(in which the first term should represent.the value of Al for A =0), and

(9a)

7
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A, 2. D 1 % (9b)
2 L L
2
A2 D 1 A, (9¢c)
3 8 100/9 - 2 )2}

[as in (6b, c)].

A numerical solution of Eqs. (5a-c), for the parameters taken previously
[Eqs. (7a-c)], leads to the solution (unstable periodic orbit)

v =-0.426294 cos 2 s/3 - 0.014466 cos 2 s - 0.002597 cos 10 s/3, (10a)
whereas a computer investigation leads to the result

v=-0.426274 cos 2 8/3 - 0.014468 cos 2 s - 0.002598 cos 10 s/3

- 0.000098 cos 14 s/3 - 0.000010 cos 18 s/3 - -+ . (10b)

The corresponding fixed-point location (for s = 0, mod. 3 TC) is

v - 0.443357 from Eq. (10a)

and

v - 0. 443449 from direct computer studies.

With a stronger perturbation (larger A ) this unstable fixed point and the

stable fixed point will approach one another.
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Afo ' U.S.F. P,

Stable
9 » 0—
4 = 0, mod. 37 \L
A = 0.006 ' U.S.F. P.

2.
To determine in this same way the locations of the other unstable
fixed points--those situated above and below the symmetry axis of the s = 0,

mod.377 , phase plot-- a trial function more general than that shown in
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Eqg. (3) must be employed. * For this purpose we may employ the periodic

trial function
v = A1 cos 2s/3 + AZ cos 2 5 + A3 cos 10 s/3
+ (Bysin2s/3+ B, sin2s + Bysin10 s/3) (11)

which, upon introduction into the variational statement (2) leads to

S(3-C8 ot mdy o 2o (N0 - 0 30203 52)

b 3 . b 2 b 2 b b 3 b 2
—_— + = —_— —_— —_
+‘24 A1 4A1A2+8A1A3+—4A1A2A3+8A2+4A2A3

374
b z _» el 2 b 2
+4A2B1 4:’\_ZB1B3+4A2E’>3+8A2B‘2
b 2 b
-3A3B; YZA;B; Byt ) A = 0 (12)
or
2
4 [27) b b
[’§ (N ]Al BAL FZAIAL T ZA AT A A
b_2, b i
§B1 t3B1 Byt B BS;-7\ (13a)
2 /Y b b 3 .2 b, 2
[4'(—]-\J_—-JAZ+ZA1 +ZA1A + g A2+ZA3
b ,2_Db b2 ,.b 52 '
+ -2 + 2B = 0 13b
7 B; "3 By B3+ 3B, t 2 Bg (13b)

It may be noted that, in contrast to cases discussed in previous reports

(e.g., ref 1), the basic perioc of the coefficients in the differential equation

is 3 7T when the perturbation is present and the locations of the various fixed

points are no longer obtainable from a single periodic solution by substitution,

in turn, of values of the independent variable ciffering by 7 from one another.
10
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i
100 22/ b 2 b b b2 b
—— | —— A o + b b _ b }

-9 ( ] gtghy Y1 Atz A A3 B tB1 B, = 0 (130)
—-____ _b b b b b b B}

(13d)
B A B +bA B +bA B, =0 13e)
2t 2 2°277%3°"1 F (13e

[9 N)] B3+7A; B+ A B-2A, B +5A,B; = 0. (131)

Possible solutions of Eqs. (13a-f) are of course given by B1 = ]32 = B3 =0
with Al A,. Ag then being solutions of Eqs. (5a-c); the new results which

are obtained by admitting the case in which not all the coefficients B, vanish

will have, very roughly,

« (]
B 2 47/_3-’[3 j (%TZ)ZJ 1+ (14b)
b [_ +(2 zj)]

DR L s
b O e

(14b")

A numerical solution of Egs. (13a-f), again for the parameters specified by

Egs. (7a-c), suggests a solution

= 0.24463'? cos 2s/3-0.022431 cos 2 s + 0.002307 cos 10 s/3
+ (0.470329 sin 2 s/3 - 0.000021 sin 2 s - 0.003362 sin 10 s/3), (15a)

while a computer investigation gives the corresponding result

11
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v =0,244624 cos 2 5/3 - 0.022434 cos 2 s + 0.002309 cos 10 s/3
+ 0.000087 cos 14 s/3 - 0,000020 cos 6 s + * -~
+ (0.0470300 sin 2 s/3 - 0,000021 sin 2 s - 0,003365 sin 10 s/3
+ 0.000168 sin 14 s/3 - 0.000002 sin 6 s + +--) . (15b)

The corresponding fixed-point coordinates (for s = 0, mod. 3 77) are

v = 0,224513
from Eq. (15a)
p = + 0.3023
and
v = 0,224566
' from direct computer studies.
p = + 0.3030

The methods described in this section evidently are able to give a good
representé.tion of the unstable periodic solutions for the differential equation
(1). For the presént, however, we shall regard this section as a diversion
and proceed with tﬁe results of Section C to effect a removal of the forcing
term from (1) and so per mit a continuation of the analysis in the manner out-

lined in Section B,

E. REMOVAL OF FORCING TERM AND DETERMINATION OF /& (s)
| 1.

If we denote by v_ the stable periodic orbit resulting from the forcing

s
term - A cos 3-3-8— in Eq. (1), with vg taken as well given by expressions
presented in Section C [e;_g. , Eq. (3), with coefficients as illustrated in
Eqs. (8a, b)] , We may write

Vv =V, + g (16)

12
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and transform Eq. (1) to the form

2
d%q 27/ b
dsz +[(N) -b(cosZs)vs]q-E (cosZs)q2 = 0 (17a)
or, making use of (3),
dzq+(2‘l/)2 bAy  AjtAg  4s Ay g5 A A3 448
452 N/ "3 -b > cos 5 - b 3 cos 3 - b Zcos4s—b—2—-cos 3|4
b 2
"3 (cos2s)g” = 0 (17b)
in which the terms of primary importance in the coefficient of q would normally be
2
Z'ﬂ bA b Ay 4 s b Aj 8 s
_— - 2 - cos - —_—
( N ) - s 5 3 and 5 cos 3

With the coefficients of v found in Section C by numerical methods
[g‘_ Eq. (8a)], for the parameters specified by Eqs, (7a-c), the differential

equation (17b) for q becomes

2 . 8
9_‘;1 + [ 0.3603 145 + 0.0478 720 cos == 4+ 0.0478 183 cosTs

ds 3

+ 0.0003 145 cos 4 s + 0. 0000 539 cos 1638] a

- 0.575 (cos 2 §) g% = 0. (18)

2.

It is of some interest to estimate the small-amplitude oscillation
frequency LA for Eq. (18), and it is necessary for what follows to describe
the variation of the function /3 which characterizes the solutions of the
linearized equation. To this end it is convenient to introduce a change of

scale for the independent variable,

’Z':='§s (19)

and consider the linearized equation

13
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2 .
d
qz +(a+bcos2f+ccos4t)q:0 (20)
d :
with, in the case corresponding to Eq. (18),

a = 0.810 708 (21a)
b = 0,107 712 (21b)
c = 0.107 591 (21c)

(the coefficients of the higher-order terms, cos 6 T and cos 8T , being
ignored).

(i) It is tempting to attempt to estimate the oscillation frequency for
Eq. (20) by means of the "'smooth approximation'--since the value of 74._

. 2 ’
for Eq. (18) is not very far from 3 and hence the corresponding value, V
’
for Eq. (20) not far from unity (G~ near 7). however, this method would
be inappropriate. A possible, relatively quick, estimate may be obtained
by reference to available ILLIAC tables, 7 from which one finds
2
cos VYT cos Va'TC - 0. 36 b2 - 0.022 c? (22)
V= 7’
for b and ¢ small, a in the neighborhood of 0.9, and with denoting
in the present application. ith the particular coefficients of interes
g in the p pplication. With th icul fficients of interest
/

here [Eqs. (Zla-c)J, the expression (22) gives ﬂ = 0.9051, or %\ = 0. 6034,
in complete agreement with the value found by direct computation‘l" 6a for
7\ =0.006. Alternatively, a somewhat less arbitrary estimate may be made
in connection with an examination of the range of variation of /6’ , to be dis-
cussed below.

(ii) The differential equation (20) is of the form

2
d
——'9*—2+(a+bcost+c0052NZ)q=0, (20")
d T
14
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8

with N = 2, As has been noted previously, ° a rather accurate solution may

be found by use of the trial function
’ /
q = g, cos 7/2’+ fl cos (N - ﬂ,)’[: + g, cos (N + U)’Z’:
+ f2 cos (2 N - V')t + g, cos (2N + U‘)Z (23)

and use of harmonic balance. ™ There results in this way the algebraic

equations
a- V'z+§(fl+g1)+-§—(fz+g2) =0 (24a)
[a-(N-V’)Z]fl+lg.(1+f2)+-°z-g1 =0 (24b)
[a-(N+7/')2] g1+l;-(l+g2)+%fl =0 (24c)
[a-(zN-ﬂ’)Z] f 458 +5 = 0 (24d)
[a-(2N+ﬂ’)2J g2+%gl+% = 0, (24e)

/
Guided by prior knowledge of at least an approximate value of 7/ , a
numerical solution of Eqs. (24a-e) is readily obtained, leading in the present

case [coefficients given by Egs. (2la-c)] to

f, = 0.1408 59 (252)
g, = 0.0080 69 (25b)
f, = 0.0070 01 (25¢)
g, = 0.0023 33 (25d)
and V' 0.9051 (24 = 0.6034) . (25€)

The extreme values of 7//3,('3), and hence of the quantity 7/;\/3(5)

for Eq. (18), are given by8

[U ]= 1+ (fy + gl) + (fx + g2) (26)

A )0 )a [B-)u (5 )a]

iWe here omit, for simplicity, the phase shift (denoted by &€ in ref. 8) which

permits one to form in this way a general solution.
15
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the upper and lower signs referring respectively to s = 0 ( Z = 0) and
s = 3TC/4 (T = TT/2)--the range of values for 14/5 suggested by t"r nuiier-
ical values of f;. etc. given in Eqgs. (25a-e) is, then,

0.759 4 f & 1 372, (272)
These limits, (27a), are within a few tenths of é percent of the computational

values:

0.7578 z{/g 1.3755 . , (27b)

4
It appears to be quite tedious to derive ﬂ/f (T) as a function of T from

the solution q (T) as expressed by Eq. (23)--on the supposition that the

variation is a pure cosine function, however, one might write roughly

UL 3 1.066 + 0.306 cos 45/3. (28a)

b
A corresponding very approximate formula, based on taking flg 12 1-27)

and ignoring gy " might be written

4./5);\:. 1+ 4(1—P7Tcos 4s/3 or 1 +Tﬁ%cos 4s/3, (28b)
which, in the present example, would lead to
7/7\/5@ 1 + 0.284cos 4s/3. | (28b")
A more satisfactory evaluation of the functional denendence of\

may be sought by reference to the differential equation . hich is satisfizd

byﬂ ¥ .

2 2
_é;_:(z:éz - %(%dd‘ )+(a+bcosZ'E+ccos4’C )/52-":1-(29)

A functional dependence

ﬂ=A+Bcos2.Z' + Ccos 4T (30)

*Cf. Eq. (8) of reference 3.
o 16
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may be inserted into Eq. (29) and the coefficients adjusted by harmonic

balance to obtain the set of simultaneous equations

2 _6-2a-c
4

2 a b
a A B°-(6-3)C® +bAB + 2BC + cAC = 1 (31a)

-2(1—a-—cz-)AB-(7—a—c)BC+b(A2+:3;.BZ+lC2+AC)=0 (31b)
2

-a-ch
2

1
-2(4-a)AC - +b(AB+BC)+cA2+%cCZ=O, (31c)

For the parameters a, b, c¢ as given by Egs. (2la-c), a numerical solution

of Egs. (3la-c) leads to

A = 1.1536 (32a)
B = 0.3365 (32b)
C = 0.0247 ; . (32¢)

substitution of these values into the expression (30) and multiplication by
2/’(= 0.9051)* leads to the result
'I%/: 1.044 + 0.305cos 4s/3 + 0.022cos 8s/3. (33a)
The results of a computer analysis of this case leads to
dﬁ/f = 1.04501 + 0.307 35 cos 4s/3 + 0.021 56 cos 8 s/3
+ 0.001 51 cos 4s + 0.000 06, cos 16 s/3, (.33b)

with which the numerical result (33a) is in reasonable agreement.

F. ELIMINATION OF THE A-G COEFFICIENT FROM THE
LINEAR TERM AND CONTINUATION OF THE MOSER METHOD

1.
For continuation of the analysis of Eq. (18), it is convenient to intro-

duce the independent variable

*By use of the values (32a-c) in connection with Eq. (30), a value of z/°could
be estimated from this solution for /J by forming 2= £1 //).
17
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t = ’(‘_’/2 = s/3 (34)
to obtain
2
dq , 2
2 +4(G@+bcos4t+ccos8t+ --+)q-5175(cos 6t)qc = 0. (35)

As in an example presented previously{Sect. B of ref. 3] , the transformation?

Q = a/Y2¥ (36a)
t
dt
T = ) —5 6
{ % (36b)

enables one to eliminate the A-G aspect of the coefficient of the linear term

in Eq. (34), to obtain:

2
i % Q-5-175(V,ﬂ)5/2 (cos 61) Q% = 0, (37)

7
in which V7 =2 7/'-: 2 (0.9051) = 1.8102. The variables t and T become

equalat t=0, 9C/4, 7 /2, 3TC /4, 7T, etc. The quantity (ﬂ/ﬂ)s/z cos 6 t,

6b, 10

if expressed in terms of T (Fig. 1), permits Eq. (37) to be written

2
d

(‘Z + 3.2768 Q - [1.03504 cos 2T + 5.41441 cos 6 T + 3.05511 cos 10 T
dT

+ 1.26600 cos 14 T + 0.46114 cos 18 T + 0.15573 cos 22 T
+0.04940 cos 26 T + 0.0144i cos 30 T + ---] Q% = 0. (38)
It may be helpful to note that, with 7/”near 2, the oscillations will
have a phase change of about 2 7T in one period of the term 1.03504 cos 2 T
(as for an integral resonance) and a phase change near 2 7£/3 in one period
of the (larger) term 5. 41441 cos 6 T (third-integral resonance). Accordingly,
as we shall indicate in the work to follow, in undertaking to remove by the
Moser method® the T~dependence from the Hamiltonian associated with Eq. (38)
special attention must be given both to terms stemming from the cos 2 T term

above and to those stemming from cos 6 T, in order to avoid potentially-

resonant denominators. 18
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Solutions for the unstable equilibrium orbits associated with Eq. (38)
could, of course, be sought by harmonic balance, although this procedure
would be of value only as a check of the preceding wofk since the original
equation [Eq, (1)] was already treated satisfactorily by this method in earlier
sections (Sects. C and D). Thus one solution of Eq. (38) may be sought in
the form |

Q = C1 cos‘2T+Czcos()T+C3cosloTy
in which, approximately,

A, =-20,29519, A2 = - 0.01036, and A3 = - 0.00303;

1
accordingly the corresponding fixed point for @ (at T = 0) is at Q = - 0, 30858,
a=72'Q = 1.17282%(- 0.30858) = - 0.36191, and v = vg + q = - 0.08380 - 0. 36191
= - 0.44571. which is in error by about one-half of one percent of the computer
fixed point. As a further check, a direct computational determination of the
unstable fixed points for Eq. (38) was made, retaining just the first four cosine
terms in the coefficient of QZ; the values of (Q, P) found in this way were

(- 0.307 0) and (0. 263, + 1.064), which correspond to values of (v, p) which

29°
are (- 0. 44420, 0) and (0. 2245, + 0.3024(5) and thus are in good agreement
with the results (- 0.44345, 0) and (0. 2246, + 0. 3030) reported previously
(Sect. D) from direct computer studies of Eq. (1).

In the subsection to follow we continue with the Moser procedure, which
is of greater versatility than the harmonic-balance methods of Sects. C and D,

applying the Moser method to Eq. (38) and then deducing in particular the fixed

points in this way.

19
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+

2,

The Hamiltonian associated with Eq. (38) is

1 >
H:-ZPZ+%7//QZ--§(blcos2T+b2cos6T+--- +bjcos2(2j-1)T+--

(39)

/7
where P denotes dQ/dT, 2/'=1.8102, b; = 1,03504, b, = 5.41441, etc.

As in previous reports, 1-3 we now employ the generating function

Go @ %) = (1) Q2 ctn X (40)
to effect the transformation
P= 26,/3Q =0, (41a)
To = - 2Go/2X, = (V72 Q% esc? ¥, (41b)
thus
ctn ¥, = 71,, % , (423)
Jo= 53m P° + _7.2./.. Q? (42b)
Q = (2/ ML/ gliz sin Yo (42c)
P = @252 c0s Y, (42d)

and the new Hamiltonian is

K

o]

H+ 2G,/2T

H
/2 3/2
ﬂ”Jo -% (727,)'i Jo/ sin3Ya Z bjcos2(2j-1T

=1

) 1 /2332 3/2 3sin[Yo+ 2(2j- l)TJ + 3sin [){,- 2(2j - 1)T]
=V Jo -3 <7> Jo Z b
J

=1 |-sin[3%+ 223- 1] -sin[3%, - 225- V7)),
(43)

20
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As a second generating function we next employ

jﬂ(N D], +3(- g)wl X -2(2)-)T]
G%.d)-J%, z}éév),r S4{ U7 2G3-D T 4T 22 (i)

ew[SY *2(2«1-/)_73_(. £2) &o[3X-2Ri-)T]
2(2J -1 3U"-22j-0) |s @P

in which the Kronecker delta, § or % , serves to eliminate terms

which, with j =1 or j =2, would lead to terms with potentially-resonant
denominators, The transformation equations which result from the generat-

ing function G1 (Yo, Jl) are
J, = 96,18

“ 2o G2V, ) s 'y 2 [%-2(2i - )Tl
32 y2%¢ 7
SRS 4) TE PRRET L 6%

/ J=/ 4 MBY+Z@J-)TJ -G- S)M[3>G‘2(%i-/)717
2 (2j-1) 4T 3V2(2-1)

4‘37:95//&]}
4 woli+2Ri-DT) |, e Y22 -DT]
=Y0-7%(%ﬁ§lj 3 'z}”-f- Z(Zj—/) +3(' 5:]) V”_Z(ZJ"/) . (4.5—/)

I E AR CIRDIN (157 G2l -2(2j-DT]
T 372040 ViavT 2G|

with the new Hamiltonian

n

K

; = Ko+ 2G,/2T

M[Y‘I-Z(Z /)'7',’7 [ 5) 4«'»[)2~2.(34-/)7"]
‘+2(2j-1) 202~ 0

l/z
_2 2 Y
_ anl35rRR, j-DT]
3 U”—/'Z(Z,J'—/)

(-5 A [3Y,-2(2j-1T]
J 3#1/-2(2"[.‘/)

21
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[dmLYf'Z(zg /)"7+(,_g) s [Yo-23;-DT] Y
HR 3k & “2(2-1) z/".-z,(;e,J -1
585 AN -
=1 | _aen[3%+2Gi-0T] (- 55 2 B -2-0T]
3 Z/”fZ(Zjo/) J 3W”«»2[2{j—/)j

3 2l [(+2(2j-1)T] + 306m [¥, - 2(2;-)T]

;} 'M[.?)/-/—Z(ZJ-/)T] ain [3 ¥ 2»6?{] ‘/)’T’]

3¢m[3/+2(2’r D7 _34. 5 M[Y-Z(Zg—/)ﬁ
32 32— f-Z»(Z -1) -,3(2, -1)

Z, 2(2- /)/%

+2q(7ﬂ)

_ ML?)QM[zj-/)T] 2, Ao [3Y5-R(2] =T
/{fz(zj;_,) ( S) ﬂ,/Z&J‘/) J

e (;-,) T[4, wir3(5-2T) ~3.4 4t (V5 -27T)]

i [+ 2(2,) - DT 4()- ),M[BQ—Z(ZJ—/F]
27 2 (% - -2 (2; -1
T 2 ‘4 v 2 (%=1 (%4

sty 3
/6V J=/

— w3 Y+ 22T - 5‘) MB@-Z[%’W]
3022 (2f~1) 32772 (2f-1)

| 3 v [Yr2 -0 T] + 326w [, -2 (Rj 1) 7]
X ,éJ |
; I = a3 +23{-DT] - a3 -2(2j-0T] ] (4 6)

22
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To continue the work beyond this point, K;, as expressed by Eq. (46),
should be written in terms of Y/ and a final transformation then madel™3
to new variables, )g = Y/ - 2T and J, = Jq. with the aim of obtaining a
new Hamiltonian which is substantially independent of T. It would be the
intention to keep in the J; term, which is in a sense regarded as a correc-
tion term, only térm’s which are constant or possibly functions of Yz Gi.e.,

circular functions with arguments which are multiples of )g =Y, - 2T and

hence are T-independent). Since by Eq. (45b), the difference between Y/

1/2

2
1 Y; may simply be replaced by )7 in the J, terms

and Yo is of order J 1

of Eq. (46). The distinction between Y/ and ¥ in the term involving

J13/2 [bz sin 3 (Yo -2T)-3 bl sin (Yo -2 T)] does not appear to introduce
into the le term any terms of the form which we elect to retain. Consider-
able complexity arises, however, in evaluating in this same sense the pro-
duct of the two sums which appear in the le term of Eq. (46), since numerous
cross products occur which involve circular functions with arguments that

are multiples of \é =Y, - 2 T.

2
The J1 term of Eq. (46) includes, then firstly the constant terms
2
o/ by

— JZ‘, where & denotes
Zﬂ”? 1
19
1+(3b/b)2 b-2 1'5'/ 1‘5'2
o = - 1’2 +361/’Z_1 . J
y 2 i = 1\P2 2@j-1 z_ [2 2j- 1]*- 32/9%
+ 1 j= (2j-1)] ]
2
(47a)
= + 1.75516 (in our example). (47b)
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There are, in addition, cross terms which involve circular functions of

arguments that are multiples of Y2 = x - 2 T, of which we write those
b

T ILF (%),
192

depending on b2 in combination with b1 or b3 as

with

b3 1 3 3 3 3 1
F(X)=-6{— + - — + - - cos 2J,
% bz[s-ﬂ” 10-32/" 6+2/7  10-27 6+ 327 1o+v‘J #

a

by 3 3, 3, 1 Y,
—_ - CcOS
bal2+2” -7 24+327 64+ %
L.
by [ |
+ 1 3 - 1 cos 4Y2: (48a)

b, | 32/7- 2 6 - 2J“

=-1.10355 cos 2 ¥, - 0.72926 cos 4¥2  (in our example). (48b)

We accordingly take
’ 3/2 3/2
K «ﬂJ +——(?—) /[b sm3(Y-2T)-3b sm(Y-ZT)]

b [&' +F (Y -2T)]

2
91 (49)
192 27
For the final transformation we now, of course, employ the simple
generating function
G (Y, 7)) =3, () -2T), (50)
so that
I, = 2G,/3Y;, =17, (51a)
Yz = ZGZIQJZ = Y/ -2T (51b)
and

24
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K, = K, + ZGZ/QT
= K, -2,
= (V-2 1,4 5 (72,7)3/2J2/2 (b, sin 3% - 3b, sin ¥%) (52a)
b £¢’+F(§)J 2
192 77

Since K,, as expressed by Eq. (52a), is so written as to be T-independent,

we take K2 to be a constant of the motion. In our present example this

invariant is

3/2

K, = - 0.1898 J, + 0.048389 (5. 41441 sin 3 ¥z - 3.10512sin %) J,

-2
+ [0.045179 - 0,028406 cos 2, - 0.018772 cos 4 )Q] J, - (52b)

G. THE FIXED POINTS
[In Particular For T = 0]

1.
The fixed points associated with the Hamiltonian K, of Eq. (52a) are
given by points which simultaneously satisfy
aKz/a)E = 0 and 2K2/2J2 = 0, (53a, b)
so that K, is stationary. If it were not for the presence of the function
F( \/2. ), the first condition would be met when

cos Y?‘ = 0 or when 4 cos? Yz -3 (54a, b)

- 1
b2
The two roots in addition to the root )Q = 270° appear to be shifted by about

5/3 degree by inclusion of the function F ( Yz’ ) in the calculation, and the
1/2

value of J2 which corresponds to these latter roots increased by about

3 percent. Estimates of these solutions to Eqs. (53a,b) are given in Table I, *

>kThe roots chosen here are selected so that, with ‘I/'Z 2, J2172 will be positive.

At T =0 the values of ¥ will be identical with % [Eq. (51b)].
25



together with the associated values of K,, which are now necessarily not

all the same.

Values of YZ J‘2 for which the Hamiltonian K
(bl/b2 = 1.03504/5.41441)

TABLE I

2
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can be Stationary

1/2
Root Yz 3 Yz, J‘2 J> K,
1 - 90° - 270° 0.291 84 0.0851 68 | -0.0055 21
2, 3 280 41 85223
151950 | 454%77 0.579 58 | 0.335915 | -0.0226 50
It will be recalled that J; = J, and, for T =0, Y, =Y, . Inthe

following subsection we make the inverse transformations necessary to

express these results in terms of the original variables, specifically for

T =0 (s = 0),

For the assumed value of T, namely T = 0 in the present case, the

values of Y‘& (= x ) and J.2 (= Jl) may be transformed to corresponding

values of X, R Jo by means of Eqs. (45a,b). This transformation is least

laborious in the case designated as "Root 1'" in Table I, since, for that case,

Y,, = )l/ (= 270°). Once the desired values of \/o: J0 are obtained, @ and

P (= dQ/dT) follow immediately from Eqs. (42c,d).

Vﬁ = 1.3755 and d( Vﬂ)/dt = 0, one next may evaluate

a - 78 a

= 1.17282 @

26

Since, at T = 0,

(55a)
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dq/dt = (1/¥Z)dQ/AT = P/¥2f = P/1.17282.* (55b)
Finally, of course,
v = v +q= -00880,+q [fromEq. (16)] 56a)
and
- dv 1 dq (56b)
P= 4 "3 @

since t = s/3 [Eq, (34)] and dv /ds = 0 at s = 0. In this way we estimate
the values listed in Table II.
TABLE 1I

Values Leading to Fixed-Point Coordinates
(T=0, s=0)

' 172
Root| ¥, I Q P q dq/dt
1 [g0° |0.29265]-0.30761 0 -0. 36077 0

2, 3{25%11
" |i54%89| 0.5665 | 0.2527 | +0.9761| 0.2964 |+0.8323] 0.2126| +0.2774

ﬁﬁ:m#ﬁ#

The true values for the coordinates v, p of the unstable fixed points,

as given by the computer, are (Sect. D)

v = = 0,44345, p = 0,

v = 0,2245, p = + 0.3030 ;
it is seen, accordingly, that the present "analytic' method gives (as Root 1)
the location of the unstable fixed point which lies on the v-axis with an accuracy
considerably better than 1 %, but that the values of v and p for the other un-

1
stable fixed points are respectively smaller than the correct values by 5 -?: and

*gf_ Eqgs. (17a,Db) of ref. 3.
27
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8% %. These ahalytic results were not materially affected by a refinement
of the function F ( Yz ) [Eq. (48b)] , which enters in Eqs. (52a,b), through
inclusion of terms involving b3b4 in the coefficient of cos 2 Yz and terms

involving b1 b, and b2 b4 in the coefficient of cos 4 Xz, .

3

H. ALTERNATIVE, SIMPLIFIED, ANALYTIC METHOD

The analytic method of the previous sections, in which it was attempted
to follow the Moser procedure in an orderly fashion, clearly involved consider-
able complexity in the details of the calculations, It was necessary, firstly,
to undertake some numerical work in order to estimate adequately the stable
solution for the forced motion. Subsequently, once the forcing term was re-
moved from the equation of motion, additional labor was required because the
new differential equation then contained an A-G coefficient for the linear term.
Because of these complications, it would seem difficult to arrive at useful
formulas by following the methodology on which our numerical work was based
and, accordingly, it is of interest to explore a somewhat less straightforward,
but simplified, analytical procedure.

In this second method the effect of the forcing term will only be eliminated

immediately by subtraction of that part which would result from consideration

3/2
of the linear terms of Eq. (1). In the subsequent work, terms of order A Jl
2 o : : 3/2
and A J1 in the Hamiltonian will be neglected, in comparison to the J,;
2

term and the constant part of J1 term, since A may in a gense be regarded
as a perturbation. Information concerning the stable equilibrium orbit, as well

as pertaining to the unstable equilibrium orbits and other features of the motion,

should then result from the analysis.
28
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1,

We commence, therefore, with the differential equation (1), for which

the Hamiltonian has the form

1 2 2
he=tpZ+ L2PY 02 (h/6) (cos 2 8) v - A (cos 25) v . (57)
2 2\ N 3

For the initial transformation, to quantities akin to angle-action variables,

we employ the generating function

2
A 2's 2 7a) . 28
Y 4 S L= T = sinZ2)v + f (s),
V+4 27)2 cos 3 CtnYo + 3 27 2( 3

4
s (% 5-(x 58)

where f (s) would be selected to obviate the need to include in the new

F, (V,X)=%

Hamiltonian terms which only involve the independent variable and hence

play no significant role. The resultant transformation is

2s 2 N . 28
p= 2F0/9v =—2—7-} v + ) > cos 3 ctnYo+§————sm—-

Ny 4 _Z_Zj 3
91N 9 N (59a)
2
LY 2 Zs 2y . 59
Jo=-— QFO/Q)Q "—.]\T—[V+_4___&}_’ cos —3 csc Ya’ (59b)
9 \ N
so that
p 2 . stS
"3 4-ny\ 3
ctnYo = %— 9£—:{4-) (60a)
2 A 2s
v+ ———— Cos—~—
s ()
9"('1\1_
2 z 2
J =-4l— p-E 2 2sinz3 + v + 2 c:osz'S ,
o 33.:_(_.1)) N 4 Yy 3
(% ey

29
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(60c)

(60d)

1

.l

10 s
3

)

28,
3

N 1/2 5
v=(7) sinYo ) cosE.Bi
s é_ 27)2
9 N
% 12 2 2
p=2(W Jo cosYo -5 —_—
\ 27})2 3
and the new Hamiltonian is found to be (after so;ne intermediate algebraic
work)
H, = h + 2JFy/Ds
/2 -sin(S% +Zs)+sin(3fo-2s)
3/2
- 48(7/) -3sin (¥ +2s)-3sin (¥ -2 s)
L
2.0058—38- + 20084—3'8—
s BN AN 3 o
167:}_ 27 ° —cos(Z)G +___)-cos(2Y-—Ss—
° (N 4 s 4s
-cos(ZYo+— -cos(Z)g —
i 3 3
-Zsin(Yo+Zs)-Zsin(Ya - 2 8)
b}l a2 1/2 10 s
+R ) . ZZJO -s1n(Y+—3-)-s (Ya-
-5-(21))]
N L-sin(Yo +_233)-sin(Y

(61)

[The nature of the transformation and its effectiveness in removing completely

the coupling term from the linearized differential equation (1) may be evident

from Eqgs. (60a) and (61).

The general character of the Hamiltonian H, of

(61) is seen to correspond to that given for K, by Eq. (50) of ref. l(p. 2J),

noting that, in ref. 1,

sin 2 t is employed in the v% term of the differential equation.J

30

b = 1 and that for our present - cos 2 s the function
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Paralleling previous work, l we now make the next transformation by

use of the generating function

~

cos (BYO + 2 8)
3/2
' _3cos()§+28) cos (%% - 2 s) -
L 1+ 7//N 1- ZJN
(62)
so that
3/2 3/2 _sin(3"{¢+28)
Jo= JF 1Y =13, +—3112(—71‘;) 1 1+32/N
sin (Yo + 2 s) sin ( X5 - 2 s)
i_* 1+ 72//N 1- 2//[N | (63a)
3/2 \cos (SYO + 2 8)
b /N 1/2
]C: 3F1/2J1=Y ZZ(V I, | 1+3 %N
3cos(Y‘,~1-Zs) cos (¥, - 28)
| 1+ 2//N 1-2/IN ] ®
(63b)
and
H1=Ho+ QFI/QS -
/2 sin (3%, + 2 s)
= H +.2€%j Jg/2 1+372//N
0 " 48 1 sin (¥, + 2 s) sin (% - 2 s)
:’3 1+ 7Z/N 1-7//N_
3/2 3/2
’gz—l\lﬂ-J +——() sin(3Y-2s)
. 6 YN 1 ]
2048 (7 VZ/N 1+ 372N
4 s
1674 w Jpcos @Y - =)
7)1 1/2 sin 7; 23— (64)

67

21
[
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in which the last result follows after some algebraic simplification, and as

. 3/2 2
a result of neglecting terms of the order 2 Iy Va) Jl, and terms
which do not involve circular functions which are multiples of ( Y/ - 2s5/3)--
[cf Eq. (54) of ref. 1 (p. 22)]

For the final transformation we employ, as in previous work, the

generating function

. v _ 28 .
Fo (W, 3 = 3, (- 52, (65)
so that
I = 3F,IY, = I, (66a)
2
Woe W23, Y -5 (66b)
and
; 2
H -39
3/2
1 b /N 3/2 béct 2
= Z(T\I" 3)J2 +'ﬁ(‘77) J.2 sin 3Y2 + 2048(]%) Js
b N
-1_67 —r J2 cos ZYZ-

[_ci Eq. (57) of ref. 1 (p. 23)] , where

6 YN . 1
1-27%/N% 1+ 372N
[cf. Eq. (25) of ref. 1 (pp. 13, 23)] . The Hamiltonian, H,, in the form

o=

written, is independent of s and will be taken as a constant of the motion.
32



MURA-497

2.
To obtain the fixed points, in particular, we may take the Hamiltonian
H2 to be stationary, as given by setting the partial derivatives aHz/));

and PH, /2 J2 each equal to zero; specifically,

3/2 3 1/2 2
16 V) JZ cos 3‘Y2, +.8.g)4 Fﬁ JZ sin Zg‘;%) {;_ﬁL]Z J;/ZcosYz =0
o CZN (69a)
and
Z_l‘ bN3/2 1/2 . b4 /N
Z(N §)+ 33(7 JZ sin SYZ: +W(;7) 2
b N _ A pY/2 AR g
- ———CoszYz_— )1 e | sin)%:O.
167V 4_f2 48 32@ 4 _p2gH?% @ (69b)
9 S

Two roots of interest for Eq. (69a,b), corresponding to the stable and
unstable fixed points which lie on the v-axis of the phase plot for s = 0 (mod. 37),

are obtained by taking 33 = - 90° and J, as satisfying

: 2 3
32\ 7/, * 1024 7 2

b N __7‘_ ._}?...El/z ——7-‘—2:—- -2
3 {/ [’é'(T)J

in which the term of order J, is comparatively small--for small A one root,

in fact, may be estimated roughly by consideration of just the constant term

and that involving J -1/2 , while the other is given roughly by use of just the
constant term and that which involves Jé/z. Numerically, for

7/N =0.3, b = 1.15, and A = 0.006,

33 |



MURA-497

Eq. (70) becomes

1/2 _ 4 04964 + 0.00033124 3°2% =0, (10"

0.06944 J, + 0.21871 J, 2 =

1/

with roots for J, 2 given by 0. 0068815 and 0. 20615 . The remaining roots
of interest similarly involve simultaneous solution of Eqs. {69a,b) for values
of XZ near 30° or the supplementary angle 150°. To obtain the corresponding
v, p coordinates of the fixed points, at s = 0 (mod. 3 7C), one must next trans-
form )g' (= Y, for s = 0) and JZ (= Jl) to Yo . JO and thence to v, p by
use of Egs. (63a,b) and\ (60c, d).

It may be noted in passing that the two roots of Eq. (70) become coincident
for a critical value of A given approximately by

2
’/;l v 64 l-Z)(l-}-:Z) 2 (71)
b{3 N 3 N N

0.01175 ,

1rd

for 2//N =0.3 and b = 1, 15; a more accurate numerical estimate,again
based on Eq. (70), gives

7‘c = 0.01168 ,

with

1/2 _ 0. 0740

J, 4°

from which one finds, by Eq. (63a),

Jl/z =0.07412
o
and, by Egs. (60c, d),
1/2
10 0.01168
= -[—= .07412) - —m8m8
Ve < 3) (0.0 ) 4_ 36
9 100
=-0.13532 - 0.13832
= - 0. 27364 5
p.=0.
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The correct values for this confluent situation, as obtained by direct digital

computation, 4 are
QA =0.01136,
Ve = - 0,2650,
P =0
so that our estimates for 7‘_! and v, are evidently some 3% larger, in
relative magnitude, than the correct values. 11
Returning to our example with 2 = 0. 006, the fixed-point coordinates
found by the present method of analysis are as summarized in Table III.
TABLE III
Estimated Fixed-Point Coordinates at s = 0, mod. 37T
24N = 0.3 b=1.15 2= 0.006
r\
Calculated values Eomqu’cer Relative
Root Y esulis Error
J Y J v P
% 2 ° o v p €, ef,
= ———
Stable—90° 0.0068815 _900 0.0068822 '0.083618 0 -0.083802 0 -0. 22(70 -
_90° . -0. 0 -0, 44345 0 +1.15% --
1 90 O..20615 -90° 0. 2.0676 0 44855 %
ls) [0}
2 3| 34290 312 124 0. 303, 0.216, |+0.284] 0.2246 |+0.3030(-% % -6%
= — 4=m=======J
The results obtained by the present simplified method not only are far more
easily obtainable but appear to be of as good accuracy as those previously
summarized in Table II (Sect. G).
/‘\
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ne

) N
4/9 - (22 /N)?

vy (A) (72a)

(A) ¥ (A =0)+ 2 . 72b
Y2 V2 4/9 - 2 VINF (720)
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A parabolic fit, tangent to the lines (11a,b) at A=o, may be obtained by

writing

NV [v-v (A =0)] [ar9- ¢ Zm?) . (73)
Vz(?\ = 0)

for which the maximum value of A ,

2 i [4/9-(2 7N - [-v,(2 =0], (74a)

is attained at

= 1 =
vc_-zvz(ﬂ_O).. (74b)

With 2 ﬂ/N = 0.6 and - v, (2 =0) = 0,5238 [from computational results

cited in ref. 1, after division by b

1.15], Eqs. (74a,b) suggest

42 = 0.01106
v. = =-0.2619,
C

which may be compared with the computational results cited in the text, namely

by

0.01136

- 0.2650 .

<
i
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