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ABSTRACT 

An analytic and computational study has been made of the equation given 

in the title, specifically for the fixed points in the case £lIN = O. 3, b = 1. 15, 

and A usually equal to 0.006. The equilibrium orbits and the fixed points are 

found to be obtainable quite accurately by a variational method or by use of 

harmonic balance if a numerical solution of the simultaneous algebraic equations 

for the coefficients of the trial function is performed. A straightforward applica­

tion of the Moser procedure is seen to involve as a first step the elimination of 

the stable forced equilibrium motion--as is given by the appropriate trial-function 

solution--and the new differential equation is then found to involve an s-dependent 

(A-G) coefficient for the linear term. The solution is carried through, by con­

tinuation of the Moser method to the same order as in previous reports of this 

series, aided where appropriate by numerical work for the particular example 

considered. An alternative, and considerably simpler, analytic method similar 

to the Moser procedure is also examined and is found to lead to results of reason­

able accuracy without requiring extensive numerical work. This last method also
 

permits one to estimate without great effort the critical value of )\ at which the
 

stable fixed point and one of the unstable fixed points become coincident.
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A, MOTIVATION 

Computer studies. to be reported in detail elsewhere. have been in 

progress to examine the regions of phase space from which injected particles 

may be captured into a stable region when a secularly-changing perturbation 

(decreasing field bump) is applied to an FFAG structure characterized, under 

certain simplifying assumptions, by a simple non-linear differential equation 

whose stability limits are determined by the V/N ---71/3 resonance, In 

parallel with the computer studies an analytic investigation has been made of 

unperturbed differential equations, similar to that employed in the computer 

1 2 3':< 
work, and the results summarized in a series of MURA reports, 0, It is 

the purpose of the present report to investigate in a somewhat similar way 

the character of solutions--particularly of the limiting-amplitude solutions--to 

an equation of this same form but containing a static perturbation (field bump 

free of secular change). 

B. PROCEDURE 

The differential equation which which we shall be concerned in the present 

report will be taken to be4 

2d v b 2 2 s(2 tJ)2
(GZ + \~ v - 2" (cos 2 s) v - »cos -3- := 0, (1 ) 

If one visualizes the application of the Moser procedure 5 to Eq. (1), in the spirit 

of previous reports in this series, I, 2, 3 one realizes that the first step which it 

*References are given in Section I at the end of this report. 
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would be natural to undertake would be the removal of the forcing term 

- ,7\cos 2t ' from Eq. (1), *' This step, which may be regarded as making 

a transformation of the dependent variable so as to measure displacements 

from the stable (forced) equilibrium orbit, appears to require, then, determina­

tion of this periodic solution (period 31f) by harmonic balance or some similar 

method. It may be remarked that the very steps which are then employed to 

determine this stable equilibrium orbit are substantially those which also can 

serve to give unstable equilibrium orbits and hence, to a degree, may provide 

the solution to the questions of major interest with respect to Eq. (1 L 

The elimination of the forcing term from Eq, (1) results, by this pro­

cedure, in the new differential equation containing a s-dependent (A-G) co­

efficient for the linear term, thus removing any simplification which it might 

have been supposed would result from selection of the simple non-AG coefficient 

for v in Eq, (1). A continuation of the analysis would then require removal of 

this A -G feature from the linear term, by a transformation of the dependent and 

independent variables through use of the function ;1 (s), in a manner paralleling 

that illustrated in a previous report. 3 Following completion of such preliminary 

steps it should then be possible to proceed with the Moser method, as it was 

applied in reference 2, to obtain results which may be interpreted in terms of 

the original variables after application of the appropriate reverse transformations, 

It can be remarked, if one may anticipate, that the preliminary steps 

mentioned above can typically be performed with acceptable accuracy more 

*The writer is indebted to Dr. F, T, Cole for discussions concerning the straight­

forward method of applying the Moser procedure to equations of the form of Eq. (1). 

4 
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satisfactorily by numerical solution of the algebraic equations, which serve 

to ~ecify the coefficients of the various functions which are required, than 

is possible conveniently by purely algebraic means. In view of this situation 

it is understandably difficult to expect that one can obtain satisfactory final 

results in a simple closed algebraic form. 

In what follows we undertake to carry through the analytical procedure 

outlined above for a specific example, using numerical solutions of algebraic 

equations where desirable but attempting also to note approximate handy 

formulas which may serve to indicate roughly the magnitude of the quantities 

with which we are concerned. As a second undertaking, we also attempt to 

follow, in Section H, a somewhat less logical procedure which, it is hoped, 

may have some merit in circumventing the inconveniences mentioned above. 

C.� THE FORCED MOTION 
(Stable Equilibrium Orbit) 

The solution of equation (1) which describes the forced motion, or 

stable equilibrium orbit, may be sought by harmonic balance or by application 

of a variational procedure similar to that employed to find the periodic (un­

stable) solution to the equations of references 1 et seq. We thus replace Eq. (1) 

by the variational statement 

i' [«dv/ds)2> - (2 VIN)2£..v2) + (b/3)~v3 cos 2 s) + 2/t(vcos 2 S>] = 0,
3

(2) 

in which the symbol <) denotes that the average value of the embraced 

quantity is to be taken. For the present purpose a trial function of the form 

v = Al cos 2 s 13 + A2 cos 2 s + A3 cos 10 s I 3 (3) 

5 
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is substituted into Eq. (2) to obtain 

(4) 

or 

b 2 b b b 
A+-A +-AA+-AA+ AA = -A (5a)
181212413 423 

(2 1Jf] b 2 3 b 2 b b z (5b)[ 4 - \N) Az + 4 Al + -8- A Z + 4' Al A 3 + 4 A 3 = 0 

100 (2 V\21 b z b b (5c)[ -9- - N) A3 + 8" Al + 4 Al A Z + Z A Z Ag = O. 

Equations (5a-c) admit, of course, the solution Al =A 2 =A =0 when3� 

A = 0, corresponding to the equilibrium orbit v • 0 which applies in that� 

case; with 7\ not necessarily zero, the corresponding solution is such that 

(6a) 

with 

;V bIZ 
(6b)A 2 '=" - 4 tJ Al

4 - (2 /N)Z 

and 

1 
(6c) 

100/9 - (2 V/N)2' 

Somewhat more satisfactory results than can be obtained conveniently from 

Eqs. (5a-c) by algebraic means are obtainable numerically--in the particular 

case that 

-v1N = 0.3 (7a) 

b = 1. 15 (7b) 

A = 0.006 (7c) 
6 
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,,,,,",� we find values of AI' A 2, A 3 such that 

v =- 0.0831620 cos 2 s/3 - 0.0005469 cos 2 s - 0.0000937 cos 10 s/3, (Ba) 

while a computer investigation6 leads to the result 

v = - 0.0831604 cos 2 s/3 - 0.000546 7 cos 2 s - 0.0000937 cos 10 s/3. (8b) 

The corresponding location of the stable fixed point, for s = 0 (mod. 3 7[). 

is at 

v = -.0838026 from Eq. (8a)� 

and at� 

V :: -.083802 from direct computer studies.�3 

The results of the numerical solution of Eqs. (5a-c) are thua found to be in 

excellent agreement with the computer results, while the stable fixed point 

computed from the simple forms (6a-c) would be -.07105 -.00040 -.00007 :: 

-.07152, or about 85% of the correct value .. 

D.� LIMITING-AMPLITUDE SOLUTIONS 
(Unstable Periodic Orbits) 

1. 
In addition to the solution of Eqs. (5a-c) discussed in the previous 

section, these equations admit a second solution--a solution with which the 

unstable fixed point lying on the symmetry axis of the phase plot (for s =O. 

mod. 3 'TO is associated. The coefficients given by this second solution 

have values given roughly by 

Al!l;\-B� ~ - (~tJ 
b 

+� (9a) 

(in which the first term should represent. the value of Al for /\ = 0), and 

7 
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(9b) 

b 1A cl (9c)
3 8 100/9 - (217/N)2 

[as in (6b, c)]. 

A numerical solution of Eqs. (5a-c), for the parameters taken previously 

[Eqs. (7a-c)], leads to the solution (unstable periodic orbit) 

v =- 0.426294 cos 2 s/3 - 0.014466 cos 2 s - 0.002597 cos 10 s/3, (lOa) 

whereas a computer investigation leads to the result 

v =- 0.426274 cos 2 s/3 - 0.014468 cos 2 s - 0.002598 cos 10 s/3 

- 0.000098 cos 14 s/3 - 0.000010 cos 18 s/3 - .... (lOb) 

The corresponding fixed-point location (for s =0, mod. 3 n) is 

v = - 0.443357 from Eq. (lOa) 

and 

v = - 0.443449 from direct computer studies. 

With a stronger perturbation (larger ':A ) this unstable fixed point and the 

stable fixed point will approach one another. 

8� 
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U.S.F.P, 

~ - O. mod. 37'C 

~ ;;; 0.006 U.S.F.P. 

2.. 

To determine in this same way the locations of the other unstable� 

fixed points--those situated above and below the symmetry axis of the s :.= 0,� 

mod.31T> phase plot-- a trial function more general than that shown in� 

9 
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Eq. (3) must be employed, >:< For this purpose we may employ the periodic 

trial function 

V :':' Al cos 2 8/3 + A Z cos 2 s + A 3 cos 10 s/3 

:!:.. (B 1 sin 2: s / 3 + B 2. sin 2. s + B 3 sin' las /3) (11) 

which, upon introduction into the variational statement (2) leads to 

<: [1 [4 (2 ~)2J l 2 1 [ (z V)ZJr, 2 2) 1 r100 (2 Z/f]('2 2)() 2: 9- N} ~l + B 1 ) + 2" 4 -\N ~2 + Bl + 2" [-9--\N) A 3 + B3 

+~A3+.£A2A b 2 A b b 3 b . 2 
- Al 3 + -4 Al A 2 A 3 + -8 A 2 + -4 A 2 A 324 1 4 1 2 +
8 

(12) 

or 

(l3a) 

(13b) 

>:<It may be noted that, in contrast to cases discussed in previous reports 

(e. g., ref 1), the basic period of the coefficients in the differential equation� 

is 3 IT when the perturbation is present and the locations of the various fixed� 

points arc no longer obtainable from a single periodic solution by substitution,� 

in turn of values of the independent variable Ciffering by 7r from one another.� 
10� 
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(13e) 

(13f) 

Possible solutions of Eqs. (13a-f) are of course given by B
1 

=: B =B =0
2 3 

with AI' A2; A 3 then being solutions of Eqs. (5a-c); the new results which 

are obtained by admitting the case in which not all the coefficients Bi vanish 

will have, very roughly, 

4{~ -crrfJAl~ (l4a) 
b 

Bl~ 
4f3 [~ -(\f/1 bit (14b) 

b 6 [~ +(¥fJ 2 

IV 413[: - e%t] 1 /\ ,
= + - (14b ) 

b 1'3 [: - (2/)J 

A numerical solution of Eqs. (13a-f), again for the parameters specified by 

Eqs. (7a-cL suggests a solution 

v =0.244637 cos 2 s/3 - 0.022431 cos 2 s + 0.002307 cos 10 s/3 

+ (0.470329 sin 2 s/3 - 0.000021 sin 2 s - 0.003362 sin 10 s/3L (15a) 

while a computer investigation gives the corresponding result 

11 
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v =0.244624 cos 2 s/3 ... 0.022434 cos 2 s + 0.002309 cos 10 s/3 

+0. 000087 co~ 14 s/3 - 0.000020 cos 6 s + ,'. 

+ (0.0470300 sin 2 s / 3 - 0.000021 sin 2 s - 0.003365 sin 10 s / 3 

+ 0.000168� sin 14 s/3 - 0.000002 sin 6 s + ... ) , (15b) 

The� corresponding fixed-point coordinates (for s =0, mod. 3 'Tr) are 

v = 0,224513 
from Eq. (15a)}p = + 0.3023 

and 

v = 0,224566 
from direct� computer studies.}

p = + 0.3030 

The methods described in this section evidently are able to give a good 

representation of the unstable periodic solutions for the differential equation 

(1). For the present, however, we shall regard this section as a diversion 

and proceed with the results of Section C to effect a removal of the forcing 

term from (1) and so per mit a continuation of the analysis in the manner out­

lined in Section B, 

E. REMOVAL OF FORCING TERM AND DETERMINATION OF ~ (s) 
j� '" 

1. 

If we denote by v s the stable periodic orbit resulting from the forcing 

term - ~ cos ¥ in Eq. (1)' with v s taken as well given by expressions 

presented in Section C [e.,.:.&., Eq. (3), with coefficients as illustrated in 

Eqs. (8a, b)], we may write 

(16) 

12 
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and transform Eq. (1) to the form 

::i + [e:)2 - b (cos 2 s) v s 1q - ~ (cos 2 s) q2 - 0 (17a) 

or J making use of (3),� 

d.Zq ~(2tJ1 bAZ Al + A 3 ~ Al 8 s A 2 A 3 16 sJ� - + -- - -- - b cos - b -2 cos -3-- b Tcos 4s -b-cos-- q
ds Z N Z Z 3 z 3 

- b (cos Z s) qZ =: 0 (17b) 
2 

in which the terms of primary importance in the coefficient of q would normally be 

Z-,})2 _ bAZ b Al 4 b Al 8 s 
--- cos~ and - -cos -­( N -, Z 3 > Z 32. 

With the coefficients of v found in Section C by numerical methods 
s 

[Cf. Eq. (8a)], for the parameters specified by Eqs. (7a-c), the differential 

equation (17b) for q becomes 

dZq [ 4 s • 8 s - + O. 3603 145 + 0.0478 720 cos -3- + 0.0478 182 cos ­
ds 2 3� 

+ 0.0003 145 cos 4 s + 0.0000539 cos 16 s] q3 

- 0.575 (cos 2 s) q2 =: O. (18) 

2. 

It is of some interest to estimate the small-amplitude oscillation 

frequency·~ for Eq. (18), and it is necessary for what follows to describe 

the variation of the function I which characterizes the solutions of the 

linearized equation. To this end it is convenient to introduce a change of 

scale for the independent variable, 

2
(19)1:'=3"s 

and consider the linearized equation 

13 
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+ (a + b cos 2"'r; + c cos 41:, ) q :; 0� (20) 

with, in the case corresponding to Eq. (18), 

a = 0.810 708� (2la) 

b = 0.107 712� (2lb) 

c = 0.107 591� (2Ic) 

(the coefficients of the higher-order terms, cos 6 rr: and cos 8?::: , being 

ignored). 

(i) It is tempting to attempt to estimate the oscillation frequency for 

Eq. (20) by means of the "smooth approximation"--since the value of ~ 

2� ~J'
for Eq. (18) is not very far from - and hence the corresponding value, v J 

3 , 
for Eq (20) not far from unity (0- near'TC>, however, this method would 

be inappropriate, A possible, relatively quick, estimate may be obtained 

by reference to available ILLIAC tables, 7 from which one finds 

cos v1tr;:. cos fi'tC - 0.36 b 2 - 0.022 c 2 (22) 

for band c small, h in the neighborhood of 0.9, and with t/'denoting 

{ z5.. in th7 present application. With the particular coefficien ts of interest 

here [Eqs. (2la-c)], the expression (22) gives z}' = 0.9051, or ~ ::: O. 6034, 

in complete agreement with the value found by direct computation4,. 6a for 

A = 0.006. Alternatively, a somewhat less arbitrary estimate may be made 

in connection with an examination of the range of vari~tion of ~ , to be dis­

cussed below. 

(ii)� The differential equation (20) is of the :lb rm� 

2�d q
- + (a + b cos N 'C + c cos 2 N Z ) q = 0, (20 ') 

d 'Z::' 2 

14 
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with N :: 2. As has been noted previously, 8 a rather accurate solution may� 

be found by use of the trial function� 

q :: go cos -zJt + f1 cos (N - V') 1: + gl cos (N + -VI),?:� 

+ f2 cos (2 N - V') 'C + g2 cos (2 N + t.J1)'C (23) 

and use of harmonic balance. * There results in this way the algebraic 

equations 

z),Z b c 
a - + 2' (f1 + gl) + 2' (f2 + g2) :: 0 (24a) 

[ a - (N - z}') 2 ] f1 + ~ ( 1 + f2) + ~ g 1 = 0 (24b) 

[ a - (N + V')2J gl + ~ (1 + g2) + ~ f1 
:: 0 (24c) 

[ a - (2 N - z),)2J f2 + ~ f1 + ~ :: 0 (24d) 

[ a - (2 N + z)')~ g2 + ~ gl +~ - o • (24e)
2 

Guided by prior knowledge of at least an approximate value of -V') a 

numerical solution of Eqs. (24a-e) is readily obtained, leading in the present 

case [coefficients given by Eqs. (21a-c) ] to 

f :: 0.1408 59 (25a)
1 

.- 0,0080 69 (25b)gl� 

f :: 0.0070 01 (25c)�
2 . 

g2 :: 0.0023 33 (25d) 

and -V'::: 0.9051 (tJ,..:-, O. 6034) . (25e) 

The extreme values of VJ1 (~), and hence of the quantity ~/(s) 

for Eq. (18), are given by8 

rId ..91_ 1 + (f1 + gl) + (f2 + g2)l' ?if"J- .,(26) 

1+[(~- ~ fl-(~+ VglJ -[e~- 0fz -(?+ l)gZ]� 
"We here omit, for simplicity, the phase shift (denoted by €.. in ref. 8) which 

permits one to form in this way a general solution"� 
15� 
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the upper and lower signs referring respectively to s ;:, 0 (7: ~ 0) and 

s = 3 7!/4 ('I: :-: 'It/2)--the range of values for ~I suggested by t :lllL~er-

ical values of f1.' etc. given in Eqs. (25a-e) is, then 

0.759., ~ft ~ 1 372 . (27a) 

These limits, (27a), are within a few tenths of a percent of the computational 

values: 

O. 7578-' ~/~ 1. 3755 . (27b) 

It appears to be quite tedious to derive V/1 ('t') as a function of 1: from 

the solution q ("Z=') as expressed by Eq. (23)--on the supposition that the 

variation is a pure cosine function, however, one might write roughly 

~I ~ 1. 066 + 0.306 cos 4 s/3. (28a) 

A corresponding very approximate formula, based on taking f1~ 8 (1 
b
_ z./") 

and ignoring g1' . ,might be written 

b
~I~ 1+4(1~"'i/)cos4s/3 or 1+ 2 (l _a) cos4s/3, (28b) 

which, in the present example, y%uld lead to 

~/~ 1 + 0.284 cos 4 8/:3 . (28b ') 

A more satisfactory evaluation of the funct50nal dc)endence of 

may be sought by reference to the differential equation "chich is satisfi:?i 

by 11 :':< 

A functional dependence 

~ = A + B cos 2 1: + c cos 41:" (30) 

*Cf. Eq. (8) of reference 3, 
16 
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may be inserted into Eq (29) and the coefficients adjusted by harmonic 

balance to obtain the set of simultaneous equations 

2 6-2a-c 2 a 2 b 
a A - 4 B - (6 - 2') C + b A B + "2 B C + C A C = 1 (31a) 

- 2 (1 - a - .£) A B - (7 - a - c) B C + b (A 2 + ~ B 2 + ~ C 2 + A C) = 0 (31 b)
2 4 2 

1-a-c 2 2 3 2 
- 2 (4 - a) A C - B + b (A B + B C) + c A + - C C ::: O. (31 c)

2 4 

For the parameters a, b, c as given by Eqs. (21a-c), a numerical solution 

of Eqs. (31a-c) leads to 

A - 1. 1536 (32a) 

B - 0.3365 (32b) 

. 
C = 0.0247; (32c) 

substitution of these values into the expression (30) and multiplication by 

7,)' (= O. 9051)>:~ leads to the result* = 1. 044 + 0.305 cos 4 s/3 + 0.022 cos 8 s/3 (33a) 

The results of a computer analysis of this case leads to 

V~ = 1. 045 01 + 0.307 35 cos 4 s/3 + O. 021 56 cos 8 s/3 

+ 0.001 51 cos 4 s + O. 000 066 cos 16 s/3 , (33b) 

with which the numerical result (33a) is in reasonable agreemenL 

F. ELIMINATION OF THE A-G COEFFICIENT FROM THE� 

LINEAR TERM AND CONTINUATION OF THE MOSER METHOD� 

L 

For continuation of the analysis of Eq. (18), it is convenient to intro­

duce the independent variable 

*By use of the values (32a-c) in connection with Eq. (30), a value of t,/,'could 
be estimated from this solution for ~ by forming 1/':::: ~) /;5'>. 

17 
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t = 7:/2 = s/3 (34) 

to obtain 

2d q 
+ 4' (a + b cos 4 t + C cos 8 t + ... ) q - 5.175 (cos 6 t) q2 = O. (35) 

dt 2 

As in an example presented previously1Sect. B of ref. 3], the transformation9 

Q = q/rvji� (36a) 

-_ Jt dtT� (36b) 
o 11~ 

enables one to eliminate the A -G aspect of the coefficient of the linear term 

in� Eq. (34), to obtain: 

2 Zd Q _ )II 5/2 
2 + ]/ Q - 5. 175 (7),,4 ) (cos 6 t) Q2 = 0, (37) 

dT
... )" -zJ1in which V =2 ::: 2 (0.9051) = 1. 8102. The variables t and T become 

equal at t =0, q-(/4, 7['/2, 3 'IL /4, 7£, etc. The quantity (-z/~ )5/2 cos 6 t, 

if expressed6b, 10 in terms of T (Fig. 1), permits Eq. (37) to be written 

2 
d Q� [-- + 3.2768 Q - 1. 03504 cos 2 T + 5.41441 cos 6 T + 3.05511 cos 10 T2
dT

+ 1. 26600 cos 14 T + 0.46114 cos 18 T + 0.15573 cos 22 T 

+ 0.04940 cos 26 T + O. 0144i cos 30 T + .. J 0 2 = O. (38) 

_IN
It may be helpful to note that, with -v near 2, the oscillations will 

have a phase change of about 2 rr in one period of the term 1.03504 cos 2 T 

(as for an integral resonance) and a phase change near 2 7£/3 in one period 

of the (larger) term 5.41441 cos 6 T (third-integral resonance). Accordingly, 

as we shall indicate in the work to follow, in undertaking to remove by the 

Moser method 5 the T-dependence from the Hamiltonian associated with Eq. (38) 

special attention must be given both to terms stemming from the cos 2 T term 

above and to those stemming from cos 6 T, in order to avoid potentially-

resonant denominators. 
18 



MURA-497 

Solutions for the unstable equilibrium orbits associated with Eq. (38) 

could, of course, be sought by harmonic balance, although this procedure 

would be of value only as a check of the preceding work since the original 

equation [Eq. (l)J was already treated satisfactorily by this method in earlier 

sections (Sects. C and D). Thus one solution of Eq, (38) ~ay be sought in 

the form 

Q =: C1 cos.2 T + C 2 cos 6 T + C 3 cos 10 T , 

in which, approximately, 

Al = - 0" 29519, A 2 = - 0.01036, and A 3 = - 0.00303; 

accordingly the corresponding fixed point for Q (at T :: 0) is at Q :: - O. 30858, 

q = i1Jj'Q ~ 1. 17282-(- 0.30858) ::: - 0.36191, and v :::: v + q :: - 0,08380 - 0.36191s 

= - 0.44571,0 which is in error by about one-half of one percent of the computer 

fixed point. As a further check, a direct computational determination of the 

unstable fixed points for Eq. (38) was made, retaining just the first four cosine 

terms in the coefficient of Q2; the values of (Q, P) found in this way were 

(- 0.307 0) and (0.263, + 1. 064), which correspond to values of (v, p) which29 , 

are (- 0.44420 , 0) and (0.22465, + 0.302405 ) and thus are in good agreement 

with the results (- 0.44345, 0) and (0.2246, + 0.3030) reported previously 

(Sect. D) from direct computer studies of Eq. (1). 

In the subsection to follow we continue with the Moser procedure, which 

is of greater versatility than the harmonic-balance methods of Sects, C and D, 

applying the Moser method to Eq. (38) and then deducing in particular the fixed 

points in this way. 

19 
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The Hamiltonian associated with Eq. (38) is 

H =1. pZ + ~ v"'~QZ - ~ (b cos Z T + b 
Z

cos 6 T + + b. cos Z (Z j - 1) T + ... )Q3,
Z Z 3 1 J� (39) 

where P denotes dQ/dT, 
-
V 

}#
= 1. 810Z, b 1 = 1. 03504, b z = 5.41441, etc. 

As in previous reports, 1-3 we now employ the generating function 

Go (Q, ~) = (-z}"/ Z) QZ ctn >': (40) 

to effect the transformation 

p = () G() d Q = -rJ/Q ctn >'; (41a) 

J 0 = - '0 Go / i) -r;, = (-zJ~lz) Q
2 

c sc 2 ~ (41b) 

thus 

ctn� (4Za) 

(42b) 

(4Zc) 

(4Zd) 

and the new Hamiltonian is 

K o = H + J Go /;} T 

= H 

_", (f/Z 3/2 ~ =VJo - ~ -fp,) Jo sin3~ jL;l bj -cos Z (Z j 1) T 

_I" 1 Z 3/Z 3/2~ t3Sin["Y;,+2(2j-l)T]+ 3Sin["-2(2j-l)T]~ 
=V J o - _I-=-u) J o L b j24\.-v' j=l - -sin[3"'+2(2j-l)T] -sin[3¥c,-2(2j-l)T]. 

(43) 
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As a second generating function we next employ 

3 ~r2.{tJ-I)T] +3(I-S') tw [¥, -Z(2JJ -OTr 
V''-t-2(U -I) ~ 1/"- 't. (~j- J) 

_ ~[3);i"2(2J-prJ-f-$/) ~(3Yo-2(Zj-ln7 
31J'}Z{2.j-l) ~ 3z)"-Z(ZJ -iJ , ("19-) 

in which the Kronecker delta, S~ or g! J serves to eliminate terms 
J 'J 

which, with j = 1 or j = 2, would lead to terms with potentially-resonant 

denominators. The transformation equations which result from the generat­

ing function G1 (~, J 1) are 

J 0 = aG1 fa "I; 

~['-tZ(ZJ-i)TJ+(J_r/) ~[y;,-Z(Zj-/)T] 
V''.rZ(~j-l) :.J t/''- 2. {Z} -J) 

- ,4hvQfo+Z(Zj-I)T]_(J_ S~) ~[3y;'-?,(ZJ-I)7J 
3 V'~ 2.(~j -I) ",J 3V''-'t(Zj-l) 

'1; ~ 'J61/;;Ji 
3 1,4)[(, +/?,(l.j -Jyr] +3(I-&!) c,uCi, -z,(21j -I)T] 

=Yo -*&4J,~f:J:tj -z)".,. Z(ZJ-/) J v" -Z(Zj-l) (4-5 -1-) 

&4)[3'60 t-Z(Zj-I)T] _O-S:l) eovy'lo -2.(2J -or] 
- 3 z)"-r ~(2j-l) J av"- 2{:l,J-~ t 

with the new Hamiltonian 

21� 
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- ~[s ~ +z(j!,J.. IF1_G _&:"!') AirwfJt; - Z(z/ -;)TJ 
3V~/-(- Z ~j --I) J 31.P "-:L (J....I-I) 

3,~ CYot-~,(Z.J-I)T] + 34hv ['to -Z(l.J -/)r]

)( ?; 1-j _ ~(jJ(, -/",<,(;/,j-1)1'] _ ~fflt;, -Z(Zj-I)T] 

22� 
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To continue the work beyond this point, K1, as expressed by Eq. (46), 

should be written in terms of i, and a final transformation then made l ­

to new variables, ~ :: r: -2 T and J 2 :: J is with the aim of obtaining a 

new Hamiltonian which is substantially independent of To It would be the 

intention to keep in the J: term, which is in a sense rega~ded as a correc­

tion term, only t~rms which are constant or possibly functions of ~ (i, eo , 

circular functions with arguments which are multiples of ~ :: t; - 2 T and 

hence are T-independent). Since by Eq, (45bL the difference between 1; 

and ~ is of order J: /2, ~ may simply be replaced by t; in the Jf terms 

of Eq. (46), The distinction between ~ and ~ in the term involving 

J l /2
[ b 2 sin 3 (~- 2 T) - 3 b1 sin (~ - 2 T)J does not appear to introduce 

2into the J 1 term any terms of the form which we elect to retain, Consider­

able complexity arises, however, in evaluating in this same sense the pro­

duct of the two sums which appear in the J f term of Eq, (46), since numerous 

cross products occur which inv<?lve circular functions with arguments that 

are multiples of ~ ::::: ~ - 2 T. 

2 
The J 1 term of Eq, (46) includes, then firstly the constant terms� 

0(/ b 2� 
___2~ J 2 where ~I denotes 

_ "'~ 1 ' 
192V 

1 + (3 b /b )2
c<!:: - 1 2 

y'" __ + 1 
2 

= + 1.75516 (in our example). (47b) 
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There are, in addition, cross terms which involve circular functions of 

arguments that are multiples of ~ :;:; r; - 2 T, of which we write those 
2 

b 2 2 v-
depending on b in combination with b or b as J 1 F (1% ),

2 1 3 192 1/,,3 
with 

__1 leos 2~F(~) =- 6[:~ [6 -\r + 10 _\Vn- 6+~n + 10 ~ V n 6+\V" 10 tllj 

- :~ [2 +3tJn - 6 _~ + 2 + : tJ" + 6 + ~n Jcos 2 Yz 

(48a)+ :: [ 3V~' _ - 6 -\r] cos 4 Yz ]2 

=- L 10355 cos 2 ~ - 0.72926 cos 4 ~ ( in our example). (48b) 

We accordingly take 

_ J" 1 ( 2 _\ 3 / 2 3 / 2 [V v,7 
K1 =V J 1 + 24 -::zJii) J 1 b 2 sin 3 ('I - 2 T) - 3 b 1 sin ( " - 2 Tlj 

(49) 

For the final transformation we now, of course, employ the simple 

generating function 

(50)G 2 ( ~ , J 2) :;:; J 2 . (){ - 2 T), 

so that 

J 1 = 'OG 2 /J't; - J 2 
(51a) 

.~:;:; ()G2 ' dJ2 :;:; Y, - 2T (51b) 

and 

24 
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K 2� = K 1 + JG 21)T� 

= K 1 - 2 J 1� 

/I 1 (. 2 _)3 I 2 3 12 . = (7/ - 2) J 2 + 24 V"} J 2 (b 2 sm 3~ - 3 b 1 sin ~) (52a) 

+ bi Cd:' + F ( h )1 2 
192 V,,3 J 2 • 

Since K2, as expressed by Eq. (52a), is so written as to be T-independent, 

we take K 2 to be a constant of the motion. In our present example this 

invariant is 

K 2 ::: - 0,1898 J + 0.048389 (5.41441 sin 3 ~ - 3.10512 sin >z )J;/22 

+ [0.045179 - 0,028406 cos 2 ~ - 0,018772 cos 4 ~] J: (52b) 

G. THE FIXED POINTS 
[In Particular For T ::: OJ 

1. 

The fixed points associated with the Hamiltonian K 2 of Eq. (52a) are 

given by points which simultaneously satisfy 

and (53a, b) 

so that K 2 is stationary. If it were not for the presence of the function 

F( ~), the first condition would be met when 

cos� ~ = 0 or when (54a, b) 

The two roots in addition to the root y;, = 2700 appear to be shifted by about 

513 degree by inclusion of the function F ( ~) in the calculation, and the 

value of J i 12 which corresponds to these latter roots increased by about 

3 percent. Estimates of these solutions to Eqs. (53a, b) are given in Table I, * 

*The� roots chosen here are selected so that, with ~~2J Ji 72 will be positive. 

At T = 0 the values of Y; will be identical with ~ [Eq, (51b)].� 
25� 
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together with the associated values of KZ' which are now necessarily not 

all the same, 

TABLE I 

Values of '4" J Z for ,,yhich the Hamiltonian K can be Stationary� 
(b /b 1. 03504/5. 41441)2�1 z "C 

Root Yz, 3~ J 
1/2 

JZ KZ2 

1 - 900 - Z700 0.291 84 0.0851 68 -0.0055 21 

Z, 3 l8~ 41 85~ 23 
0 0.579 58 0335915 -0. OZ26 50

151~59 454 77 

It will be recalled that J 1 ::: J 2 and, for T :.:.: 0, )j ;::; Y%, . In the 

following subsection we make the inverse transformations necessary to 

express these results in terms of the original variables, specifically for 

T =0 (s =:: 0). 

2. 

For the assumed value of T, namely T :::: 0 in the present case, the 

values of I;, (c.;; ~ ) and J 2 ('=.: J 1) may be transformed to corresponding 

values of ~, J by means of Eqs. (45a, b). This transformation is least 
o 

laborious in the case designated as "Root 1" in Table I, since, for that case, 

~ =¥ (= 2700 
). Once the desired values of ~, J are obtained, Q ando 

P (= dQ/dT) follow immediately from Eqs. (42c, d). Since, at T ::; 0, 

-VI - 1. 3755 and d( tJjJ) /dt ::: 0, one next may evaluate 

q :.: iiJiS' Q ::: 1.17282 Q (55a) 

26� 
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dq/dt ';;; (1/iiJ;5')dQ/dT::: P/-Yilft'= P/117282.* (55b) 

Finally., of course,' 

[from Eq. (16)J 56a) 

and 

P 
=_ dv ~ .!. dq

ds 3 dt (56b) 

since t ::: s /3 [Eq. (34)J and dvs / ds ::0: 0 at s=:O. In this way we estimate 

the values listed in Table II. 

TABLE II 

Values Leading to Fixed- Point Coordinates 
(T :;: 0) s.:: 0) 

Root y;; J 
1/2 

Q P q dq/dt v p=dv/ds
0 

1 "" ~Wo 0.29265 -0.30761 0 -0.36077 0 -0.4445' 0 

2J 3 25?11 
0,5665 0,2527 +0.9761 0.2964 +0.8323 0.2126 +0. 277~154?89 

The true values for the coordinates V J p of the unstable fixed points, 

as given by the computer, are (Sect D) 

v - - O. 44345 J p - 0 J 

v - 0.2245, p - + O. 3030 ; 

it is seen, accordinglYJ that the present "analytic" method gives (as Root 1) 

the location of the unstable fixed point which lies on the v-axis with an accuracy 

considerably better than 1 %, but that the values of v and p for the other un­

1
stable fixed points are respectively smaller than the correct values by 5 - and 

2 

*Cf. Eqs, (1 7a, b) of rei. 3. 
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8 2'1 0/0. These ahalytic results were not materially affected by a refinement 

of the function F (~ ) [Eq. (48b)], which enters in Eqs. (52a, b), through 

inclusion of terms involving b b4 in the coefficient of cos 2 ~ and terms3

involving b b and b 2 b 4 in the coefficient of cos 4 ~ .
1 3 

H. ALTERNATNE, SIMPLIFIED, ANALYTIC METHOD 

The analytic method of the previous sections, in which it was attempted 

to follow the Moser procedur~ in an orderly fashion, clearly involved consider­

able complexity in the details of the calculations. It was necessary, firstly, 

to undertake some numerical work in order to estimate adequately the stable 

solution for the forced motion. Subsequently, once the forcing term was re­

moved from the equation of motion, additional labor was required because the 

new differential equation then contained an A-a coefficient for the linear term. 

Because of these complications, it would seem difficult to arrive at useful 

formulas by following the methodology on which our numerical work was based 

and, accordingly, it is of interest to explore a somewhat less straightforward, 

but simplified, analytical procedure. 

In this second method the effect of the forcing term will only be eliminated 

immediately by subtraction of that part which would result from consideration 

3/2
of the linear terms of Eq. (1). In the subsequent work, terms of order A J 1 

3 2 
and 7\2 

J 1 in the Hamiltonian will be neglected, in comparison to the J 1 / 

. 2 
term and the constant part of J 1 term, since ,... may in a sense be regarded 

as a perturbation. Information concerning the stable equilibrium orbit, as well 

as pertaining to the unstable equilibrium orbits and other features of the motion, 

should then result from the analysis. 
28 
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1. 

We commence, therefore, with the differential equation (1), for which 

the� Hamiltonian has the form 

2 3h =~ p2 + v - (b/6) (cos 2 s) v - 7\. (cos 2 s ) v. (57)~ (2.;D2 
3

For the initial transformation, to quantities akin to angle-action variables, 

we employ the generating function 

+ !:. 7\ (sin~) v +� f (s) ,cos -f2.J2 ctn"
F 0 (v, Yo )= Nv[v +{-e";:f� 

3 : -e~)2 3 (58) 

where f (s) would be selected to obviate the need to include in the new 

Hamiltonian terms which only involve the independent variable and hence 

play no significant role. The resultant transformation is 

. 2 s 
Sln-­p= 3 

(59a) 

2 s.1 2� 
(59b)cos -3-j 

so that 
2 7) Z s 

P--g sinT 
N ~ _(~)2 

ctn ~ =� (60a)
TV 7\. z S 

cos-v+ 
4 _(2~j2 3 
9 

2 
2 s 

cosT ' 
] 

('60b) 

29� 
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f N)1/2 1/2 . V 2 s 
v =~jT J o sm dO cos -3- (60c) 

I-V)1/2 1 /2 y 2 . 2 s
P =2 (N" J o cos II' + 3' Sln-­3 

(60d) 

~ _(2:; 
I 

and the new Hamiltonian is found to be (after some intermediate algebraic 

work) 

Ho = h + d F 0/ d s 

3/2 [Sin (3 ~ + 2 s) + sin (3 ~ - 2 s) J 
V b tN~ 3/2=2-J + - - J
N 0 48 zJ 0 - 3 sin ( ~ + 2 s) - 3 sin (~ - 2 s) 

8 s 4 s 
2. cos -3- + 2 cos -3­

- cos (2 ~ + 83s ) - cos (2 ~ 

v 4 s v 
- cos (2 '0 + --) - cos (2 10 

3 

- 2 sin ()';, + 2 s) - 2 sin (t - 2 s) 

_ sin ( , + 10 s) _ sin (~ _ 10 s) 
3 3 

v 2s . V 2s 
- sin ( '0 + -) - sm ( It) - -)

3 3 .. 
(61 ) 

[The nature of the transformation and its effectiveness in removing completely 

the coupling term from the linearized differential equation (1) may be evident 

from Eqs. (60a) and (61). The general character of the Hamiltonian H of o 

(61) is seen to correspond to that given for Ko by Eq. (50) of ref. 1(P. 2V, 

noting that, in ref. 1, b = 1 and that for our present - cos 2 s the function 

2sin 2 t is employed in the v term of the differential equation.] 
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Paralleling previous work, 1 we now make the next transformation by 

use of the generating function 

cos (3 ~ + 2 s) 

1 + 3 1/IN 

cos ();; + 2 s) cos ( ~ - 2 s 
- 3 1 +. 1JIN + 3 1 - 'IN ' 

(62) 

so that 

sin (-x, + 2 s) sin ( ):; - 2 s) 
+ 1 + yiN 1 - iJIN (63a) 

b LN_~3/2 112 cos (3 ~ + 2 s) 

'" = 'JF1 I ~ J 1 =~ + 64 '(7TJ J 1 - 1 + 3 VIN 
cos (~ + 2 s) cos (~ - 2 s) 

- 3 + 3 ---~---t ,
1 + VIN 1 - V IN 

(63b) 
and 

HI = H + JF 1 I (J so� 

sin (3 ~ + 2 s)� 

b ~3/2 3/2 1 + 3 VIN=H + - J 1o 48 sin (~ + 2 s) sin ( >-; - 2 8) 

+ 3 1 + 1) IN + 3-l~--iJ.~'I~N~ 

b (N_,3/ 2 3/2~ 2 V J 
N 1 

+487J) J 1 sin(3~ -28)� 

2�b (N ,3 2r6 -,)IN 1]
o

+ 2048 7}) J 1 Ll _-z)2 /N 2 - 1 + 3 VIN 

b N 7\ V 48 
- - -;;T 4 04 1,2 J 1 cos (2" - - )

16 v _ (2 v") 3.1"'­

b """l'r 1/2. V 2 s(N'f J2 7t? (64)
j- n; V) [~ _c~jr J 3:m 

( " - -3-) 
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in which the last result follows after� some algebraic simplification, and as 

3/2 2 
a result of neglecting terms of the order ]\ J 1 7\ J 1) and terms 

which do not involve circular functions which are multiples of ( Y; - 2 s 13)-­

[~ Eq. (54) of ref. 1 (p. 22») 

For the final transformation we employ, as in previous work, the 

generating function 

(65) 

so that 

J 1 - dF2/~Y; ': J 2 (66a) 

~ ~; ')F21 d J 2 =c't; --
2 s 

(66b)
3 

and 

- HI + ') F 21 (J s� 

2� 
"HI 3' J 2� 

= 2(~ - ~)J2 + 4~(¥Jt\ 3/2 sin 31;. 

J 2 cos 2~ 

b 0N01 12 ~ a 1 /2 V (67)- - -::7� J 2 sin tJ ~ 

16 v, [: _ (\~)12 

J[cf. Eq. (57) of ref. 1 (p. 23)] where 

6 -z)/N 1d SE� ----:--­

1 - -z)2/N 2 1 + 3 -z//N 

[cf. Eq. (25) of ref. 1 (pp. 13, 23)]. The Hamiltonian, H2, in the form 

written, is independent of s and will� be taken as a constant of the motion. 
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Z. 

To obtain the fixed points. in particular. we may take the Hamiltonian 

HZ to be stationary. as given by setting the partial derivatives ~H / ~ v o Z� pl2 

and� d Hz / d J Z each equal to zero; specifically. 

3/ Z 3/z 7' ~m.t/2 7\2­ l/Z V 
J Z cos ItJ =01~~~) J 2 cos31i+i(W:_(-~JzSin2~-~~ [;-t~T 

(69a) 

and 

zJ l' b /N_f/ Z 
l/Z . if' b2 IN 3 

Z(N - 3) + 32(.17/ Jz sm 311, + 10~Ci7) J z 

b N 'J'. b ~~ /2. 7\ 2 
-1 / Z . 

- - =r cos 2 ~ - 32 J sm >'i. = O. 

16 v ~ -eJ1 [: -(~~)T 2 (69b) 

Two roots of interest for Eq. (69a. b). corresponding to the stable and 

unstable fixed points which lie on the v-axis of the phase plot for s =0 (mod. 3 'ff >. 

are obtained by taking ~ = - 900 and J 2 as satisfying 

2
Z I:;j.� - ~ \+ b ('N_~3/ Z 1/ b 2«. (-N \3
l!~	 .J J 32 17/ J 2 + 1024 1J) J 2 

-]/Zb N 
J 2� = 0 • (70)+1"6� 17 

in which the term of order J 2 is compaxatively small--for small A one root. 

in fact. may be estimated roughly by consideration of just the constant term 

and that involving J;1 /2, while the other is given roughly by use of just the 

constant term and that which involves J~ /2. Numerically. for 

"J-1N� =O. 3. b = 1.15. and /\ = 0.006, 
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Eq. (70) becomes 

1/2 -1/2
0.06944 J 2 + 0.21871 J 2 - 0.04964 + 0.00033124 J 2 =O. (70') 

with roots for J~ /2 given by 0.006881 and 0.2061 5 , The remaining roots5 

of interest similarly involve simultaneous solution of Eqs. (-69a. b) for values 

of ~ near 300 or the supplementary angle 1500
• To obtain the corresponding 

v. p coordinates of the fixed points, at s = 0 (mod. 3 '17:). one must next trans­

form ~ (= 't; for s =0) and J 2 (= J 1) to t , J o and thence to v, p by 

use of Eqs. (63a. b) and (60c. d). 
\ 

It may be noted in passing that the two roots of Eq. (70) become coincident 

for a critical value of ~ given approximately by 

~ ~ 64 (!:.- _1J)2(!:.- +~) V� (71) 
b 3 N 3 NJ N 

= 0.01175. 

for 1//N =0.3 and b =1, 15; a more accurate numerical estimate, again 

based on Eq. (70). gives 

~ = 0.01168 , 

with 

J 1/2 = 0 0740
2 .� 4 ' 

from� which one finds, by Eq. (63a). 

1/2
J =0.07412 

o 

and, by Eqs. (60c, d). 

0.01168 
=-C~r2 (0.07412) - 4 36V c� 

"9 100� 

=- 0.13532 - 0.13832� 

= - 0.27364 '� 
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The correct values for this confluent situation, as obtained by direct digital 

computation, 4 are 

~ = 0.01136, 

V c = - 0.2650 , 

Pc = 0 ; 

so that our estimates for ~ and vc are evidently some 3% larger, in 

relative magnitude, than the correct values. 11 

Returning to our example with /\ =0.006, the fixed-point coordinates 

found by the present method of analysis are as summarized in Table III. 

TABLE III 

Estimated Fixed- Point Coordinates at s = 0, mod. 31t 

~N = O. 3 b = 1. 15 /) = 0.006 

Computer RelativeCalculated Values 
n 11hl

Root 
~ J 2 ~ J v P v p0 ev €p 

-0.08361 0 -0.083802 0 -0.22%Stable -900 0.006881 -900 0.006882 E -­
5 2 

1 -900 0.2061 5 -900 0.2067 -0.4485 0 -0.44345 0 +1.150/0 -­
6 5� 

0�34.20 31?24 
2. 3 6 0.31269 

0.3033 
0.2161 -+ 0.284 0.2246 + O. 3030 -4 % - 6% 

148?76 ­
145?794 

The results obtained by the present simplified method not only are far more 

easily obtainable but appear to be of as good accuracy as those previously 

s.ummarized in Table II (Sect. G). 
" 
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4/9 - (2 V/NT 
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A parabolic fit, tangent to the lines (11a, b) at /\ ::; 0, may be obtained by 

writing 

/\ ~ v [v - v2 (/\ =0)] . [4/9 _ (2 V /N)2) , (73)0 

v 2 (71 = 0) 

for which the maximum value of 71 , 

{) = ~ .[ 4/9 - (2 -zJ /N)2] . I - v2 (7' =0)] , (74a) 

is attained at 

1 v = - v (/) =0) . (74b) 
c 2 2 

With 2 -zJ /N = 0.6 and - v 2 ( ?l =0) = 0.5238 [from computational results 

cited in ref. 1, after division by b::: 1.15], Eqs. (74a,b) suggest 

~ = 0.01106� 

V = - 0.2619,�c 

which may be compared with the computational results cited in the text, namely 

~ = 0.01136 
c 

v = - 0.2650 . 
c 
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