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ABSTRACT 

Approximate analytical results are given for non-scaling spiral 

sector FFAG Accelerators. The equilibrium orbit scalloping is calcu

lated, as well as the betatron oscillation frequencies in the smooth 

approximation. The effects of derivatives of i. tr and flutter appear 

to be small; ..yx and 1Jyare given fairly accurately by the local value of 

these parameters. The transition energy is determined essentially by 

the local value of i. 
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1. INTRODUCTION� 

There has been an increase of interest in non-scaling accelerators 

in the recent past. 1 Apparently the large injection aperture desirable for 

high intensities can be achieved in a non-scaling accelerator without the 

increased circumference factor which is present in scaling machines. We 

envisage a spiral sector accelerator with large flutter and loose spiral at 

injection and small flutter and light spiral at output. It seems clear that it 

is necessary to change the spiral angle as the flutter is varied in order to 

keep the betatron oscillation frequencies constant. Otherwise, resonances 

will be crossed and beam lost. 

This report records some preliminary considerations on non-scaling 

spiral sector accelerators so that they will be available for reference. A 

good part of this work is application of the analytic work of Parzen2, with 

some notational changes. One may discuss betatron oscillations either in 

terms of derivatives of Fourier components of the fields, as Parzen has done, 

or in terms of A" ~ , flutter and their derivatives. The present report 

uses the latter quantities in an attempt to exploit the familiarity with scaling 

machines. 

We remark to give a general idea of the range of parameters which is of 

interest that we have in mind a flutter which varies from approximately 2 at 

injection to approximately 0.5 at output. For a 15 Bev machine with 200 Mev 

injection, we might have N~30,~~50,-V ~7, -J~5. If the machine is x y 

all similar to a scaling machine over any small radial span, that is, if the 

effect of derivatives of -#., fw- and flutter on V and JJ is small, the spiral
x y 

2� 
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angle var.i.es from about 750 at injection to about 87.750 at output. 

II. MAGNETIC FIELD EXPANSIONS 

The median plane magnetic field is customarily written for discussion 

of scaling accelerators in the form 

(2. 1) 

~ = K..tn (~J-N9 j 

where i. K = 1/~ and the gn and f n are constants and r 0 is an arbitrary 

reference radius. We can also write (2.1) as 

i: \ J1'I inN9B z = -B o 1\ n (1 + x) e (2.2) 
n=_OO 

where we have used the relative variable x =(r:'rJ r 0 and have defined 

~ /I::: f (i K + "/11) '?7 >D 

:: dO (2. 3) 
= 1: (lH- l l't1) 11 <0 

~YI ~ ~ - in It 
Then~ in a scaling accelerator. ~ and ~n are independent of radius. 

A non-scaling accelerator can be described by giving 'A and ~ as functions 
n n 

of radius. The same radial variation can be described by either A or ~ • 
n n 

so that the description is not unique. One can see immediately an equivalence 

between -A.. and variation of the A with radius~ since one can write 
n n 

A A'YlrY'} 

>-. 
n 

(r) = A (r) 
n 0 

e A'1I fro) 

and can define a new exponent 

"J.. " = A. +-~ n n 



MURA-495 
Internal 

This equivalence is just the flare focusing of Roberts3. 

For an analytic treatment it is necessary to expand the median plane 

field in powers of x. We shall write such a field as 

inNEl= -B� m 
o� Z e x . (2.4)~ m,n

n=-Gb m=O 

Zmn is just the mth derivative of Parzen's ~ evaluated at r = roo We can 

also express the zmn in terms of the scaling quantities by comparing (2.4) and 

(2. 2).� Then 

Z -Ao,n -� n 

d~n 
Z =� r1, n o dr 

J2 1 (2.5)1 2 
Z2 =� - r (>.. -R. ) + -~ i (--e_1), n 2 0� n n 2 nn~ . 

III.� EQUILIBRIUM ORBITS 

The equation of motion of a particle in the median plane is 

m inNEl1 ~ x _ 0( (1 +x) ~	 eZ x� (3. 1)(iJ'� = m,n
m,n 

where primes denote total derivatives with respect to El and 

X = 1/ (l + x)2 +' Xl; 
(3. 2) 

[ <X = eroBo 
cp 

We expand (3. 1) in powers of x and Xl by expanding the Lagrangian, 

so that the approximate equation of motion is still Hamiltonian. Through 

second order, the equation of motion is 

1 12 inNEl� inNEl
x" - xx" = 1 + 2 X -� e + ;;t' <1(Z1 + z ) e0<.[<'� z<.t o,n� ~,n o,n 

...,.,� "r1 

2 c::::;t inNEl� (3. 3)
+x~ (z2,n+z1,n)e + ... }

"" 
4� 
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The equilibrium orbit x has the period of the magnet so that it can 
e 

be expanded in a Fourier series 
~ 

2 inNQ 
x x e (3.4)

e = n . 
'1'/= -co 

We substitute (3.4) into (3.3) and equate terms of the same frequency (a 

method known more elegantly as "harmonic balance"). Then 

z z 
-n N x--n 

r= d no - OC z0, n - '" ~ (zl, m + zO, m) xn-m 
"'K1 

- ex ~ ~ 
"'rI1J f 

(zz, m + z )I,m x xm n-m-p 

- "21 NZ ~ m (n + m) x x + ... (3. 5) m n-m 
-?t1 

where the last term combines xx" and ,c Z. 

(3.5) can be solved by an approximation method which assumes that 

the terms involving x on the right hand side are small compared to those 

independent of x. This amounts to assuming that the change of field across 

(/')
the equilibrium orbit is small compared to the field. We calculate x-'11 

th (/,-1)
the f approximation, by substituting x.A1 on the right hand side of 

(3. 5). There is a difficulty with xo ' whose size depends on the reference 

radius r 0 chosen. r 0 is fixed (for a given field strength and momentum) by 0( 

We can circumvent the x difficulty by choosing 0<. such that r 0 is the averageo 

radius of the equilibrium orbit; then x = 0 and the n = 0 equation gives a 
o 

value for Of.. 

Our assumption is then 

(0) 
~ = 0 

5 
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Then. by substituting this in the r. h. s of (3. 5), 

[ Jo,." ;

(3. 6) 

for n ~ o. 0( satisfies the n = 0 equation with ~ substituted from (3. 6). 

Correct through terms quadratic in • this equation is 

I 
(3. 7) 

In practice ~2) agrees with computer experiments to a few percent. 

while Xn(1) differs from ~(2) by 10-20%. The method of solution seems a 

posteriori to be justified. For discussion of motion about the equilibrium 

orbit. x (1) seems adequately accurate. 
n 

From its definition (3.2). is a relation between field strength. radius 

and momentum. Given the field as a function of radius. the value of 

calculated from (3.7) gives the average radius of the equilibrium orbit as 

a function of momentum. The term of (3.7) linear in (_ describes the 

bending of the equilibrium orbit due to the average field. The term quadratic 

in describes the additional bending due to the fact that the scalloping of the 

equilibrium orbit carries the particle into regions of different field. In radial 

sector accelerators. this term is important; in fact. it is responsible for all of 

the orbit bending in a two-way accelerator where zap =O. In a spiral sector 

6� 
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accelerator with a flutter of about unity, this term decreases by about 

~ 
5%, since 1J'- 'V 0.05 and spiraling effects can be shown to cancel. Since 

this term is so small, an accurate solution of (3.7) is 

(3.8) 

IV. LINEAR MOTION ABOUT THE EQUILIBRIUM ORBIT 

We use a coordinate system based on the equilibrium orbit. All 

lengths are measured in units of R , the equilibrium orbit length devided by
o 

2 'if, Ro 't and R / are the displacements perpendicular to the o 

equilibrium orbit in the median plane and perpendicular to it, respectively. 

We use as independent variable 
s 

~ = l~s	 (4. 1) 
o 0 

where ds is the element of arc length along the equilibrium orbit. 

For most purposes we can neglect the difference between i)---and 8. 

From� (4. 1), 

r o r o79- = d8 = ~ ,,>Z } d8Jx
8� 

f, 
(7 

! 1 + x+Ro� R 
0<> 

m 
Ro 2 

"'W f/) m=~f e [1 + 
N2 2 2 x x-m + .• 0 J 

\ 

The periodic terms are of order 1/N3 compared to unity and are thus 

very small for N 10. The term linear in 8 differs from unity by terms 

which are of order 1/N2 . These terms just give R in terms of r ' o o 

7 
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accelerator with a flutter of about unity, this term decreases by about 

~ 
5%, since 1J~ ~ 0.05 and spiraling effects can be shown to cancel. Since 

this term is so small, an accurate solution of (3.7) is 

()(.. = (3.8) 

IV. LINEAR MOTION ABOUT THE EQUILIBRIUM ORBIT 

We use a coordinate system based on the equilibrium orbit. All 

lengths are measured in units of R , the equilibrium orbit length devided byo 

2 '/t. /(0 1/ and R / are the displacements perpendicular to the o 

equilibrium orbit in the median plane and perpendicular to it, respectively. 

We use as independent variable 
s 

(4. 1) ~ = J~ 
o 0 

where ds is the element of arc length along the equilibrium orbit. 

For most purposes we can neglect the difference between '29-'and 9. 

From (4.1). 

fx 
8 

= f, 
9 

! 1 + x+ 
r r oo�

79-' = d9 ~ x,Z } d9�Ro R 
0D 

=~f 9 [ 2N
Z 2 m 2 xm x-m + .•. JRo 

1 + 
-w FO

\ 

The periodic terms are of order 1/N3 compared to unity and are thus 

very small for N 10. The term linear in 9 differs from unity by terms 

which are of order 1/N2 . These terms just give R in terms of r o' o 

7 
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since 'V-= 2 when e :::: 2 Then 

(4.2) 

The difference between Ro and r 0 is then small for N 20. 

The linear equations of motion about the equilibrium orbit are 

where 

=0) 

+ A[ 7/ f A1o~] 'tf 

A 11 7 

~ 0 

(4. 3) 

1~ 
I: - Eo 

(4.4) 

and are equal whenever we make the approximation that Ro = roo The 

field derivatives are to be evaluated on the equilibrium orbit and are with 

respect to • which differs from the radial direction r because of the 

scalloping. Then 

!.!'6 
~1f 

Define the angle by 

:. 

.J-~ 

aL3, ~r-Jr ')1f 

~ -

+ q}lJ 
()8 

~el 

1+ te 

de 
of 

, 
(4.5) 

so that is the angle between the 

geometrical exercise gives 

and r directions. Then a little 

cos 

sin 

1 + xe 

8 
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and 

(4. 6) 

where we have neglected the difference between R and r o. We now neglect in 
o 

(4.6) xe and xl 2 compared to unitY,since they are of order 1/N2. When we 

substitute ~(I) from (3. 6) and evaluate on the equilibrium orbit. we find 

7 e:;-t 10 (liN"'! z:...L.. AI
6 = ~ v r "" ~ /, "W\ d )'1 OJ ")to l'M 

~ (J 6,." (
~.11 'Yl-~)<l.N'" (4.7) 

'?, :0 ~ fhNt9! +.2", ~ (laJ"INI +--$: JIJ:)J9: 0 of.l. ~JQI~ dCJ11-mj
{I <e dl'lI c; (~-W1) N 

1+t 

~ ( )N
~ ~~~ ~-~ 

2
The second terms of 10and 11 are of order o<.~ F / N or eX. KFI N2 

relative to the first terms)where F is the flutter. These quantities are 

usually smaller than about 0.2 in either radial or spiral sector accelerators. 

We shall estimate the betatron oscillation frequencies with the smooth 

approximation which we take in the following form. When applied to a Hill 

equation 
II 

1A +

the smooth approximation gives for the frequency 

(4.8) 

When we evaluate the sum in (4. 8). we need to take only the leading terms 

of (4.7), since these terms when summed give terms of order oL ~F/N2 or 

2 
o(KF/N . Then we find 

- ot ~ 
dlO 

9� 



MURA-495 
Internal 

It is interesting for the interpretation of non-scaling terms to 

rewrite (4.9) in terms of i. K. the Fourier coefficients g and f and 
n n 

their derivatives. We resolve the ambiguity in the description of the 

field variation by choosing go = 1. We also use the value of given by (3.8). 

Then. neglecting unity compared to -i. 

V z 
x 

V z = 
y 

(4. 10) 

where primes now denote derivatives with respect to rand 
00 2- '). 0 

G =!. 21 f~ -fl'M 
o Z ~ 1IW-N:a

~=I 

Gz = (4. 11) 

H = 
"'\00\ =1 

The results for a scaling machine are just a special case of (4. 10) with all 

derivative terms zero. 1. e. ~ ':. 0 and only G and F are different from zero. 
o 

It is interesting to note that all terms depending on K' have cancelled. The 

,"-'" terms in 1e. 1are corrections to the average field which arise from the 

10 
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sc~.lloping of the equilibrium orbit. The terms in G1, G and G3 arez 

corrections to the alternating gradient focusing which come from the change 

of flutter with radius. 

We can estimate the size of these terms by considering a field with 

only a single harmonic, say gl =z - 20x, which gives the variation described 

in the introduction. Then r 0 G1 =20 Go and r 0 ~ G1 """ k 'Go. Similarly, 

Z 2 .P~ ~~ 1 J' 
r 0 GZ = 400 Go and r 0 G2 IV Ie Go' But 7(, Go 5" ~ , so that all of these 

terms are small. Since they are small, V will be constant if ~ is approximatelyx 

constant and the term r fl.'G1 will be small. Since ~Go is negative, we wouldo c¥ ro 

expect that 1<.' must be positive to compensate for the decrease of the -R.2G o 

term. To keep 'Y constant, K should vary so that FK is constant. 
y 

One may regard these results as encouraging. Evidently the effects 

of all derivatives are small and a non-scaling machine may be thought of 

roughly as a succession of scaling machines. 

V. TRANSITION ENERGY 

We would expect the transition energy to be raised for two reasons. 

First, i increases as a function of radius, so that the local value of i. is 

higher at the transition radius than at the injection radius and second, the orbit 

scalloping (and therefore the orbit length) decreases as a function of radius. Of 

these, the first effect would seem to be much more important beca.use the 

effect of orbit scalloping on orbit length is small (as we can see from (4.2) ). 

The transition energy is given approximately byv 2, whose dominant term 
x 

is just -t. 
A detailed calculation bears out this guess. We begin with the well-known 

11 
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relation for the change of revolution frequency I with momentum: 

(5. 1) 

where =E/E and 2 R is the orbit length. From (4.2),o� 

R = r 0 (1 + ~ 2Go )� 

o 

o 

and from (3.8) with Zo , 0 =1, 

Differentiation gives 

= 

(5.2) 

We calculate from (3.2), the relation defining 

and note that for a given field, the constant B varies with the reference radius 
o�

-i (ro)�
r as r . Then some calculation giveso 0 

(5. 3) 

Then finally, 

(5.4) 

12� 
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The estimates of Section IV can be applied to (5.4). When terms less than 

1%of the leading terms are neglected, the transition energy is given by 

(5.5) 

The correction terms given in (5.5) are of order 20/0, so that essentially the 

local value of i determines the transition energy; that is, it is as difficult 

to avoid the transition energy in a non-scaling as in a scaling accelerator. 

13� 
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