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ABSTRACT 

The� equation shown in the title is reduced, by the transformations 

N ¢d rJ. 
u and t:= 217 7' to the form� 

(~)2 1� 
+ N7 v+ 2 ~ bm (sin l m t) ] vl = O. 

Use is made of the results of an earlier report, in which the characteristics� 

of the limiting-amplitude solution of this latter equation were obtained by a� 

variational proc~dure and by application of the Moser method, to obtain� 

, c.orresponding information concerning the solution u (¢) of the first equa­

tion. The analytic work is carried through terms of order (l/3 - z)IN) 2 

. :.and applied to an example in which 

a :=: 0.1262875 b::1.15� 

z-fN ;.~ O. 2997 B 1 :: L� 

Comparisons with the results of direct digital computation for this example� 

indicate the results of the analytic theory are within a few (2 to 4) percent� 

of computed values.� 

*AEC Research and Development Report. Research supported by the Atomic� 
Energy Commission, Contract No. AEC AT(1l-l)-384.� 

**Department of Physics and Institute for Atomic Research, Iowa State College,� 
Ames, Iowa.� 
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Lagrangian 

L o \du/d~:> u; ¢> 
2 3 (4a)~~ (lIZ) (du/d¢)Z - {lIZ) k (~) u - (Bl/6) (sin Z~) u • 

in which 
I 

k (¢> $ a + b cos Z ¢ . (4b) 

The transformation to follow then makes use of the constant Z 1JIN. 

where z'T( dIN (~ a-) represents the change in phase of the s~lutions of 

the linearized eqn. (3) when A ¢ ~~ 1(, and also emplo~s the function 

A A· 3 4r ("') commonly employed in the theory of A-G accelerators.' We then 

introduce the variables5 

u (5a)
v ~-,j ziJ; 

(5b)
t= /v r 

o 
the transformation of the independent variable being such that in an interval 

A¢ :?T[. e.» in one period of the coefficients of eqn. (3)J. 6t =~ ~ =rr 
and the period in te~ms of t accordingly is the same as in terms of ~ • 

The Lagrangian in terms of the new variables is taken to be 

L 
o 

(6) 

3 
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The Lagrangian ~6} is then modified. by subtraction of a perfect differential, 

.. dv 
to eLminate the term conta.m.:ng v 'd-: .; 

the last reduction being accomplished by virtue of the relation6 

(8) 

The differentia2. equation which foHows from the Lagrangian (7) is seen 

to be 

(9) 

and the associated Hamiltonian is 

with p -. dv/dt. AccordinglYJ if one makes the expansion 

(sin 2 ¢) C~ ~ b (sin 2 m t) ; (11) 
m,o:l m 

these results, (9} and (10), are in the form treated in II. We proceed, then, 

to an appJication of this analysis to a specific example in which, for compar­

ison, computational solutions are available for the original differential equa­

tion v Specifically,> we shall take 

4 
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(l2a)a -- O. 126 4875 • 

b ,. L J. 5 ..,' and (12b) 

consider \{as in D the dependent variable to be so scaled that 

(12c) 

:. The value 'of VIN which is implied by this particular selection of values 

for a and b may be estimated analytically" 7 obtained from avai~able tables, 4 

';. or determined by a direct computation--in the present example we find 

(12d) 

or substantially O. 3. 

Co THE EXPANSION INVOLVING ;S 

The function I (r/» may be estimated analytically.., 7 obtained from� 

tabulated4 values of is .. (sinO- >. or found by direct computation. In the� 

present instance, with the governing parameters given by (l2a, b). ~ .(¢)� 

. itself may be represented by the 'expansion8 (see Fig. 1) 

2 V rA :.;; 1.3956 [ 1 + 0.741 13 cos 2 'frI. 
N 

+ 0.083 56 cos 4 ¢ 
+ O. 004 54 cos 6 ¢ + ... ] • (13) 

It may be of interest to note in passing that the analytic results of reference 7 

suggest that in the present ,case the quantity 2':,8 ranges between the 

maximum and minimum values (at ¢::; 0 and at ¢::: 'If/2, respectively) 

2. 539 and 00474. while the values obtained by a direct computation are sub­

. stantially 2.552 and 00472 0 

In the present work we require the expansion of B) e~ P'l'Z sin Z ,p, 
as a trigonometric series in the variable t, with t related to pby e qn. (5b). 

5 
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(, 
The coefficients8 of this expansion, (11). are as listed in Table 1. 

TABLE I 

COEFFICIENTS. b m • OF sin 2 m t IN THE EXPANSION (11) 

a :: 0.126 2875 b ~ 1. 15 B 1 ~ 1 

m bm 

1 

2 

3 

1.0645 

1. 3531 

1.2396 

4 

5 

6 

7 

0.9878 

0.7278 

0.5100 

0.3450 

. 

8 

9 

~10 

0.2274 

0.1470 

~ O. 01 

These tabulated values may be employed. in application of the results given 

in II. to an examination of the expected limiting-amplitude solution to eqn. (3). 

The scale distortion in passing from the variable 1> to the variable t is instru­

mentalln effecting a pronounced Peak in a plot of the (odd) functi0rf!f;i)¥:in 2 P 
vs. t (Fig. 2)., with a consequent enhancement of the higher-order Fourier' 

coefficients bm ; the effect of the higher-order coeffi.cients on the salient features 

of the phase plots, however. would not be expected to be great. 

6 
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D. COMPARISON WITH COMPUTATIONAL RESULTS 

For comparison with available computer results.. we apply the pro­

cedure outlined above to the specific case for which* a - 0.126 2875 

I 
I b = 1. 15 

( t1N = 0.2997) 

particularly with respect to the location of the unstable fixed points which 

.characterize the unstable equilibrium orbit at t = O. In terms of the nota­

tion of II, then, we have' 

1/3 - z)/N :: 0.0336 3333 .•• = 1. 009/30 (14a)� 

~ ~ 3. 975 962 " and (14b)� 

:.-.... ,;-... 'i, =: 0.8201 1582 , (14c)� 

making use of the values of bm (m" 9) listed in Table 1. 

1. Location of Unstable Fixed Points 

For the fixed point on the symmetry axis (at t ::: 0) we calculate** 

v=O (15~) 

2 1 

1 + 3 z)/N 

-2 E m~ 1 ­
m=2 /:) 1 \ ~Z_ 9 ~2/N2 -.......---r--I 

• (15b) 

to obtain 

v = 0 (15a I) 

p = -0.2874 " (15b') 
" 

*Eqns. (12 a - d). 

**Eqns. (31a,. b) of II. 7 
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'again making us~ of the values of bm (m~ 9) in Table I. Similarly, for 
( 

i the fixed points situated to the right and left of the symmetry axis (for t = 0) 

we calculate:;: 

(16a) 

p =+ 641.1 _ 7/"-V~ n 1 +
b1\.3 N,,-N) (I 

(16b) 

to obtain 

v = '+ 0.4153 (16a') 

p := + 0.2759 . (16b') 

To transform the quantities v, p, found above, to the quantities 

u, P == dU/d~, which pertain to eqn. (3) and which essentially constitute the 

working variables in the computational work, we note from eqns. (5a, b) 

that 

u = v =1. 5975 v (17a)f 2 ~; I: 
I 

and 

*Eqns. (32a, b) of II. 

8 



•• ", .. I 

MURA-463� 

p ~* ~ d~(P -:P- v) 
dvo-¥f zo/ ¥- + (zwv dt 

.= P (17b)
L 5975 

when (as here» at t f 0., 1> ., 0) l:-;;,4 2.552 and dl /d~ 0 (Fig. 1).:c;; :': 

The resulting predicted fixed-poi.nt coordinates and the corresponding 

values obtained from digital computation are presented in Table II. The 

latter values were obtained with the MURA IBM 704 computer. by use of 
I 

the DUCK-ANSWER9 program. A ph~se plot, obtained from the computational 

results for 1~ 0 (mod.1"C), is given in Fig. 3. 

TABLE II 

! COORDINATES OF UNSTABLP; FIXED POINTS,. AT ¢ = o. . 
As Obtained from the Analysis of this Report and from Computer Results 

a :::: O. 126 287.5 b ::-;: L 15 :zAN ~ 0.2997 

FIXED From Analysis From Computer 
POINT u Pi dU/d¢ u P =dU/dep 

I 
On Symm. 

0 -0.1799 I 0 -0.1866Axis ! 

Rand L·of .� 
Symm. Axis '+ 0.6634 +0.1727 +0.6866 +0.1765� 

It is noted fr9m Table II that the values found by use of our formulas are 

some two to four per cent less in magnitude than those given by the com­

puter--a situation similar to that shown in Table VI of I for an example 
•....,-. 

with -z}/N ~ O. 3. 

9 
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2. Representation of the Unstable Equilibrium Orbit 

Our application of the results of II to eqn. (9) gives us, of course~ a 

trigonometric (sine) series for v (t):, from which, for example, eqn. (16a) 

would follow. In the present example the pertinent coefficients for such a 

development of v (t). and the similar (cosine) coefficients calculated sepa­

rately for p (t) by the expressions in II with which our present eqns. (15b) 

and (16b) are consistent. are listed in Table III (by use of Table I. consider­

ing m" 9). 

TABLE III 

COEFFICIENTS FOR A TRIGONOMETRIC EXPANSION OF vet) AND pet) 
m<9 

Argument m Sine Coefficient in v Cosine Coefficient in p� 

2 t/3 1 -0.477 435 -0.309 642� 
2 t 1 + 0.018 056 +0.036 113� 
8 t/3 2 -0.005 580 -0.015 631� 
10 t/3 1 -0.003 329 -0.010 649� 
4t 2 + 0.005 343 + 0.021 370� 
14 t/3 3 -0.001 687 -0.008 098� 
16 t/3 2 -0.001 567 -0.008 145� 

6 t 3 + 0.002 148 +0.012887� 
20 t/3 4 -0.000 665 -0.004 520� 
22 t/3 3 -0.000 744 -0.005 354� 
8 t 4 + 0.000 959 +0.007 668� 
26 t/3 5 -0.000 291 -0.002 565� 
28 t/3 

I 

4: -0.000 362 -0.003 330� 
10 t 5 + 0.000 451 +0.004 511� 
32 t/3 

I 
6 -0.000 135 -0.001 462� 

34 t/3 5 -0.000 180 -0.002 012� 
12 t 6 + Ou 000 219 + 0.002 631� 
38 t/3 7 -0.000 065 -0.000 834� 
40 t/3 6 -0.000 091 -0.001 196� 
14 t 7 + 0.000 109 +0.001 525� 
44 t/3 8 -0.000 032 -0.000 475� 
46 t/3 7 -0.000 046 -0.000 702� 
16 t 8 + 0.000 055 + 0.000 879� 
50 t/3 9 -0.000 016 -0.000 271� 
52 t/3 8 -0.000 024 -0.000 409� 
18 t 9 +0.000 028 +0.000 505� 
58 t/3 9 -0.000 012 -0.000 237� 

II 10� 
I 

I .""" 



i 

..t. MURA-463 

The conversion of v <t) to u «b> would appear to be rather tedious., 

involving as it does both the factor il' and the non-linear relation be­

tween the independent variables t and 4. It is of interest to note from 

I 

Table III., however" that v (t) itself evidently should be rather well rep­

resented by its first one or two coefficients*--say by 

v (t) ~ -0.477435 sin 2 t/3 + 0.018056 !in 2 t . (18) 

If a table of values of u :0.;/2 ~# v. vs. ;: is constructed by hand 

computation, one finds that eqn. (18) suggests u (~) should have a rep­

resentation8 in which the leading terms are roughly 

u (1)) ~ -0. 533 sin ~ + 0.1772 sin ±I + 0.0155 sin 2 1>9 

-0.040 sin ¥ + .•• (19)
0 

this result, eqn. (l~). may be compared with the direct computer analysis10 
I 

of the limiting-amp~itudesolution for eqn. (3). namely (with Bl ::: 1): 

u (¢) = -0.55231 sin!:.{k + 0.18429 sin ¥ + 0.02167 sin 2 ¢ 

-0. 04919 sin ~. + 0.00575 sin¥ + 0.00283 sin 4 ¢> 

-0.00140 sin 14 ¢ + ••• • (20)
3

As with the data of Table II~ it is seen that the major calculated coefficients 

in the representation (19) are some three or four per cent less than the 

corresponding directly-computed values shown in eqn. (20). 

*Cf. the result of the numerical solution of eqns. (8a - c) in Sect. C 1 of I. 

or the computer results given by eqn. (l2a) of that report ( z} =0.3). 

11 
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