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Among the sets of eigenvectors which exist in a finite three-dimensional
volume, the "electric" and "magnetic" modes! are of particular importance for
the calculation of electric and magnetic fields. The purpose of the present paper
is to investigate the properties of these modes in volumes of revolution of the
kind depicted in Fig. 1. An explicit mathematical expression can be given for
the modes of a few simple volumes, such as the sphere and the coaxial cylinder,
but in the most general case one has to resort to approximate procedures to
obtain guan:itative data. The most frequently used methods rely on the replace-
ment of differential equations by difference equations, and on the use of
‘variational principles for the calculation of eigenvalues. It is necessary,for a
| systematic application of these methods,to possess a precise classification and
enumeraticn of the modes and their characteristics. This is what these pages,
inspired by a previcus analysis by Bernier% set out to provide. The treatment
is quite general and, by the same token, somewhat unpleasantly dry. In an effort
to enliven the presentation, an application of the general theory to a particular
cavity has been included.

The first structure to be examined will be the toroidal volume of Fig. 1la,
which is of importance for circular particle accelerators and, more generally,
for ring-like structures through which particles or fluids are flowing. The fact
that a toroidal volume does not contain any portion of the axis of revolution facili-

tates the mathematical formulation of the problem.

1. For general background material, see MURA-440, "On Helmholtz's Theorem
in Finite Regions'" (December 1958},

2. J. Bernier, "On Electromagnretic Resonators'', Onde Electrique , 26,
pp. 305-317, 1946. -
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~ Fig. 1

I. PRELIMINARY REMARKS

(a) Fields in volumes of revolution

One of the problems to be investigated is the determination of the

“expansion coefficients of a piecewise continuous vector function a ( r,g , ‘f ).

This determination is simplified by a preliminary Fourier expansion of a in

sines and cosines.
B(n g ) =B (ng) + V3R, + 2 sinm@. B )
_ m
+ cos m¢f Em (n%— ) + Z [- w (r,g)sinmﬂf
m fen

+ Vo (r, %— ) cos rncf:’ a({ (1)
5
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The p's and g's are "'meridian'" vectors. (i.e. vectors situated in the meridian

T~

plane). Vectors such as Vo J,,r , Where M{f is a unit vector perpendicular to

the meridian plane and directed toward increasing Cf , form the "circular"

components. The divergence and curl of a are given by

0 - _ o Iy N o ol o - B % U;ﬂ
diva = d1,vM Py + Z sin Wx\f (leﬂ P —— )
m
— ™ W
+ 2. cos m{ (div q S (2)
H __M_ m r
m

curl a = curl p. + curl vo [ ) + Z sin m ¢[ curl P, -curl (w Y )
Mn 0 ? m ‘ m Mmoo

-%(Kx{m )‘l

— _ _ m o
cosm’:f cur{lwqm +cur1_m(v;ux,c?) + ?(Lb(fxpm )] . (3)

5 N

Differential operators having the subscript M. ( # for meridian) are defined in

Appendix I. When a is solenoidal (i.e. div a = 0), the following relations hold:

— — e U _— W
div. p =0 div p. = —™ div. q = — (4)
M O M m r M m r

When a is irrotational (i.e. curl a = 0)

curlﬂL P, = curlﬁu Py = c:urlJvL A, = curl_M (vg ULY ) =0

" " . m (T .5 A
curlJM_ v Yp )= T ( ¢ X Ppy)

, I - . m ;= —

curlﬂ (WW Ay) = (uvtf X qp) (5)

(b) Electric eigenvectors

The electric eigenvectors of a simply-bounded volume fall into two

categories:
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-Irrotational eigenvectors fmnp = grad L*/mnp where \f/ mnp is an

o~
eigenfunction of the problem
!
2
V \}/ -+ > L}/ =0 \1[/ = 0 on boundary surface S (6)
th(: "hx‘r\ia %Mr %%i’
The triple index accounts for the triple infinity of eigenfunctions.
-Solenoidal eigenvectors emnp’ solutions of
-curl curl emnp + >\mnp emnp =0 U\;h X emnp = 0 on boundary surface S (7)
The notation u stands for "unit vector", and Em is the unit vector along the
outward-pointing normal to S.
(c) Magnetic eigenvectors
The complete set of magnetic eigenvectors of a toroidal volume consists of
~— - A single ""sourceless' vector Ho = grad @  , tangent to the boundary

surface, *
-Irrotational eigenvectors g = grad 0 , where 6 is an
mnp mnp mnp

eigenfunction of the problem.

o)

2. i
v & U 9 =0 _Mmve _ o a_hg (8)
i Ve *\} “)v\“n‘p /D')VL

-Solenoidal cigenvectors Hmnp’ solutions of

np + ﬂmnp hmnp =0 u.m x curl hmnp =0onS. (9)

/4
It can be shown that the eigenvalues ,u- and A are identical, and that the

-curl curl h
m

electric and magnetic solenoidal eigenvectors are multiples of the curl of each

other. In other words, emnp is proportional to curl h . and hmnp is

p

ok . . , . )
We define a "sourceless'' vector as having zero divergence and zero curl. -
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properiional 1o curl gmnp° The proportionality constants depend on the

normaiization of the eigenvectors.

(d) Variational principle for eigenvalues

Variational properties are of considerable interest for the approximate
determination of eigenvalues and eigenvectors when the boundaries are irregular
in shape. The basic property is as follows: When f is a negative definite
self-adjoi nt transformation, * all eigenvalues in df u;" + );\umz 0 are real and

positive. Denoting by a, 4 >  the scalar product of a by & , the lowest
_ <fu, wy
<u,uw>

The functions admitted for competition

eigenvalue >\1 is the minimum of J(u) = . This minimum is

attained for the lowest eigenfunction u,.
(the "admissible'" functions) must belong to the space of definition of the trans-
formation GC . The second lowest eigenvalue is the minimum value of J with
respect to admissible functions that are orthogonal to ug s (i.e. for which

{w, W >=0), and the minimum is attained for u = u, . Similarly, >\M is the
minimum of J with respect to u's that are orthogonal to the (n-1) lowest eigen-
functions, and the minimum is attained for w = um . Similar results are
obtained, mutatis mutandis, for positive-definite transformations.

These considerations can be applied to transformation (6) and (8). The

]

scalar prcduct to be used here is ﬂ at dv , and the A mnp are obtained
v

as stationary values of the expression

I v 9 av
i, w?av

The admissible functions vanish on the boundary, and are continuous up to their

J(¥) =z = (10)

* [ is self-adjoint when < wW€v> =&Lu,v> for all w,v belonging to the space
of definition of £ , and it is negative definite when <« w,Lu> & 0, the
equality sign being obtained for, and only for, u = 0. These properties are
associated with a specific definition of the scalar product <4, 8>

8



MURA-481

second derivatives. The eigenvalues anp are obtained as stationary values of
the same expression, the admissible functions having the same continuity
properties, but a vanishing normal derivative on S.

Transformation (7) with scalar product{a, Z) = ﬁfv &, .? dV leads to

"
the characterization of km*“n as stationary value of the expression
A

mv . cwv( el e AV
va c.cdV

where the admissible vectors have zero divergence, are continuous up to their

(11)

J (e) =

second derivatives and are perpendicular to the boundary surface.

1. ELECTRIC MODES IN TOROIDAL VOLUMES OF REVOLUTION

The general consideraiions of the preceding paragraph will now be applied
more specifically to volumes of revolution. In each category a distinction will
be made between modes of revolution ( the meridian and circular components of

which are independent of azimuth (f ) and ff--dependent modes.

(a) Irrotational eigenvectors

a.l Modes of revolution

The ()0 independent modes _f.onp are gradients of the eigenfunctions

of

2. ] 2‘0( Dol 'al‘,{ >

V A +>\ o :_./') on +_|_‘ w'ﬁ__’_ o “_) o« =o (12)

o o kT i T e o e 0
o

The problem is self-adjoint and negative definite with respect to a scalar product

& 6= {S obn dn daa— . The various eigenfunctions are orthogonal in the

sense that | ol ol dn =0 1.+ . The norms of f and
Jj ovp O‘\\'In'/l dﬁé ﬁv ""l”* L &

9
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-

ol are related by the formula

~ | .
- 3 - 2
{12 vavear [ 7.7 adnay=2r( _amY
,‘[’f’r 2 J& {*f!"l"a ] hwd”r'td’“%- m ”” ‘«9 «‘l,“r /Ldn,als (13)
obtained by an application of (Al 16). * The eigenvalues can be obtained as
stationary values of
L
Ha A VM‘a( n o day
AT 2 dn
f& 2 dn day

The admissible functions vanish on boundary (c) and have continuous derivatives

(14)

J(d) = =

up to the second order,

a,2 Azimuth-dependent modes

The @ dependent modes are periodic in @ ., and their

expression is

conva ¥ -

- {M; W [mwf if:@)l: S rnf Ma{ + = —~ o W, (15)

The functions « are eigenfunctions of the problem
T w ) N
V’_M-—*;};Gi‘-v?ﬂ Jd =0 M o =0 o C (16)
S Penp MYT b rp
The usual Clﬁ-degeneracy is encountered, i.e. two modes, grad [‘}w rn l? oL]
’
and grad [C&omtf {{ s correspond to each value of A . This characteristic

property will be found for all other ¢{’- dependent modes to be examined in the

future. For reasons of conciseness, one of the modes only will be written down
explicitly. The second one can then be obtained by simply increasing Y by W/2.
The problem defined by (15) is again self-adjoint and negative definite

with respect to the scalar product ﬂ we 2 dad % . The J are orthogonal
mnp

*The formulas in the appendices are identified by a prefix A.

10
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in the sense that g ol A ndndr-=0 fqr m},’#: uh'l,’ . The norms
mmr '}nm“.’
of T and o{ are related by

mi{ ld‘l WﬂE'QAJ\&) ]q,dadsgk WII«( adndy an

v qh'r- 8 M’n’

The eigenvalues ) mnp can be obtained as stationary values of

ﬁ&[v d - I‘Jn.dn.&s
o 4t on 4z

the admissible functions being the same as in (14).

=

JL) = (18)

(b) Solenoidal eigenvectors

" b1l Modes of revolution

The solenoidal eigenvectors —e—onp can usefully be split into a

meridian and a circular part according to the formula

o |

onp = Conp (:3 ) + Fonp (r, g ) Uy
Ifthe latter expression is plugged into (7), and the Cf- independence taken into

account, uncoupled equations are obtained for ¢ and F . The modes are

consequently of two different sorts.

1) Circular modes {So W

@

There is a double infinity of these modes, corresponding tothe

eigenfunctions of the problem

Zz‘* ﬁ’”“”‘ ﬁfi‘_ +X:-)» (g"'“l'w fop=> ™€ 19)

11
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The F are, in consequence, equal to the functions o‘m’u encountered in
0

paragraph (a. 2), and partake of their orthogonality and stationarity properties.

n b
The eigenvalues >\ of the circular modes are equal to the >\ . The

o-n,; l'r\ln

normalization is particularly simple:

j]jvfs‘a?.fm‘iav=27rﬂ8 ffn,dn.&% 20,

2) Meridian modes Copnp
L

The eigenvalue problem satisfied by the C is

o a_—
" by EM xC =0
-C‘”\l Dml Co“r )\O'WP co“rz N/d\ § Zh'h UV\(C. ) (21)

It is a simple matter to show that these meridian Vectors are actually the curl
of the circular magnetic eigenvectors. More precisely, the C can be put

inthe form

cunt [

Vonp Sy m
onp ‘(] —'ﬁkw’*( - +ak)u3=-z!-[M{cS;“r’Z)x%] 22)

where the functions (j\ satisfy the eigenvalue problem
z " -
(V -,{1)5 i d 0w w xanl |4 Wlz0 em(C) @3
N owp  OrpOnp R o
The boundary condition can be rewritten in the form

12,0

)= D‘S’“b A}Lt# € =0

(24)

The (r m\'. are orthogonal with respect to a scalar product jja w@-/z, dn Jﬁ
and the eigenvalues are the stationary values of
{f J(VLJ- J)/Mzwt;
T(8)= — 22°°
ff §2rdnd3

The admissible functlons are required to possess the usual contmulty properties,

(25)

12
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and to satisfy (24) at the boundary. 3 The normalization integral is simply

— - " 2
SK\IC‘”‘I". c;m’f'v: 27’—%1\" Sg@ {S;'hf L '{% (26)
b.2 Azimuth-dependent modes

The periodicity of the modes indicates that the general form of € is

e
-— bt -J ) N -
e =C Sumy+C Coom +[ Mw{’-{s W‘M‘PJW
mnp ranpb \ ™np ¢ v rnp ¢
If the latter expression is inserted in (7), uncoupled and identical equations are
— L
obtained for the pairs ( (;, (3 ) and ( C’) (6 ). This fact indicates the existence
of an eigenvector C  SimMn +ﬁ P 'l;/ , and also of an eigenvector
_ ronp \ "~ ! ¢
( c'/—r!' ) obtained from the former by increasing 'n.‘f by Ty)_ , il.e., by rotating
the configuration through an angle p . The equations which € and /3 are
2m L o

required to satisfy are rather complicated. Dropping the subscripts for a

moment, they turn out to be

- - "n_
p *"_.@ w c=0 (27)
2 2m (e TN T N
- C.wlaz=dwe (%=0 (28)
Vo P é‘ +5F (B M) -7 duE 4 _
These equations can be simplified by taking into account the fact that € [c is
yen

solenoidal, i.e., that
= = N dw € — —-e-] =0
du[cyww(.prlmmt(u.?]-mm({[ ‘M 3.
There exists, in consequence, a relation between (5 and Z R namely*

=2 dw < (@9)
wm M

3. For an example of calculation of ﬁo\ and &"P by difference-equation and
variational methods, see D. F. Meronek and J. Van Bladel "Resonant Modes
and Frequencies of a Cigar-shaped Cavity'. Microwave Journal, 2 pp. 32-33,
1959,

* Equation (29) can be obtained directly from (27) and (28) by computing the
divergence of (27), multiplying it by 2 ,and comparing the resulting equation
to (28). m

13
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Upon substitution of this expression in (27), an equation for € alone is obtained.

- ch =0 (c
ve --:C + W 2J~JC+X Lv-om% —p w()so)

M LR M -
The meridian part of a solenoidal eigenvector must, in consequence, be an

eigenvector of problem (30). Conversely, to each eigenvector of (30) corresponds

an eigenvector
C tonmt@ 4t X dw T o i, (31)
’hm’» ‘( w M h‘( ¢

of the original three-dimensional problem (7). It is important to list orthogonality

and stationarity properties of the C " . These properties can be obtained from
[P

the general equation (11) wherein (31) is substituted. They can also be

established directly from a study of the transformation

,mro

.qu.zt - -——V‘+ 20y dm'\r w { o (€)  (32)

"' 2 dﬂ:)n'v'-.-.o

in the meridian plane. The relevant steps are collected in Appendix II. It

turns out that the scalar product which is suited to the problem is

<'\J' W)= K VoW + -""' dN V. da WJ/»M,AS (33)

where V' and W are two meridian vectors. With the latter definition of the
scalar product, transformation .f is self-adjoint and negative -definite, the
eigenvectors are orthogonal in the sense that
Y, S—
c ﬂ L] dM’ C ] A' - n!
Cop G = [wr T W S Wi S oAy =0 frv wpt P

and the elgenvalues )‘ are obtained from the stationarity properties of

T(z)= ’(A’o,c_> Ii! [ fc-,-— almc. aln’[cjﬂ.dn.o\
_ <%, <> - jSa[EE +ﬂrtol~)¢ al,.,:cj’bdn,dg

where the € have continuous derivatives up to the second and satisfy the

(34)

boundary conditions evidenced in (32). Third order derivatives appear in the
numerator. An equivalent expression for the latter can be derived which involves

14
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lesser order derivatives only. The derivation is based on the relation

o a2
£ (3 e i (2 Ay T

A
I - — PR, e
= )l(:,x.xz).&\.«,@c_d%c (Z W)m— Lu}ﬁ@z Cwﬁ j,u.) C)""tf) A A (35)
i M
c
a direct consequence of the substltutlon of (31) in the general relation
JI 17 o ot Tt tanl 7. T = [[(F 5 cond B). 5
The right-hand member of (35) vanishes for all admissible vectors. As a
consequence, J(c) can be rewrltten as j(c)* — "pvv{j. s
. TR T e ac Ds 0%, 3%, 4% a0y ¢4y <
N=]i! [Mﬁi = L;""‘" L w-_“:) [L 1/:, ir?“ﬁ""’*“ﬁ?‘t*;(—‘ ym_‘{
- 7T va DL am@aa w’ﬁgg M AL T DL v DE w232 Ny, _§_
i e 'Dif 2 N s ;!,1)‘
C“ :_ ::&- gy / A
U [‘f TRt ( Tt 03 JM’I' 2 (36)

Th1s form is suitable for numerical computations. We repeat that the admissible

vectors must satisfy the conditions

doe T 20 L, heo

’JLWM L = A -+ = '3):}

T bl AL et tenzr D (37)
gcx‘)‘m‘“‘c@}w“ €%m

at the boundary.

Finally, the normalization relations are

J{f e & Av:T h L ch < )Jq,aladg (38)
) ’wm’ﬂ wm\i, 9

III. EXPANSION IN ELECTRIC EIGENVECTORS

We now turn to the task of determining the coefficients of expansion of

the vector function A4 considered in the first paragraph. Written in full, the

expansion has the form:

’ W v\f“

SN i’:) Dv i‘~ 4

yiom e = Ei““ ‘ e —~
B agman OIS ‘\/ ) (,ld» ]+ z 4{. B-}-\p rﬁ%*‘m(f(_ YAG"G! A !“w gjk L{l]



MURA-481

(39)
A comparision of this expansion with the Fourier series for S , as given in

(1), shows the meaning of certain groups of terms in (39).
R(13): Z =D ¢
RO3:=ZZA qedd +Z2 D G
Upl(1,8) = Z % ompe ﬁw).. _

', (1.3)= 22.A gpmd A +22E €

W e U e AR e ek
3022 28 pamid 2 T 0 G
~
s (q) Zz P 22 b+ 2 z EW A cw
» c (40)
’l%) ZZ '0-;: wmk-ﬁ'z% w,“)nw 'w‘h/- .
The value of the coefficients can be calculated either from general formulas,

or directly from (39) and (40). Results only will be quoted. For the irrotational

terms:
A ” oo : \ Y 43 = - 'Ue "o .-zM')D et (41)
ov\la ! ’
>‘°"“l° (S <4 /LAA.A% ’Am\r ﬁa *wp""‘""%
* The coefficient of ?’ is
b M v, dwasav
va |gved ¥ P]"dv

The coefficient of € is
LN

16
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wwp Am,, JLJ\MMr s A5 jj@,{ ndn A

A similar expression can be obtained for B by substituting q and W
~ b o 27

forP and '\,J; respectively. Formulas (2), (41) and (42) indicate that coefficients
o )

(42)

A and B vanish when a is solenoidal. This result can be predicted directly
from the general formulas.
For the solenoidal terms:
c ﬂ P Wd% “CW“ %,,* Top)-Cund (5T, phind3 f'\r[u. M(ﬁo,v, )]w(o
omr Ul
fy o a5 Youp [l Brup 2oty

“el’o """”‘3_ H M,’o wr’bdnd;, ﬁwxfo)aml €. Mc
e U{C‘"‘P' rvdnds, ﬁ & owp | 24 A3

ly {wp (carko- Xt Jo dn A3 "L‘S;q- (po-Ti}rde
,”b Soijo ’”"W‘%

e plp G BUANE bk
™ IL[[ I "} (A c )J”*M“‘; (43)

The numerator can be rewritten as

”a{amlr &m‘& +’}m\!(0 Uky)i- 2 ;(P )][oml(u‘f;&i%'r).,b(u <C Pﬂ""""‘%

Aﬂ

h-m'o

by an application of formulas (Al. 12) and (Al. 17) where g is set equal to
L

P 3 div Con

17
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A similar expression can be obtained for F by substituting 7 and WM
MM S
for t’! and ‘1,1;\ respectively. It will be noticed that the C, D, E and F vanish
WA X
when & is irrotational (which, according to formula (3), entails vanishing of
the surface integral in the numerator), and perpendicular to the boundary
(which entails ufmth:o and r\)’%fo ; 1.e., cancels out the line integral

in the numerator). These results are, again, in full agreement with the general

formulas.

IV, MAGNETIC MODES IN TOROIDAL VOLUMES OF REVOLUTION

The complete set of eigenvectors includes, first of all, a "sourceless"
w L I
vector — ¥, It include s, in addition, a triple infinity of irrotational eigen-
vectors and a triple infinity of solenoidal eigenveétors. These we now proceed

to investigate.

(a) Irrotational eigenvectors

a.1l Modes of revolution

The ‘f independent modesg are gradients of the eigenfunctions of
o

1\'0

the problem

V.Y

o
ot
M OV\I: + ymr 6,0"\* T

=0 =0 an C (44)

All the properties which were mentioned for the electric eigenfunctions
(self-adjointness, orthogonality, norm) are still valid here. (See II a.1l) The
eigenvalues can still be obtained as stationary value of (14), but the admissible
functions are now required to have zero normal derivative on contour (c). It
will be noticed that the lowest eigenfunction is actually pr= constant. This
eigenfunction has zero gradient, and is of no interest to us. Higher eigen-
functions only must be considered. The trial functions for the latter must be

18
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orthogonal to Y = constant, which implies satisfaction of the relation // Xadlbd%:O

a.2 Azimuth-dependent modes.

The (f dependent modes are of the form ?

= grad [M‘M‘f (i 3,ﬂ

"
where they are eigenfunctions of problem (16), but with the boundary cond1t1on
Oy
—h = 0 on c. All properties of the 0( (orthogonality, norm, etc.) are

(1L an

still valid provided X and J are substituted for ol and ) respectively. The
eigenvalues can be obtained from (18), but the admissible functions are now

required to have zero normal derivative on (c).

(b) Solenoidal eigenvectors

b.1 Modes of revolution

Two categories of modes will be recognized here,

1. Circular modes J;“F u'!ﬂ

There is a double infinity of these modes, corresponding to the

eigenfunctions of problem (23) with accompanying boundary conditions. The

normalization relation is simply
m iy 8, dV = zvrﬂ (Yn,auw\g )

2. Meridian modes ’

These eigenvectors are actually the curl of the circular electric

eigenvectors. In mathematical form:

Zom’o [ Pomp;"{] o [W ("’ﬁwp)" ] (46)

It is a simple matter to check that curl A = A R
W\r b’vx'o ow'p lf
in consequence curl d rvanishes on the surface of the torus, and the boundary
on|

19
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conditiorr W X MA = 0 is satisfied there, as it should.
M omp
The normalization integral is simply

- - " 2
m\, hop o\ohro\\? =207 >°"‘r [fg By e 43 an

b, 2 Azimuth-dependent niodes.

The magnetic vectors are the curl of the eleciric vectors e f . More
-— (LY
precisely, with € given by (31), ’f\ wiil be
'WW\P vy““r
e
h = eomtlutliyh 448 B OS] ettt
rp ARSI , QAMM

The norm of h can be evaluated with the help of formula (35), as:

fff 3 { = ) (Hef;“"%mfm/‘)\ Wﬂ &‘rcm;f »7( MWI')JILM’% (49)

'vm\]a mrp T

—

If @ has been previously ncrmalized, the normalized magnetic eigenvector
Mn — —

is M‘y__ o It is sometimes desirable to calculate K;. I‘directly
)\. "

without r"é’l“}ting on a previous knowledge of e&n’»f . The relevant steps are as

follows:

1. f\ will be cf the form
mm'o —_—
— . ‘ Q -—
{, -__—.A .oaww({-i-—‘mw(-fw dAIJ A (50)
'm'vx‘a ‘\M”h}o Lok ¥ M '\M'V‘l&
2. If we go through the same motions as with the electric eigen-
vectors, we discover that the meridian part 0{ is an eigen-

AV

vector of the problem

[ - 4 (-kv-d—-'#
A=V d - daw 4 +>\ =0 wt |70 m@.
£ Vm Y'w\‘o TE wep n.u‘m M ”‘“}‘““P SMde e

/
Transformaticn f is again self-adjoint and negative-definite with

respect to scalar product (33). Its eigenvectors are orthogonal,
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and its eigenvalues are the stationary values of (34) or
(36). The admissible vectors, however, must now satisfy
the boundary conditions as evidenced in (51). These can
be written more explicitly a8
WM.O\ :dmcwi -\-0‘%4/%9. =0 o~ (C)
|a.,\£7\'|.—.’°d~-’°°‘i=o | (52)
M ’og ox”

In the process of establishing (36) from (34), relation (35) must be used, and

it is necessary to ascertain that the right-hand member of the latter relation
vanishes for all admissible vectors. This boils down to a preaof that
Gl (‘l’&q A ':A—) is directed along the normal to (c) whenever boundary conditions
" .

ALY
(52) are satisfied. The proof is fairly straightforward. First of all,

TN | 207 LT .
curl [— W Ma) —-a(\.ad Ndw &) X , as can easily be checked
.M-('V"‘ ¢ M 'q,w\ u.( o ) ¢ Y
by writing the various differential operators in full. We now have to establish that
z . = 2 Y —— L -
rad (1" AW A :’LW d + IR is tangent to (c). But thi
grad (1 dwm, ) A, A+ AN, div 4 g (c) s
is an immediate consequence of {51), because
- _ L= W7
2 WA+ 25 Ao K)o (B A-Ndveunl ot A )
IL(M% +,med~"‘ )- (,Lz Mmom
and the right-hand member is tangent to (c). More precisely:

(a) A is tangent te (c),
(b) curl curl A is tangent to (c). To prove this point, notice that

curl A (’ad" 0——3 This vector is of the form (! u‘f s

W1th {5 =0 along c. But curl (‘Q = [w ( f/p) X M‘f]

The gradient of A~ is perpendicular to (c), and, as a consequence,

curl (6'&: ):c.,.,.l el ;T is tangent to c.
m MM

21
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V. EXPANSION IN MAGNETIC EIGENVECTORS.

The expansion of a vector a has the form

A(23)e B, & +22 ﬁzz % Q:wr [t o xfw

i v
4 Wﬂ: Im* M'q]... ; % % B%‘r[m%qw ZWP_ m ’.w/: ‘( Mmr UL.,]

*;% o S *sz)wr Yomp

+§:§E EM; [swwol *I"*W&o- V‘«p n'w}-]

-+ A — Sva 2w
227 B ot sttty

(53)
A comparison with the Fourier expansion for a, as given in (1))leads to the

relations

N%ﬁii. %dLFfZD i*,

’L =ﬂg
+z% D'\nl, o'w‘o
15)e 27 A ISE A
‘) ( %) ; o Wixwmr-rm% ’ww\I, 'W*""}‘
IRLENE ZZB%“"M o ZZF

' ’W"‘"‘b var

)=ZZR my LT3 g’ Z

~ P ’W«'hr ’L lvwn’g ~ r W‘er

ww('Ll%)'Z Zewmb = Xw‘» +Zz F d'“l A

haske' pl N vk (54)
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The value of the coefficients can be calculated either from general

for'mulas*‘. cr directly from (53) and (54). Results are, for the sourceless '

vector,
. v, Anas
n') : 8
ﬁ dr A2 (55)
) £ .
“u’o( r, 3 Vis P =3 times the circulation of a around the "parallel" circle
through r, g— ., For a vector which is irrotatiaial in the toroidal region, the

circulation is constant and equal to 2T A,
For the irrotational vectors, the coefficients are
L(N p Yrde - Jsggw din P, ndn dx
onp o H . P/z,ob»d%
gy ke Eprve - foloy (B B ndndz
Do l{ir ndn Az

‘.’Yv\'i'!'}f.)
(56)

A similar expression can be obtained for anp by substituting 7”“ and "W/M for
- ! !
P and V' respectively, Formulas (2)and (56) indicate that & A
e A cw\P wmim
J i
and 8 vanish when a is sclenoidal and perpendicular to the boundary. This
‘w‘vig
result can also be deduced directly from the general formulas.

For the solenoidal vectors, using formula Al.17

s Jpoll Rl el (RR) 1 dn dy

C = -
& e
’ B0 /m , vdnay pr, S§ 52 2 dn A3
— ,{g\/ a ﬁo dV
¥ The coefficient of ho is w f\ iod\/
The coefficient of gmn is — Hs\b ‘L)e wp ds - jSJ\/ ™ap dur & AV
P J.{VIMA@N“H‘AV
The coefficient of h_‘mnp is | m\l Cordm» Cunk z , AV
X L A aV
w‘r‘r3 f'(\[/ "““F va-r:
2
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l,
" {fgzl: A /Ldnd%‘ A ffa}\' 4 nrdndy

/({@ (f«ir n,,ol/\.d%
£ Ka [rw ;;“F+ f—; %MM d y‘%]’LM 4z
e { - 2 T
T e d Y s

(57)

The numerator can be rewriiten as

._.bJ §WJ{> m&ﬁc\wy-{w(\) u‘p)+ wXP )][ \A sz °l (Elxd )]JQAM(%

“wmr
A similar expression can be obtained for F by substituting q and W for
mnp w n
Fw'and ‘Uw respectiively. It will be noticed that, according to formula (3),

the C!'D'E' and F' vanish when a is irrotational. This result is, again,

in harmony with the predictions of the general formulas.

V1. REGIONS CONTAINING THE AXIS

In regions of the tvpe depicted in Fig. 1lb and lc , which contain parts
of the axis of revclution, the Fourier expansion coefficients of a continuous
function A (r’,q‘s 5 Lf ) behave in an interesting way in the vicinity of the axis.
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Let the expansion be written as
o0 2]
A(23,v)= Q(’l,'s)-rz_.(\}n'w\(f %4'3) + me«tf %(4,3) (58)
L5 =i ‘

If A is continuous at all po’in’g) including those situated on the axis, the limit of
A as r approaches zero must be independent of ‘f . This clearly requires A
and B;, to vanish on the axis, while the value of A reduces to AO( o, % )
thereon.

Consider now a vector a , continuous at all points, including those situated
on the axis, and possessing a Fourier expansion of the type given in equation (1).
By a series of simple calculations, the details of which are presented in
Appendix III, it is possible to establish the following properties of the Fourier
coefficients:

(a) Eo is directed along the axis

(b) v, vanishes on the axis

(c) 51 and 51 are purely radial on the axis, and the equalities

Pl ®Vys Qp= Wl hold there.

(d) The coefficients Em . Gy '\}\':w and W’M vanish on the axis
when m is larger than one,

These simple ruies for scalar and vector functions allow one to foresee

the behavior of functions possessing higher orders of continuity. For example:

1. If the gradient of A is continuous on the axis,

{c) Am = Bm = = — = . =0 ('\"'\>’)

on the axis.
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2. If the divergence of a is continuous on the axis, the properties

(a) oV - ow) =0
L R
’r)f n_ ™ OV, OGr _ 2 Wy,

hold on the axis (in addition to those mentioned above).

3. If the curl of a is continuous on the axis, the properties

(a) _@_M__:
DN

’()Em. -9 oV P4 ) ?_v_,,..
Wy - Omsy g O 7 Omr Wh O
(c) ,DQ;' Y 0 onq on L oA 7 on L DN

hold on the axis in addition to those mentioned above.

In the solution of eigenfunction equations such as (6) and (7), it is
necessary, for practical computational purposes, to have as much information
about the behaviar of the functions on the axis as possible. Scalar and vector
eigenelements must have continuous Laplacian and curl curl respectively. What
this implies can easily be found out by combining .results obtained above. One
finds out that:

1. For a scalar function with continuous Laplacian

(a) ______’bij =0
? ’OQ‘A’ /blgl
®) AL =B = o7 N
aﬁm P8 _ ™ 'Y.“._,)
O = 2B et ) BB

on the axis.
2. For a vector function with continuous curl curl

’D Vo
(a)r _&’3. v, = —=0
PN
= 1L L’
®) p3 =0 %%' 2%
(and similar relations for q1 and wq )
26
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op..
(C)k':h.ﬁﬂ;&%s\fzo M %:h./b’"“q' (60)
T Tl e D 2 D

A
on the axis, Similar relations can be written for 7 and W .
“an Yy
We are now in a position 10 more accurately set up the eigenfunction problems for
a simply-bounded, simply-connected cavity of the type shown in Figure 1b .
For both electric and magnetic irrotational eigenvectorss
(a) For modes of revolution, as described in equations (12) and (44),
the boundary conditions on the cuter contour are unchanged, but one

snould add the condition

0
l‘ﬁ = l:o on the axis.
o D :
(b) For azimuth-dependent modes, as described in equation (16) one
should add the condition o(-.:)/ = 0 on the axis.
For both electric and magnetic solencidal eigenvectors?
(a) For circular modes of revolution, as described in equations (19)
and (ZB))one should add the ccndition
‘%; =0 on the axis.

(b) For meridian modes of revolution, as described in (21) and (46),

one should add the condition

ol
¢ = —-—% -0 on the axis.
~ D
(c) For azimuth-dependent modes, as described in (30) and (51), one

should add the conditions

3= Bx 7o Jomr oam
(3=_ C/;, =0 ;0-1 > on the axis.

These various relations will be checked on the normal modes of the

circular cylinder, which can be written down explicitly by separation of variables.

27
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Before this is done, however, it is necessary to mention that, in a doubly
bounded volume such ag represented in Figure lc, the electric eigenvectors
mentioned above do not form a complete set unless we add the electrostatic field
grad Ao to them. This field is obtained by establishing a potential difference
between the two boundary surfaces, assumed to be metallized. More precisely,

A, is the solution of

Ro=1 0w §, dy=0 WQL (61)

(or any multiple thereof).

VII. APPLICATION TO THE CIRCULAR CYLINDRICAL CAVITY

The eigenvectors for this cavity are well known.4 We first consider the

electric eigenvectors. The irrotational set derives from scalar functions:

(a) _ . T &
« ﬁnk—ow_l_ij;(/»" -~

for modes of revolution. Numbers ﬁ;‘ /" are

the roots of

J(x)=0 (62)
The power expansion of Bessel's functions

WA s
T ()= @2 [ Wa)” ] (63)
o Ao (o vtegen)

™ot T )
shows clearly that the general condition 59a,
0d
g " i.e. ——2& = 0, is satisfied on the axis.
=777 > 2 R T N
Fig. 2 (b) e —-%.L I (}:\*Z )
for azimuth-dependent modes. Clearly 0{% vanishes on the axis, while

¢

45ee e. g. C. G. Montgomery ""Technique of Microwave Measurements" p. 297,
McGraw Hill Book Company, New York, 1947.
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o
—6'::1: «0 for m » 1. The general conditions 59b) and c) are confirmed.
Y ,

The soiencida! set is somewhat more complicated. We first consider
modes of revolution, They are of two sorts:

(a) Circular modes:

N
Ponp ?‘5"“"3 T (8D
It will be noticed that /Av is a root of J (x) = 0, but also of J'o (x)=0.

The expansion of J shows that condition 60 a) (i.e.V,= D

1

=0 ) is verified.

(b) Meridian modes:

wrr%
O\A}o [ onp Q] M[ o =2 7, {AQ-) u"]
The boundary condition at r = a is

1 %[w,(m] =AT, (Na)=o
n:=o
indicating clearly that ) is equal to e.:b . Written in full, the eigenvector is

by w
e T DTy ¢ Bt Tl )5,

0
Conditions }> :0&93. = 0, as given in (60a), are satisfied. For azimuth-
-

dependent modes, one obtains the formula
2 N -—
W A o W AT (K3 W 3
C — . W ,S u' m U~
wh LPETL =t Tlr, )%

The (r, 3 ) dependent part of the circular component is

v (a)etaw e =T 7;‘.‘7_ 5w*_3_ T, %)

oM w'v\ta
The conditions C':Z— = m%— = 0 are satlsfled for all values of m. In addition:
C )
- _q_)’_ =0for m=1
Y% Y N

(4 v o, _
TV IR e T T =0 formt

by using formula (63) repeatedly. Conditions (60c) are satisfied. One could go
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through the same motions to check the form of the magnetic eigenvectors,

We shall give a simple example only. The azimuth-dependent irrotational

eigenvectors derive from scalar functions

Y =3 T (4 _”:)
,W«"n'g L L6 1A W"‘}‘ a{‘\
where the numbers é} !, are the roots of
Prw

I (x)=0 (65)

Conditions (59) are satisfied,
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Appendix I:  Differential Operators in a Meridian Plane

in the fcllcwing equations 3/’/§ /0, P) Q& are functions of r and z only; 'andf and Q

are purely meridian vecrors

.= ob
2. Ay p= @Z"'%;fa " D =
- Apo— - =~
3 b BT (- BT T
T— [OFr _ OpaN\T
4. it = (%:a'»z" M;)‘i’?
z 2ka g D -
5 VMWA%%.,S% r 57 = dan), grd, 4
6 C“’ﬁv,.‘xm‘*h‘}w
o Cunk =0 . s
! d:tf" > "X A, "ae“+g‘e“—e‘ﬁ+(’°ﬁfl?—%+l‘%‘)aﬁ
g va =KVM. a"" ﬁ'—)\.&m-%-vﬂ 30\»:(5;5:*}:;5—— ’;%T ;f:)/b anr N Dn ’D% g
o —
._ 36 VPo- OB VA 106 1A=
9“““!*?:["@?*%_%]%*[%03 2t A D2 AAAlE
= Wd@ﬁ?_ﬁ?
M. . .
d ' ¢ | gt 2723 2%
/5 Vﬂc}:aVﬁ(%)+%.£+%=mV (’Lg) Y
A 2 -—
0 A (VoP)= Y, (dw P) o
A as - 2 R T\ L oa W] _
2 iy, [ 22 2 AR G (Re)e 05 6 T 4
-— - 2 T L D L
SVL(O(M' c,)-'i%w C+—;§-—C/L+—n-: a(%c)
2
3.9, pod 4= ped (%09)
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The followirg integral relations are directly obtainable from their three-
P~

dimensional counterpart
3 ﬁa dis, P rdndy = (%, Plnsc
5 f[ [q dbs Popad g Plrdeds =L0}(DCM‘ F)ade
9 c
16, ﬁg) [f@ V;:% +{}mc&dﬁc&. Wﬂﬁ]mdﬁdza gcf\, %Qd‘
7 {Q (V P__.; By l__ﬂu,) + (¥ 3-’%—'3 2ln)

+ di, -8 )(aw 32 Yrewl Bk &
M
+ [k, (4314 2 (3 X [ort, (K)o 32 (G &)]lrdn oy

- j%(u- %Q)M r"..é_""."—‘(u P) 4 M(guqs)ﬂw Q)(dM)P ‘—%)I/MC

C
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APPENDIX II,

,, : _ L s -
Preperties of the operator 40 =V - + 2 W daw
M /Lz" t N M

Scalar product (33), and the metric derived from it, define a Hilbert
space. The mair properties of transformation ,,( are obtained from a consideration
—_ -——r
of <’l-'). Av} , where V belongs to the domain of vectors satisfying the boundary
conditions appearing in (32). If we apply (35) to RT3 ; we discover that the right-

hand member vanishes, sc that

& Lay= jj [V [b“—y-—- A . A f\}jmdrw\?g
®

” ’-—»u.x‘f+(wf (’Lu J-W‘C_)f K/vdxwlg
(1)
Clearly, (1}, fz") is never positive. We now want to prove that o(\;;xuimplies
:‘}o"‘o , which would then make transformation (32) ﬁegative-—definite. We first

need to establish Helmholtz' theorem in the meridian plane. More explicitly, we

want to examine the splitting of a meridian vector f into
where grad £ , the longitudinal term, is required to be perpendicular to (c),

ca—.

and to have the same divergence as P . In other words, A must satisfy

+ - A P = (;
VMH«-MMP A=o0 o (,

It is a simple matter, using relation Al.16, to show that this problem has a unique

solution and that the longitudinal term vanishes when divM F =0, Itis also a
simple matter, using Stoke's theorem in the meridian plane to show that each
meridian vector for which curl Pz 0 can be put in the form gradM & . I, in

addition , P is perpendicular to the boundary c, potential 6 is nothing but the
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——— —

functicn M appearing in (2). The sources of L’ are, consequently, the curl of F
and the tangential components of P,

When ,.\\;; 0, the leffhand member of (1) vanishes; this implies that the squares
in the second member also vanish, and, in particular, that curl ;f; = 0. Letting

ap = grad A , it is found that A must satisfy

'(Vm“v ‘)Mu'UA— Wﬁ +/—; UL, V A=z0 witl A= V A=0 on(C)

Projection of »(\7; on the axis indica*es that (using AI. 13)
1

In consequence,V g™ has a constant value along a parallel to the 3 axis.
M /“1’

{

This value must be zero, because
2
\ J )
?ﬁ A A =0 (3)
on ¢. It follows that (3) is valid over the whole area @& . An application of Green's

theorem AL 16 shows that

Lf . A - Vg ﬂ)lz»mda‘.dg:o
so that both p and \rc must vanish.
The self-adjoint character of £ (i.e. £ & 251): ¢d, k&) ) can be quickly
established by using (AI. 17) twice, setting ¢ -‘; d.}w;A P Z\_ abud O
and subtracting. One obtains, after using (AI. 12),

J[8 477 £ 5 By £7- £ auy P diy £8]ndnag =0 "
The second members in (Al. 17) vanish because of the boundary conditions. Equation
(4) is nothing but £ ¢, £d> ~d d,2E>=0 , the relation we set out to

rove.
Operator .C satisfies all the conditions for its eigenvectors -Emnp' to form a

closed set. And yet a paradox appears in the third equation of set (40). The
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"expansion cf 18 not in terms of the ¢ only, but includes terms in
o~ A mnp

grad Am“p

ey

. suggesting that the Emnp might not form a complete set. In fact,

the paradox is oniv apparent. The terms in Crm are not the expansion of _ﬁ
m

np

but of iis transverse part E (see equation 2). Assuming the c's to be

normalized, the expansion coefficient of the full vector would be

[[R7 +% 4 Fotizloaess

while the coefficient which actually appears in the expansion is

E = [jg(fwz + 2L AW T ) ndrda (©

w’v\ém

We want to show that

e~ At T .
B by [F T o A b7 frdndy ™

— To establish the fact it is necessary to extend the content of (2). Any vector can

" be uniquely t split into grad 8 + curl-vv in a finite volume, with 6 = 0 on the
boundary surface. If we apply this Helmholtz's theorem to the vector
(d) Cian v ((' +V e &), we notice right away that 6 and W must be of the
m P N

form
O A (L) avnmd + 8 (15) v if
vy - . Y re 3 om ; Ly - S ~ 1
WE oqu,g) gww‘f+l.}m('h,3) 0 e f 4 E.Y;,L,%)SW m%%fa,g)wmﬂw,f
It is a simple matter, by inserting these expressions in grad 8 + curl W , and

comparing to the original vector, to check that B = ol% = =0 >, and that

"y A i F Al -—
{:‘M “W&A - "Z..( ‘{”(W)"'/z. W('Lgﬁ)xulpj
These equations can be simplified still more by noticing that curl M gradm (2C) = 0.

U
Setting X = (5 - L grad (€-), we discover that (2) can be generalized into the
— S, Pl

statement that each pair ( F ,\U. ) splits as
) Vi
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Fuz oA A+ S (FxR) ot A0 on(©).
v _w/f -\-IOUV»QM?[ (8)

e -

To prove *he equality of {6) and (7), it suffices to show that
- 7 — v - ’J\I ¢ v =L
[ (TR Bl 2 B d T e P dn iy o

no—
—

L' = Md]Vl-iﬁL: —

Mo

(9)

—— 4

But PWW-E = gradMAg divM {,w-%tY ’ . Equation

(9) can consequently be rewritten as
[ (oo nTeZam T =B)nindz=o
2 [ael e M- 2

This relation is a direct consequence of Al. 15, if we remember that A = 0 on (c).

APPENDIX III,

Behavior of a continuous vector in the vicinity of the axis.

We start from Fourier expansion (1), and project on rectangular axes
P proj gu

oxyg s, wWhere G; is the axis of revolutiocn. The projection on the x axis yields

3' ; C\,y;:. C»O‘*LF d’{ﬂ; fonlp v, Tg&'a"f .S:}w’w((l?wa_ "TOT*(me‘M‘f 7,,“1]

I 4 L N Al A
L= f T V;
S gl B B2
20 ,
Fig. 3 ,}. Z ,Q-VV’IML{‘ (Ewl N - g:-’ -¥ *jv‘m-r),.»’l— Tt )

+Z ———lL (c"\m -i) ro—-W *‘Z_‘&,\w w.,;/) (1)

A =1
=2

This projection has to be independent of sﬂwhen r = 0, All coefficients of the
on'f | ces tf, §ian »Cfa,wd Con fw\if ierms must consequently vanish. This
yields the conditions:

, .
%+ B e
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}om_;‘ry_*phﬂ,‘_—v‘ ‘f'U— _:O fw A 22

- Mnti
q'm-:/x A ‘!’«M;sﬂ, et T V‘,,-/,.-,\,,.s" ° s‘{ ke
(2)
Similarly, by prcjectirg on the y axis, one obtains *the conditions
Ve + g Y,
[«] 2 -
qlﬂ. - W — 0
FO’L" P
- “+ VvV <+ = Fo
Pl J?""‘“,/L Cancl vei ° v mZ2
+ 4 W o+wW  =o j»r T 22
Vi iwi LT Y 2 (3)
Projection on the 3 axis indicates simply that h‘“ and 4  must vanish,

/'""t
9
while gbo 3 can have any value, The conditions mentioned in the text can now

easily be derived by considering relations (2) and (3) together. The first
relations, for example, yield immediately v, = 0 and Pyp + Vy = 0. The third
relations, wriiter as

é’m.‘ P WL‘*"""';, =0

- SV V=0 [
G T L Y {

e
(M;
]
)
e

indicate that Pyp =V = 0. As aresult, v, =0 and Pop = 0.
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