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ABSTRACT 

The longitudinal stability of a coasting beam has been discussed in 

previous reports. This stability analysis is here extended to include the 

effect of an energy loss linearly dependent upon particle energy. Considera

tion is restricted to the case of a beam of uniform phase space density with

in sharp boundaries. By suitable transformations, the equations are ex

pressed in terms of canonical coordinates and momenta. Approximate solu

tions are obtained after linearization. It is found that instabilities of charge 

density develop above transition energy when energy spread of the beam de

creases with time; the effect of the energy loss mechanism upon instability 

growth rate is computed. 
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10 INTRODUCTION 

The instability of a coasting beam of particles has been studied under 

1 2 
the assumption that there is no energy loss mechanism, • and under the 

assumption that the rate of energy loss is independent of velocity. 3 In this 

latter case; the energy-loss mechanism has no effect on the criterion for 

stability, In the present report the analysis is extended to include the effect 

of an energy-dependent energy-loss mechanism, Attention is restricted to 

energy loss which varies linearly with particle momentum, It is hoped that 

this assumed energy dependence is sufficient to describe 1) the energy de

pendence of radiation loss over small energy intervals, 2) the effect of radia

tion loss when the average energy is maintained by a mechanism which treats 

r'- all particles equally (such as phase displacement) 3) the energy dependence 

of ionization loss, 

It is not surprising that momentum-independent energy loss was found 

to have no influence on instability; since it in effect merely changes the value 

of the constant Vi which is not involved in the criterion for stability. But in 
s 

contrast, a momentum-dependent energy loss results in a time-varying phase 

density in W- cp coordinates and previous analysis is not applicable. If, for 

example; a beam represented initially by a uniform density in W- ¢J phase 

space over a region of width ~ is subject to energy loss increasing with 

momentum, the width ~ will continuously decrease, Such a beam might be 

expected to become unstable above transition even if the initial 1)., were great 

r-- enough to insure stability 

2 
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In Section II it is shown that for a linear momentum dependence of 

energy loss it is possible to transform to canonical variables in which phase 

density is conserved. Equations of motion in these new variables are used 

in Section III to obtain equations describing the behavior of a distribution of 

phase density uniform within sharp boundaries, The last two sections are 

concerned with stability in two special cases, In Section IV energy loss is 

taken as increasing with particle momentum, while in Section V we discuss 

the situation with energy loss a decreasing function of momentum. 

We find that the expectation of instability when ~ (in W -$0 coordinates) 

decreases is supported by the analysis, The situation with increasing 1) 

appears more difficult to deal with quantitatively and we can conclude only 

that a perturbation in momentum width grows; this is a kind of instability, 

but it does not imply instability in the usual sense of growth of charge density 

perturbations> 

II. CANONICAL FORMULATION 

In the absence of an energy loss mechanism, longitudinal motion of a 

particle in an accelerator is described by the canonical equations 

W=21TRee 
. (df) (1 ) cp = 21Tf dE. W 

the notation being that of reference 2, To include energy loss effects we may 

put into E: a reversely directed electric field so that 

(2) 

3 
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The first two terms characterize the energy loss, while esc is the longitudinal 

electric field resulting from the other particles. There is no externally supplied 

rf field, The energy loss per particle per unit time >:< is then as a function of W 

(3) 

which, since 
dE

dW
f 

may be written, for small energy changes, 

(4) 

The last form allows one to evaluate k and k1 for any contemplated mechano 

ism of energy loss such as radiation, scattering, or intra-beam particle 

. 4 
scattermg. 

It may now be observed that Eqs. (1) with e given by Eq. (2} are not a 

canonical set of equations. However, it is possible to make a non-canonical 

transformation from W- ep variables to new variables W1- <:PI which are 

canonical. Let 

(5} 

Then, by choosing A = 2".,. f? e" if, , we obtain instead of Eqs. (1): 

~= 27TRe(-ko e +k,e Wo+ese) eAt 
(6) 

¢1 = 2 7r f (~) \AI, e -~t 

>:<Exclusive of the internal energy exchanges arising from Cr:c 
4 
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If we write the Hamiltonian 

H, = 1Tf(~)e->.t \'11,''- - 21T Re t-koe+k,e '010) e>'f'if1 
(7) 

+211'e U(((1) e).:t 

with 

(8) 

which shows that 1), and WI form a set of canonical coordinates and mo

menta, 

It is convenient, as in reference 3 to make a canonical transformation 

to 11 e w canonical variables W':', ¢J*" in which the stationary part of the dis

tribution function is not explicitly time dependent. This can be accomplished 

by the generating function 

(9) 

which yields 

W'A: = -;~* = IAI, - 2Ttte (-koe +A;e~)eAt 
A9 _ -as ~ '* (10) 
'fj--;:r

~Wj 

The new Hamiltonian is now 

H*= H d5 
f + ~t" 

or H*( vii*" if),*t) = 1Tf(~) e-'>.t [w *+ 2~Re(_koe +k,e.Wo} eAt]2 
- UC<:/)*)] 'At-2nRe[ (-~oe.+k,eWo)({) - ~ e 

(11) 

+ 21T'Re (-koe +k,e VVc)r:j)* e"At 
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which reduces to 

(12) 

It is easy to check by appropriate change of variables that Hamilton's equa

tions derived from H':< correspond to Eqs, (1) and (2), 

III. BOUNDARY EQUATIONS 

We introduce the distribution function tt(~~~·t) which must satisfy 

(13) 

A stationary distribution is characterized by .if=0 With the further 

restriction to e;t'!'independent distributions (which is necessary for the small 

amplitude analysis to be developed, but which does not necessarily exhaust all 

cases of interest), the equation reduces for the stationary distribution to 

J1f/ • 
aw* W*= 0 

'It 
and since the SO-independence implies that 

aH
tfWit = _ ~* = 0 

dtP*; orptt 

because U(tp' is constant, the solution is the arbitrary function ~ (W,. 

We wish to investigate the stability of the distribution 7f/(W,1tt/):Jtl) 

differing only slightly from i/I;. (W"'). This can easily be done for a distribu

tion which has uniform phase density within sharp boundaries and is otherwise 

zero. We shall consequently specialize to a distribution of this type: 

6� 
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Using the Hamiltonian of Eq (12) and the usual approximation for £, 
5 

we 

write Eq, 13 in the form 

;;= - 2JTf(1t.)e-~t[w*- (k,,/k, - Wo) e~t] ~* 
- (15)

+ '2Tre 2g eAt a1/F ~ f1j/ dW*
y2.R 3Wlf' orpllr 

-00 

From Eq (15), by integrating over W~;< and then by multiplying by W~:< and 

integrating over W);< we obtain 

:f =--27rf(~)e->.t~~,. +2?Tf(!Je.)(ko/k,-Wo) ~* 
(16) 

3!.' = .-2'fff(~E+)e ->.tam +21T f(<!JEVko!k -W;;) dj ~_e2.9Ne>.t~ 
'2Jt cu: t¥J* A, CJtP><r y2 R afJlf 

where 

_ PO 

f-J 1f/dW*) j:= J W*1/f dW*) (17) 
-«> - 00 -co 

Evaluation of J) and m for the distribution of Eq, (14) gives, as in 

MURA-480, 
p= C~~*" 

j = eft W* t6.* 
(18) 

_2. *" ~/
h1 =0---- vr t6. + (T* f:jtt//2 

with 

woft,6* = _ w* Wit = ~* -I- ~It 
J. ') 2 

If we let 
a = -271f(;~)
 

b = 271f (~)(ko!k, - Vt{) 
(19)� 
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then Eqs, (16) become 

(20) 

We have not found general solutions of these equations valid at large 

t even in the small amplitude limit, but an approximate small amplitude 

solution for A ~ 0 v/ill be developed in the following section. 

IV. LOSS INCREASING WITH MOMENTUM, 1. E., A:> 0 

In this section we consider the case in which there is increasing energy 

loss with increasing particle momentum, i. e. > in which ~ > O. We may 

proceed by linearizing the equations about a distribution for which w*= 0 

and t6,*::: b..~ Thus we are considering small perturbations about an initially 

uniform beam. We must examine the validity of the linearization carefully, 

which we shall do later after the linear solution is obtained. In the linear approx

imation, Eqs. (20) become 

(21a) 

(lIb) 

These two equations can be combined to give a single second-order equation 

in 6* only. Equation (2ib) becomes, after rearrangement and differentiation 

with respect to cfJ'* 

8 
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(22) 

Relations for the W>',~ derivatives in terms of ~*' derivatives are obtained 

from Eqo (21a) by differentiation with respect to t and with respect to ~Jt-

(23) 

Elimination of W>',~ derivatives from Eq, (22) by use of Eqs. (23) and division 

At
by e /a leaves 

It can be seen that if 1\>0 the first term on the right-hand side decreases 

very rapidly with increasing time, and thus can be neglected. This decrease 

corresponds to the initial energy spread of the beam (characterized in the 

original coordinates by ~o = A~ e -~t ) being damped out by the energy loss 

mechanism which is energy dependent (k ). The resulting Eq. (24) may now be1

solved easily since it is a linear partial differential equation with constant co

efficients. Let 

(25) 

-2 At 
which upon substitution into Eq. (24) without the e term yields 

9 
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(26) 

An appropriate criterion for stability is that the charge density per unit 

angle in the accelerator be stable, The charge density is given by 

p=f 1f/(VV;{J,t)dW 

For uniform phase density this becomes, in W* variables, 

(27) 

(28) 

Charge density is the same as in the laboratory coordinates; v transforms 

inversely to Ii 

(29) 

Thus since r::r* is constant, the criterion for stability is that A*" not grow, 

which is assured if 

ImSl<O (30) 

Solving Eq. (26) for J1. we have: 

.n ::: - bn - L~h ± 'h i lfac.n 2 =).2- (31) 

df 2
Below transition energy, dE is positive and therefore 4 a c n is 

positive; the criterion for stability is satisfied for all positive ~. 

The more interesting case is above transition when df is negative and 
dE 

the root is pure imaginary; it follows that the value of .n I obtained for the 

positive root has an imaginary part greater than zero for all 1\ and the 

10 
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criterion for stability is not satisfied. Growth rate is then obtained from 

Eq. (31). The growing term has initially an exponent, for a perturbation of 

wave number n, computed from 

which becomes 

1J 1) = -A L + ~ (87Te2.g il
f /elf I Yl:a. + A~)K.. 

m I /2 2 Y~R dE. / (32) 

where from the definition of A and Eq. (4), 

(33) 

It will be observed that as A~ 0 this reduces to the result obtained 

earlier
l 
,2 for a monoenergetic beam. When A becomes largE; the rate of 

growth is reduced, but no finite A leads to stabilization. In contrast to 

the situation without energy loss, positive A leads to different exponents 

for the damped and antidamped components of the perturbation (..0./ #:Da.). 

It should be noted6 that the self-field approximation breaks down when 

n is so large that the wavelength is of the order of beam (or in practice, gap) 

size. The work of reference 2 then implies that one can obtain an estimate of 

the maximum growth rate by taking n ~ 27T R 
G 

We must now re-examine the validity of the linearization which was 

made at the beginning of this section. Below transition, we have stability. 

Consequently, the initially uniform beam will remain uniform. In this case 

the linearization is clearly valid. Mathematically, the dominant dependence 

~ .
of 6. on tlme (ignoring oscillatory terms) is given by 

11 
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(34) 

where by Eq. (31) 

(35) 

From Eq, (21a); one can deduce the dominant dependence of W':< to be 

-"It ('A +.D,)tW ,-....... e (36) 

By inserting these into the non-linear Eqs. (20). one can easily check that 

the terms dropped from Eqs. (20) to obtain the linear Eqs. (21) are actually 

small in the limit of large t. Thus the stable case in linear approximation 

is truly a stable case. 

In case 2. the situation is more complicated since the instability leads 

soon to amplitudes which are sufficiently large to make the non-linear terms 

important. This is no different from the situation in the absence of radiation 

energy loss ( Il =: 0). where the influence of non-linear terms has so far 

escaped analysis. It does remain to be shown. however. that the linear approx

imation has at least some degree of validity. What has been done is that in 

Eq. (24) the term 

(37) 

has been neglected. This corresponds to neglecting the term 
3

't £)6."*ae-/\(../
//2 a~jf (38) 

in Eq. (20). The question then arises whether neglecting this term does not 

invalidate the linearization in which other terms were neglected as small by 

comparison with this one. 

12 
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Suppose the beam has initially an energy spread sufficiently large to 

maintain stability, Then the neglect of the above term will be initially in

correct (although the linearization will be valid). In time, however, the 

energy spread will damp out so that the beam becomes unstable. Now the 

above analysis is correct if the beam rapidly reaches negligible energy 

spread. In the intermediate case, the rate of growth of instabilities will be 

somewhat overestimated by Eq. (32). It is the authors' opinion that this 

overestimate is not too severe, that it is an error of about the same magni

tude as those introduced through neglect of the non-linear terms in the usual 

analysis, It is certainly clear that there is no possibility of stabilization and 

that the A> 0 above-transition situation is always unstable; the time for the 

growth of the instability should be given at least in order of magnitude by 

Eq. (32). To this one might add the amount of time required for the initial 

spread to damp to negligible spread. 

All of the discussion of this section has presupposed a single energy

loss mechanism tending to reduce energy spread. In practice there may be 

other mechanisms in operation, such as external rf, gas scattering, or 

quantum effects, which have the opposite effect, and there may well be an 

equilibrium reached with energy spread sufficient to insure stability. 

V. LOSS DECREASING WITH MOMENTUM, L E., ;1 < 0 

In this section we are concerned with the situation in which there is de

creasing energy loss with increasing particle momentum. In this case, any 

initial energy spread will increase in time. Thus the energy loss mechanism 

13� 
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would appear to be a stabilizing influence with respect to the longitudinal 

instability above transition energy. On the other hand, any perturbation in 

energy spread will grow simply because the beam energy spread is growing, 

and in fact in such a way that the larger the spread the larger the growth. 

Since we anticipate from previous studies that longitudinal instability 

is absent below transition irrespective of beam energy spread, we have no 

reason to suppose that growth of energy spread from an energy loss mechan

ism will have any interesting consequences. The growth is in itself an insta

bility in the sense that energy spread and variations in energy spread are 

magnified. 

Above transition energy, it is difficult to assess the effect of growing 

energy spread except in certain more or less trivial cases. Thus, in an in

tense monoenergetic beam, the usual instability will certainly grow too rapid

ly to be influenced significantly by any likely rate of increase of energy spread. 

At the other extreme, a beam with enough initial spread to be stable will surely 

remain stable. Intermediate cases with initial instability removed by increas

ing energy spread probably exist but we have not attempted to determine their 

behavior. 

On the whole, the influence of increasing energy spread upon collective 

instabilities appears to be much less important, taken alone, than the certain 

effect of decreasing energy spread in producing instabilities above transition. 

(We have noted earlier that energy spreading mechanisms taken in combination 

with others tending to reduced spread may be important in determining the 

14� 



MURA-488 

eventual equilibrium distribution and the consequent stability.) It seems there

fore doubtful that further study of the increasing spread case in the hope of 

securing more quantitative results would be justifiable at this time. 

FOOTNOTES 

1. C. E. Nielsen and A. M. Sessler, MURA-441 (1959). 

2. C. E. Nielsen and A. M. Sessler, MURA-480 (1959). 

3. A. M. Sessler, MURA-464 (Internal) (1959). 

4. A. Becher, MURA-458 (Internal) (1959). 

5. C. E. Nielsen and A. M. Sessler, Rev. Sci. Instr. 3D, 80 (1959), Eq. (16). 

6. See reference 2, Appendix 1. 

15� 


