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ABSTRACT� 

An rf voltage and frequency regime for crossing transition energy 

is worked out which in linear approximation will preserve the amplitude 

of synchrotron oscillations in an FFAG accelerator. The initial and final 

voltage and stable phase may be chosen arbitrarily, as well as the ener gies 

at which the transition regime is to begin and to terminate, except that these 

energies must be sufficiently far from transition. The required frequency 

and voltage program during the transition regime are then determined. 
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ACCELERATION ACROSS THE TRANSITION ENERGY WITHOUT 
INCREASE IN AMPLITUDE OF SYNCHROTRON OSCILLATIONS 

The equations of motion for the synchrotron oscillations of a particle 

in an FFAG accelerator subject to an rf accelerating voltage are derived 

in MURA-106: 

dW 
dt 

~ V (t) sin cf;> 

(1) 

~ 
dt """ 2 7T" h [f~t) - f <wJ ' 

where 

IdE�W .. (2)~ 

feE) 

h is the harmonic number, h fo the frequency of the rf oscillator, V is 

the accelerating voltage, and E. f, ~ are the energy, frequency of revolu

tion, and phase of the particle relative to the accelerating voltage. The 

equatiom(l) are derivable from the Hamiltonian 

H ~ V cos e:p + 2 TJ" h [ f 0 W - E (W)] • (3) 

so that W. ~ are canonically conjugate variables. 

The character of the phase oscillations of an accelerated particle 

have been discussed in MURA-106 when the energy is well above or below 

the transition energy. For a given voltage and rate -of frequency modulation, 

there is a stable-phase "J.., at which a particle can remain in synchronism. t.t's 

with the rf. its energy increasing so as to correspond with the synchronous 

value Ws (t). Around the synchronous phase point Ws' rp s' there is a 

region of stable phase oscillations. According to the adiabatic theorem. a 

particle initially oscillating on a curve around WsJ 1> s of area A will at a 

2� 



•� 

MURA-492 
Internal 

later time be found on a curve of area A around the new stable phase point, 

• • I 
provided that the parameters (V, fls ::: df/dW, W ~ folf s) which characs 

terize the dynamics change sufficiently slowly. So long as the adiabatic 

theorem applies, the phase density of a group of particles being accelerated 

will be preserved. Each particle continues to oscillate at constant amplitude, 

if we measure amplitude of synchrotron oscillations by the area A of the 

W~ ~ phase plane encircled by the particle, viewed from a synchronous 

coordinate system (W*::: W - Ws' 4 )moving with the synchronous phase 

point. It is shown in MURA-423 that the adiabatic condition is not satisfied 

near the transition energy. If the rf schedule is such that r:: sin eJ s 

is constant. or nearly so, then the condition for applicability of the adiabatic 

theorem is 

4 1/32 
f t - f 0 ~(-f V, .". 

f '7'7 "hE:? r 2J 
t t k

1 - r (4) 

where the subscript 't' refers to the transition energy. When the synchro

nous frequency f is closer to transition than this, the amplitude of synchro-o 

tron oscillations does not necessarily remain constant. In general, the 

amplitude increases and the phase density decrease"s due to mixing of empty 

phase space with phase regions occupied by particles as the transition energy 

is crossed. Particles initially executing stable phase oscillations may be 

lost from the stable rf bucket as the transition energy is crossed. Computa

tions with the TTT program, and experiments with the spiral sector model 

agree in suggesting as typical a loss of 50 per cent of the particles in a 

bucket crossing transition. 
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It is the purpose of this study to find an rf schedule which will accel

erate particles over transition without increase in amplitude of synchrotron 

oscillations, at least for particles near enough to the synchronous energy 

so that linearized equations of motion can be used. Our procedure is sug

gested by a method used by Christofilos1 in crossing transition in an AGS. 

Let the functions Ws (t). if; s (t) describe the history of a standard 

particle which is in stable synchronism with the rf voltage below the transi

tion energy and which is to be accelerated over the transition energy in such 

a way as to be in stable synchronism with the rf voltage above the transition 

energy. By "above" and "below" transition, we mean points where Eq. (4) 

is satisfied. If Ws (t), cjI s (t) are given, Eqs. (1) determine uniquely the 

rf voltage and frequency schedule V(tL fo (t) in order that Ws (t), ~ s (t) 

be a solution of Eqs. (1): 

(5)•4s 
h fo :::: h f s + 2"" • 

. We assume that below transition, when Eq. (4) holds, 

V s (t) = Yo' 
(6) 

sin ¢s (t):::: r 0 

where V0' r are constants characterizing the acceleration process upo� 

to a time to at which the voltage-frequency regime to cross transition be
e 

gins. At a time t 1 after transi:ion when 

Vs (t1) ::: V1 ' 
(7) 

sin eps(t1):::: r 1 , 

IN. Christofilos. Proposed Air-Core Strong-Focusing Synchrotron, UCRL
4310-08 CVL-1, Oct. 12, 1957, Aplfndix I. 

-~--------------------
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the transition regime terminates and the particles are again to find them

selves in a normal bucket at their original amplitudes. 

Let us define relative coordinates 

W* ~,c-: W - W (t),s 
(8)

4* ~ ~ - ps (t) 

We expand the equations of motion (1) about the standard solution Ws' ~ s' 

keeping only linear terms in W*" ¢ * 

dW* 
= V cos

dt 
(9) 

~ - 2 h f'W*7f s . 

All subscripts's' refer to the standard particle. These equations are de

rivable from the Hamiltonian 

* '*2 1 A,*2 . (10)H ~ - ." h f s W -"'2 V cos q; s"" 

where the coefficients are known functions of t. Below and above transition, 

V and cos ,J.. are to be held constant or nearly so, and f' is slowly vary
~s s 

ing if Eq. (4) is satisfied. H* is therefore approximately independent of t 

and particles near Ws" cf s execute phase oscillations around ellipses in 

W*, ep * -space given by Eq. (10) with H* = constant. The ratio of major 

to minor axes is 

Wmax * ~ tV cos ¢ s 71/2 

2"" h f' J hI) 
~~ax s 

It is clear that cos ~ s must have the same sign as f~, i. e positive
" 

below transition and negative above tra nsition. This, together with Eq. (6) 

defines ¢s uniquely for a given ,.,. During acceleration below transition, 

5 



MURA-492 
Internal 

the parameter f may change slowly, but the adiabatic theorem guarantees 

that a given particle remains on an ellipse of constant area 

A ~ 1T W~ax q; ;i;ax . (12) 

The phase oscillation frequency is readily obtained from Eqs. (9) and is 

(13) 

Since fls ::;: 0 at transition, this expressi.on gives an infinite period at the 

transition energy, which accounts for the failure of the adiabatic theorem. 

A plausible possible solution for the phase oscillations as transition 

is crossed is 

2~ * := a sin (eX t + 9) , (14) 

which represents a phase oscillation of constant amp1i~lUde and an angular 

frequency «)< t) which goes through zero at transition, if we let t = 0 at 

transition. Formula (14) is a solution for arbitrary a, 9, of the equation 

_.!.dp* (15) 
t dt 

If we eliminate W* between eqs. (9). we obtain 
. 

fs' Ws ...l ,j., * 
f' ~ + 21Th fls V cos ¢s ~ * ::: 0 J (16) 

s 

where primes refer to differentiation with respect to W. Let us require 

that Eqs. (15) and (16) be the same. We then have . 
f" W1 s S _ d 

(17)- <Itt fl 
S 

so that 

ft = - b t • (18)s 
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where b is an arbitrary constant, and 

2 2 1..1. J,
4 0< t :; 21Th f s V cos cy S ::: - 2 .". h b V t cos Y' s' (19) 

so that 

2 ()( 2 
V cos f; s :;:; - rr h b t. (20) 

Now from Eqs. (9), (17), (8), we obtain 

b 
V sin A.. s := (21)'r - f"

S 

(note that f'~ ( 0 near transition), and hence 

cot ~ s (t) ::: t , (22) 

2 1/2
2 tX 2 f" 

V (t) ::: 
b 1 + s (23)[ (-=rs 0]27Th b 

If Ws (t), 4> s (t), and hence h f (t), V (t), are chosen accordingo 

to Eqs. (18). (22), (23), then the solution of the phase oscillation equations 

during the transition regime will be formula (4). and the amplitude of syn

chrotron oscillations will remain constant across the transition energy. 

In particular. if we take f " as constant: 

f" ::: - K , (24) 

then Eqs. (18) and (5) give 

bt 
W (25)

s = Wt + K J� 

b 2� 
f = f - t 2 , (26)s t 20( 2K2K 

1 7Th b 2 
hb2 2hf0::: hft -- (27)-ZK t + 21( 2t o(ZKl •1 + t27T' h b 
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The third term represents a small increment in oscillator frequency above 

the synchronous value in order to advance the phase 4> s from its initial 

value in the first quadrant to its final value in the second quadrant. 

It remains to insure that the transfer into and out of the transition 

regime does not disturb the amplitude of phase oscillations. To do this we 

must insure that the ellipses of constant amplitude for the transition regime 

coincide at the ti.mes to' tl' with the ellipses for the normal buckets. During 

the transition regime the particles move on a phase ellipse given by Eqs. (14). 

(9)� and (18): 

+* :;: a sin ( ct t 2 + 9) • 

w*� ~ a (;( cos «;I( t 2 + 9) 
(28) 

'IT h b 

The area and axis ratio are 

(29) 

Wmax*� (30)= ..+.* .". h b 
'('max 

Let us use a subscript ' 0' to refer to quantities at time to just before the 

transition regime is switched on. Then we require that the phase c/> s 

g iven by Eq. (22) coincide with .J.. .If'so . 

2 (')( 2 f'so 
cot Ii - t� (31)

1'so - 71 h b 2 0 

and that the axis ratios given by Eqs.(30) and (11) coincide: 

Vo cos cP so , (32) 
2 'IT h f so 
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"� Given the value of Wso (hence fso• f ,so' f so), these equations. together 

with (18). determine the quantities ~. b. to: 

f'so 
(33) 

fIt V sin,J, 
so 0 'fso 

b = - f'~o V 0 sin +so 

f"2 1/2so , V; cos ~ sin2 "J. ] • ..,.. so 'l'so 
f so 

It is of interest to calculate V (to) from Eq. (23): 

V (t ) = V (34)o 0 

so that there is no discontinuity in voltage as the transition regime is 

switched on. According to Eq. (5). there is a small discontinuity in 

oscillator frequency of amount 

• 
- i1 (h fo) = 1 A-. (t )

2." r.rs 0 

(35) 
f" 

so 
V o cos rf; so sin

2 ¢ so2 TT f' 
so 

This discontinuity is smaller the further Wso is from transition and the 

smaller is sin ¢ . It is of the order of 1/(4 Tr,A t) where ,A t is the 
so 

time to reach transition at V 0 sin ¢ so volts per turn. 

At time t we reverse the problem and match ~ and the axis
1 r sl 

ratios in switching to normal buckets above transition. We then have for 

a given W •
S1 

(36)t 1 = f" V sin,J... • oso 't" so 
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f"sl f'Sl 
cot,J.. • (37)cot ~ sl = T Tsof' 

so so 

f ll 
so sin (38)+( """"'it 

f sl 

We note again that 

(39) 

so that the voltage is continuous at tl' and that the frequency has a dis

continuity of amount 

_ _ 1 

2TT 

f"sl= (40)
2 ." ft 

so 

Note that if the curve f (W) is symmetric about Wt' and we choose for 

symmetrical points so that f
I
s1 =

, 
f" l' = f " , then- f so' s so 

to = - t 1, l's 1 = 1T - ep so' V1 =V0' and we have a complete 

symmetry on either side of transition. 
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