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ABSTRACT 

An assembly of particles subject only to external fields and long-range inter­

actions may be represented as a..ll incompressible fluid in phase space; it follows that 

the behavior in the special case described by uniform phase density out to sharp 

bOli..'1.daries is completely determined by the boundary motion. For azimuthal particle 

motion this report gives a derivation of two coupled non=linear first order partial 

differential equations describing the motion of the phase boundaries when they are 

single valued functions of coordinate and time. It gives also a derivation of a 

potential function adequate for representation of the collective-field term in these 

equations even when charge density varies appreciably in a distance of the order of 

beam diameter,; and. it proposes computer programs for their solution. In the 

appendix cer-tain implications of this potential kernel for the solutions in the small 

amplitude limi.t of MURA-441 are discussed; a numerical error in MURA-441 is 

noted. 

I"-- *AEC Research and Development Report. Research supported by the Atomi.c 
Energy Commissi.ona Contract No. AEC AT(11-1)-384. 
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L INTRODUCTi:ON 

1 

In a recenI report!. a computer program for the solution of the one-dimensional 

longitudipal space chay."ge problem was proposed. This program was designed to 

solve the redti.ced Boltzmann eq~la~:::'Ol1 with arbitrary distribution function 1J! (W. f. t). 

Preliminary computer studies have indica:ed that i.t may be difficu.lt to follow an 

arbitrary distrihl1tion for as long a time as would be interesting for some purposes 

because of Emitations ::n the accuracy of det.erminations of derivatives imposed 

by the num"Jec o~ mesh points available in +.he computero The present report there­

fore proposes as a suppleme:ltary program a procedure that should give more 

detailed j~fo;-mat,ion about a more limited class of distributions. 

If we 11mil ourselves to distributions of constant density in phase space within 

arbitrary bour:daries,,, the Boltzmann equation leads to two coupled first order 

partial differen::ial equations describing the motion of these boundaries. subject to 

the restriction that, boundaries do I?-0t become so convoluted that the boundary 

curves W ( P. t) a::.~e multiple valuedo We give a derivation of these boundary
b

equations iI: Sechon II. 

Nex(, sir.t:::e our previous space charge studies2 have been limited in their 

applicabiEty to prohlems of stability above transition energy by the use of a very 

simple potential approximation that fails when the charge density varies too rapidly 

in azimuth" we develop in Section IiI a more accurate approximation for use in the 

proposed programo We hope that this new expression for space charge potential 

win permit: computer study of such problems as the capture of a circulating ring of 

particles above transition into rf buckets in the presence of space charge and the 

influence of space charge forces on the stability of buckets above transition. 
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In Section IV we describe the programs. 

Finally" in the Appendix we show that the extension of the analysis of 

MURA-441 to short wave-lengths made possible with the improved potential function 

leads to the predictions that the effect of energy-spread in stabilizing a circulating 

beam is greater for very short wave -lengths. and that the growth rate of instability 

in a monoenergetic beam approaches a limiting value at short wave-lengths. 

II. BOUNDARY EQUATIONS 

The equations of boundary motion were first obtained3 by consideration of 

the phase motion of the particles lying on the boundary. We give here a different 

derivation based upon the well known development of the Boltzmann equation into a 

4series of equations in the successive moments. . 

In order to make the present discussion as general as may be necessary to 

include all case s of interest. we suppose that the accelerating voltage and rate of 

energy gain as well as the space charge potential maybe time varying. Thus we 

replace the nearly time-independent Hamiltonian of previous work (ref. 2, eq. 6) 

, 
by the time -dependent. 

df 2f (1)H(W.y;.t) =l1h(fdE )sW + eV(t)cos!J+ ws(t) + 2?fehU<j'. t) 

and the canonical equations become 

. .' au (tp, t)
W =' e V (t) sin J' ~ w s (t) - 2?f'e h . := L (f'J' t) (2)

1.71/ 
to = 27/11 (f df) W =. M (t) W

7 dE s 

(It may be noted in passing that this formulation in terms of the rotating coordinate 

system is advantageous for the pre sent problem because coefficients are more 

easily evaluated than if one expressed the motion in terms of laboratory coordinates 

w, ~ .) 

3 
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T:1e BoHzmann equation in terms of these values for Wand J'7 IS 

- M (t) W 

We rna," fns) integrate over W from - '~...-:;' to 00 0 This gIves 

(~:, 

-:'/'-d W ,:;; =, L ( cP, d l ' 1./ 0) 
...._ <.:f:' 

Since -; m'...lst vanish at the limits; the first term on the right IS zero, 

If we define 

the eqL.a-:jon become s 

\eVe nex~ .:1JUJhply by Wand again integrate over VI, The result is 

_,71,', j/:' 1f dW,:: -L(1)~ t) ,/" [W7Jf]~' - /;<;d W 
at -~ r, -::<'. J. 

- -<:::I::> 

= 
- M (t) ~, j/' w2 ..,fr d W 

ti1<P r
.1 _ .t'lI(~ 

a':ld 1f VI falls off at infinity faster than "",-1 , as it must for fimte tot:,),1 r:un:, ( 1 
I 

phase points, !W lit! 
-,~ 

= o. We have then the second equatlOn 
i I -- -~.:::~ 

- M a r~2YdW , ; 

~rp L~ 
These two equahons although true in general are not useful as a solution 

problem unless the second moment can be evaluated or neglected. We cal~ 
, " 

i:,1 1 ,1 'I 

deal Vi/lt}l the following two cases: If the d:i:.,;r::rii)ution is nearly monoenergc'"j cl'-' 

range of V-i may be small enough to allow neglecting the second moment il~ ( >"'i)D r, 

Jt:iOC'lili L /:.;, i\nd if the distribution is constant within sharp boundaries, il" 

4� 
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second moment IS known from;O and j, Only if density is constant do the 

boundane s de1 erm:ne the dlstribuhon 

Let 1he bQ1..c"'~daries of the dIstributlon be W1 ( f ," t) and W2 ( f., t) within 

WhICh ..,/r -::-- a cor... stant a!ld outsIde elf WhlC' h "T)r '" 0 Then 
I 

q- {W '~W} 
2 1 

OQ 

(7)j ,~. f WyFd W ,r (W22/ 2 W;/2) 
-(,lC) 

m 00; OCw2irdW 1]- (wi /3 - Wlj3)/ 

-I.e<> 
It IS convement to define new variable s 

L\ (8 ) 

m terms of WhICh 

J" c:r- Vit6.� 

-2 3� 
m o-w A TO'"" L::i /12 

and the two equatIons for the two funellOns 1\ .r t) and W (p!J t) become,,-, (r1) }) 

(9) 

c),6W 
M U

;7t ;:)ep 
" 

The sec ond (an be s:mphfled by carrymg ovt the differentiatlOn and then sub­

tracting the fnst leavmg (aHer removal of the commC?n factor L:::.-. ) 
= ~.,L 2 

CJW L~ (j1 ') M (t) ;,?.., (w + ,-./:i - ) (10)
) ;71;...' \ 2 8 

L1 may seem a: flrs~ glance surpn sIng that densitya- seems to vanish 

from these equations' but 1l WIJl reappear when iA f t) is evaluated. The 

5 
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coefficient M(t) depends only upon the properties of the accelerator and the particles 

being accelerated and it need not concern us further. The coefficient L(P, t), 

however, contains both the external applied field and the electrostatic self-field. 

In order to evaluate the self-field part of L( p, t) we must relate the phase 

space distribution to the coordinate space charge density and we must evaluate the 

field resulting from this charge density. In the following section the potential 

contribution of an element of charge q at a distance z is computed in the form of 

the kernel K ( I z' - z I ) from which the total potential at a point z is 

1
00 

• I I 
U (z) = _GO K ( I z - z , ) A (z ) d z (11) 

with i\ (z I) defined as charge per unit length and K having dimensions of 

reciprocal length. 

We make the assumption that the curvature of the charge distribution in its 

orbit is slight enough in a distance of the order of shield diameter, beyond which 

K falls rapidly to zero, to allow replacement of dz by R de. 

From the definition of {J (ref. 2) de =' ~ d f ' and we therefore put 

dz = R/h df and write R/h (fl-f) for z· = z in the expression for K. 

The total charge in a uniform ring would be 

Q =21f R7\ 

and the corre sponding phase area would be 

whence total charge in terms of phase point density 0- is� 

Q = ecr'S = 21ret:rhA� 

and 
ecr-h,AA= R. 

6 



0. MURA-480 

We therefore put into the integral 

~<Zl) dz' = eO-~ <f I:, t) dlY (12) 

(Compare eq. 13, ref. 2). The coefficient L(cf. t) is consequently 

.."..-i 
L(rp,t)=eV(t)sinfJ-~s(t)-27T'etrh1-1;K(f' ~rp)4<f'.t) df' (13) 

1JfJ - J'I':~v 
This expression together with the appropriate M(t) and the value of K 

determined below puts the boundary equations into a form appropriate for solution 

as outlined in Section IV. For relativistic particles we multiply the last term by 

oJ -2 .... /o l5 being defined by 

to correct for the change in self-field experienced by the particles. 

III. EVALUATION OF THE KERNEL 

We may easily obtain the kernel K( I Zl - z I ) in the non-relativistic approx­

imation for a cylindrical beam in which charge density is a function of axial <;oor­

dinate z only. What is required is the potential, on axis, of a uniformly charged 

disk of radius a. located inside a conducting cylinder of radius b. as indicated in 

Fig. 1. The solution to this problem may be easily obtained from the Green 's 

function for a cylinder5; 

cos s<'f - fo} 
s =0 

(14) 

where the notation is the same as in reference 5. but we have used eo s. u. 

The numbers/-tr are determined by the condition JoVr b) := O. Integrating over 

a disk and replacing q by ~&;, z we obtain: 

dV (z) = 4M z 

b 
2 

a 
2 

L 
r 

e -/'r Izi 
A [J1 <,.Itrb>] 2 

~x) x dx. (15 ) 

7 
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,t. 
__. at~-(__)� 

Fig. 1. Geometry for determination of the kernel. 

(16) 

unity~ even when z = 0 ~ and obviously even more rapidly for any given alb as 

z/b becomes greater than zero. To illustrate we may give some numerical values 

for the case alb = 0.5. The first three roots of J and the corresponding values 
o 

of J are1� 

£1 = 2.4048 J 1('"l) := 0.5191� 

E: 2 = 5.5201 J 1(£2) =-0. 3403 

~3 = 8.6537 J 1(€3) ::::; o ,2715 

and accordingly the potential is in general 
-2 405 z 

f b J 1 (2. 405 ~)... 4 "cr z{e' a V (z) = a 
1. 5583 (17) 

z 6 4 z -5.520 b -8. 5 j)' 
+ e J 1(5.520;) + e J 1 (8. 654~ ) 

+ •••• }-----;:---;:::-:~;------

3.5287 5.5200 

8 
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For alb =0.5 this becomes 
z z

-2,405 b -5. 520 b�
d V (z) = 4",1 z O. 3202 e + O. 1198 e� 

a { (18) 
-8 654­. bz ]- 0.0327 e - , .... 

Evaluation of the series for z/b = 0 gives 0, 3958 as the sum of the first ten terms 

in brackets; this may be compared with 0.4073 from the three terms written. 

In this situation one naturally asks whether the first one or two terms of 

this series provide sufficiently good approximation to the potential. Evidently 

better approximation could be obtained with a given number of term s by treating 

coefficients and exponents as adjustable parameters. Two criteria for such adjust­

ment follow from the fact that, as may readily be shown, the field from a charge 

distribution of constant density gradient is correctly given providing the integral 

over z of the potential kernel has the correct value (the approximation of ref. 2), 

which the field at a discontinuity in an otherwise uniform charge density is 

correctly given if the kernel is correct at z= O. 

Adjustment of two parameters to meet the two conditions just stated is so 

simple and effective that for present purposes we need not explore methods of 

improving the fit by imposing additional criteria for additional parameter adjustment. 

The quality of the approximation obtained in various ways is indicated in the 

following table showing (1) potential for various z computed from ten terms of the 

series (2)the first term of the series (3) the first two terms of the series (4) a 

single exponential term with coefficient and exponent adjusted to match the peak 

value and the integral (5) the first term of the series plus a second exponential with 

coefficient and exponent adjusted. The factor ~, which is the potential at the 
a 

center of an isolated disc, is taken out so that the numbers given represent potential 

9� 
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at various z/b inside a shield of radius b =2a relative to potential at the center of 

an unshielded disc. 

TABLE I 

zlb = 0 1/4 1/2 3/4 1 

L Ten terms 0.7915 0.4006 0.2065 0.1092 0.0587 

2. First term 0.6403 0.3510 0.1924 0.1054 0.0578 

3. Two terms 0.8799 0.4112 0.2075 0.1093 0.0587 

4. O1e adj. expo 0.7915 0.4077 0.2100 0.1082 0.0557 

5.� First term plus 0.7915 0.3974 0.2066 0.1098 0.0591 
adj. expo 

The first three lines in the table are computed by means of eq. 16~ line 

four represents the single term 

-2.653 z/b 
0.7915 e (l8a) 

and line five represents the two terms 

-2.405 z/b� -4.721 z/b 
0.6403 e + 0.1512 e (l8b) 

The quality of the representation provided by even a single adjusted term 

would appear to be more than adequate in this case. 

Total potential at a point z being given by the integral of SV ( 'Zl - z I ) 
6 

over all Zl • we write the kernel� 

K (/ ZI _ z I > = eV{ I z I - z I )� 
'l\{zl>/zi (19) 

For computer use one will probably enter the kernel as a table of numbers giving 

K (I Zl - z/> at the required Zl - Z. 

10 
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The two term approximation could take the form 

2f. -jJ1( I Zl - z/)/b -ft2( I Zl - Zl)/b] 
K( I Z I - Z I) = a 0(1 e +q: 2 e 

or in terms of phase angle 

(20) 

IV. DIGITAL COMPUTER PROGRAMS 

In Section Uthe equations (eqs. 9 j 10 j 13" 2) describing the motion of a 

band of particle s in phase space were shown to be 

84 ;~W = - M (t)
?7 t OfJ (21 ) 

4 2-'w a ( w 2 )=L(fj t) - M (t) ap -.-2- + 8" •
~t 

where 

M(t) = 27Th (f ddf )�
E s� 

and K(f'- f) is given in Section III (eqs. 16 j 19) by: 

- €rR lf~epl 
J 1(E a/b)e hb r 

ErlJIZ(Er) (23) 

It is suggested that solutions to these equations may be obtained by digital 

computation. We describe two possible computer programs in the remainder of 

this section, taking for convenience the case h = 1. 

11 
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Program A 

The functions A and Wmust be evaluated for a set of values fJ i at each 

time t. Given A (tfJ. I t ) and W (tf)'1 t ) at some time t and for all i the 
n Tl n Tl n n 

computer must evaluate 40 (to., t +1) and Vi (~t 1) for all i. In the courser 1 n Til n+ 

of this the computer must evaluate L( <p I t). Thus roughly 1/5 of the storage 

available in the fast memory (beyond that required for instructions) may be used 

for ~ (to., t ) for fixed n and all i; 1/5 for Vi (tf)'1 t ) for fixed n and all i;
Tl n Tl n 

1/5 for K(1' .". tOj ); 1/5 for sin f i (probably most conveniently stored rather 
,J 1 1 

than evaluated); and 1/5 for i;. K ( <R - fi )A (11 ' t ). The integration in 
n 

J 
time must be performed using a stable method, such as the method developed by 

R.� Christian for use with MURA-442. 

The functions M (t), w (t) and V (t) will be given as analytic functions and 
s 

the program should allow for a number of choices for each of these functions. 

One might use, for example, 
2 

t
M (t) = M� + t J

~2o 7'0 J 

Ws (t) = ws (0) [ 1 + (24)tl'i 1 
V (t) = V0 [t • t +13 J� 

,� 
The kernel K(ep -if )can be stored as a table of numbers and has the 

I 

property that it is negligible for IP-f I >2bl R. (This is a number in the 50 

Mev model of the order of :0 Ii. e. if i takes on 1000 values K((fJ - f) is 

non-vanishing for about 50 values. For other accelerators b/ R will in general be 

smaller.) The L K(d.? - cq) A (to, t ) should be evaluated first and then the 
j 7J Fi 7j n 

derivative with respect to f taken. The special case of K( 91 - 11) = 0 for j =1= i 

12� 
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should be programmed specially. All the differentiations should be performed 

using a fairly elaborate differentiation formula. 

Print out should be arranged so that A (CP' t ) and W( f, t ) can be Fouriern n

analyzed, and the Fourier components printed out after a specifiable number of 

iterations. 

Program B 

It may be advantageous to solve the equations describing a beam with constant 

phase density by means of a complete set of ortho-normal functions. The most 

obvious functions for this problem are :);;; sin ntp and fi cos, n f and we here 

formulate the equations, using these functions. The form of M(t), ws(t>, and 

vet) is optional and could be taken as in Part A. 

Let 
bn(t)

LJ..(f'. t) =~ [ "n (t) fi sin n f + cosn~Off 
(25 ) 

dn(t)

WW· t) =~:[cn (t) r~ sinnf + cosn~-;q;:­

In this case the first of eq. (21) becomes 

- M(t) L :*'n'Sin n'f cn" sin n''f+ an,dn"sin n'tf cos n"tf11 n' ,nil l-J 

+ bn,cn"cos n' rp sin n"f+ bn,dn" cos n' rp cos n"f] 

which is equivalent to 

M(t)
1 L [anSin np + bn cos nrJ

-fi 1r' n 

13� 
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[ cos (n' - n") 'fJ - cos (n' + n") ~] + 

U[Sin (n' + n ) f + sin (n' - n")<p] + 

[Sin (n' + n") if + sin (n" - n') cP] + 

[ cos (n' + n") f + COB(n' - n")f!J] . 
or 

M(t)fi ~ [ inSin nep + bn cos n~ = 
7"/ 

a ,c if n n 
(n' - n") sin (n' - n") <;p + (n' + n") sin (n' + n") ~ { 2 ( -

+. . . . . 0 0 o} _,• 

Multiplying by ;7r' sin n ep and integrating~ and then by ~ cos n r;; and 

integrating yields: 

M(t) n a L {-an' (cn' -n + cnl +n) + an' (cn _nl + C -n-nl) +n 2r1/ 
n l 

- bn , (dn _n , + d-n-n' ) + -bn' (dn , _ n + dn , + n Y 
M(t) n 

b = L {an' (dn _n , - d-n-n') +n 27/?I 
n'� 

+a (d - d ) +�
n' n'-n n'+n� 

+bni (c _ - C -n-n') +�n nt 

+bn' (cn +n ' - c_n +n ' )] (26) 

14 



MURA-480 

The second of eq. (21) may be treated in a like manner. It is of course 

more complicated due to the integral in L( tp ~ t). If we let 

sin n <f + cos nf ). (27) 

with the ol and ~ to be evaluated below, then by a method similar to that 
n n 

used above we obtain: 

, M(t)nc = d,.,n n 271T' 

+ 1/8 anI (an - n , - a_n - n , - ~'-n + an' +n ) 

- 1/8 bn , (bn-n' - b-n - n , + bn , -n - bn , +n )}� 

. . /J ., f /� . M(t)n 
~ = r'n -2.~ ~ «1 2 cn ' (dn - n1 + d-n - n , + dnl - n + ~'+n) 

+ 1/8 ani (bn-n' + b-n - n , + bn'-n + bn1 +n ) (28) 

+ 1/8 bn , ("n-n' + a_n - n , + "n+n' + a_n +n , )J 
To evaluate the at and ~ we use the expression for L (to ~ t) given in . n'-n T 

eq. (22) (with h =1) together with~(f. t) from eq. (25). We shall obtain expressions 

foro'. n and ~ n for two forms of K( <fJ!" 9J) which~ in view of the generality of the 

second~ seem to cover most cases of· interest. 

Case i. 

2?rela-
L (fJ ~ t) = e V (t) sinf - if s (t) - 9 2 Ko (29) 

15 
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and conse quently 

2?1e 2q- f 
~ = + d/2 nKobn(t) +;7jeV(t) 0 (n-1)

n 
(30) 

Case ii. 

I 

K (~ - f )is given as a table of numbers. In this case we may Fourier 

analyze the kernel and then express 0(, n and;8n in terms of the Fourier 

coefficients of the kernel. If we let 

(31 ) 

then 
1r 

a 1K<f'-J'>Ll <:P: t) df' 
atp

is given by -71' 

L 
..".� 

m1 sin m (If' -f) l"nsin nf + bneDS nf~
Km dr"m,n 7?r 
-'7r 

or 
KmmL l&inm'f' eDSm 9-eDsmf' SinmfJxm,n 711' 

-77' 

[ a n sin 1" + bn CDS nr ~ d5>'n

Performing the integral yields 

L Jt"7?n K (a cos f -b sin tD).-11 n n n nT 
n 

Thus we obtain7 

2 2 
4I(,n = + 2§zetr" n Ku b (t) + -nre V (t) d (n-1)n 

(32) 

;9n = 2 ~~1r- n ~ an (t) - -r'?T ws (t) d (n-O) 

16 
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We note that these expression differ from those in the special delta 

function case only in the replacement of the K by?'fK,. 
. ~'., 0 n 
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APPENDIX

The expansion of the potential kernel in a Fourier series as in Eq. (31) 
may be combined w~th; the linear theory of ,MURA-,441 to yield an interesting 

. result. Examination()f the analysis contained in Eqs. (19) to (31) of that report 
shows that the dispersion relation becomes6: 

(A-I) 

. . . 

'"For a delta-function ~ernel the coefficients K.n are all equal to 
Eq. (A-1) reduces to Eq. (31) of lVIURA-441.· .' 

Following through the analysis of MURA':'"441 we find that the fre quency 
associated with wave number, n (eq. 36.) becomes for a· rectangular distribution 

, 'W = n[p~ +[ l¥~elN (f :1K +?rl(:J: (4E)r
ll
] (A-l)n 

. "Now the kern,el lY<J.~ -fJ/) has a discontinuity in its derivative at g:> =f" , but 
otherwise iscont~~ous with continuous derivative. Consequently9 K:n 
asymptotically goes as 1/n2 and w becomes real for ,sufficiently large wave 
numbers n, only provided that A E :t O. This physically reasonable result is very 
important from a computational point of view as it ensures that stability of the 
numerical procedure s is attainable with a sufficiently large but not infinite number 
of Fourier components. . 

As a,r;,' ex~mple, consider the first term of the kernel for alb = 0.5 trom� 
Eq. (18),"� 

. -2.405 R cp� 
(0. 3202) e'}') (A-3)K <p) =: 

. This leads to Fourier coefficients 

K = 16(0. 3202)tt[ 1 - (=1)n e -~.1. (A-4)n b7T~2+n2) 

where 2.405 Rj<= b (A-5) 

17 
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-~ 
The term e expresses the fact that the kernel has a discontinuity in slope 
at gJ =+7f as well as at f :: O. This discontinuity is negligible however, as 

e - ~<t 1 for all accelerators. From Eq. (A-4) one can see that K is constant 
n

for small n (namely for n <Z. 4 Rib ), and then decreases for large values of n. 
The critical value of n, such that all waves of greater wave number are stable, can 
be obtained in any case of interest from Eq. (A-Z) using Eqs. (A-4) and (A-5). 

If the energy spread is small enough so that wave number n exceeds~
 
without stabilization occurring, then the growth rate approache s the value� 

2 Z J l/Z� liz 
W� /'oJ Z1r e N If df) [16 (0.3Z0Z>t4] 

AJ� [ t z ~J dEis • b",-' 

independent of n. 

Although this conclusion is derived here only in the small amplitude 
agroximation. it seems probable that non-linear large amplitude behavior is like­
wise characterized by a limiting wavelength below which disturbances grow at a nearly 
constant rate; and possibly they grow only to some maximum amplitude at which 
stabilization occurs. 
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