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1. INTRODUCTION

The high intensity possibilities inherent in the DC fields of FFAG
accelerators have brought new interest to problems related to large particle
densities. Some thought has been given in MURA to these problems. While
it is certainly not true that they can be regarded as solved, some progress
has been made in understanding the limits which such particle densities
place on achievabie output. These results are scattered through MURA
documents having widely varying degrees of availability. It is the purpose
of this report to coilect these considerations for reference.

Let us note first that intensity goals can differ markedly among various
applications. For example, in colliding beam use the desirable goal is main-
ly current density rather than total current, since the interaction rate rela-
tive to background depends on density. If extraction of & primary beam is
desired, current density in prase space is desirable. For some single beam
experiments with internal targets, maximum total current is the goal.

The restrictions which large particle densities put on orbit dynamics
fall into two classes, effecis due to lLiouville's theorem and effects due to
the Coulomb interactions between particles, whicn we shall call roughly
"'space charge' effects. We shall discuss them separately, though there
are cases, as shall see, where they interact. We shall also limit our dis-
cussions to FFAG Accelerators.

II. LIOUVILLEAN RESTRICTIONS

Ideally, the mechanica. system which is taken to represent particle

motion in an accelerator is Hamiltonian and so Liouville's theorem applies;

2




MURA- 462 L
Internal
the phase space volume.occupied by a group of particles is a constant of the
motion, as is the phase‘space density of particleg. Then the density in phase
is (ideally) completely determined by the origit'}al source of particles.

It isclearly impossible to exceed the Liouvillean limit unless some
damping mechanism is present. : Such a mechanism is the synchrotron radia-
tion, which has important effects in electron accelerators, but is quite negli-
gible for proton accelerators below 100 Bev. There are, however, mechanisms
wﬁich reduce the phase density. Gas scattering increases the phase volume
occupied by a given number of particles, thereby decreasing phase density.
Even without dissipative forces, the useable density can be decreased by non-
linear instabilities which "filament'' the c»onserved volume so that some of it
is useless and by transient phenomena, such as noise in the rf accelerating
system. Thus in practice, the original source of particles determines an
upper limit through Liouville's theorem.

To good approximation, the phase space volumes occupied by betatron
and synchrotron oscillations are independent. This is true even with accel-
erating voltages which depend on radius, as has been shoﬁn by Robinson. 1
Non-linear forces can introduce coupling between the radial and vertical
modes of betatron oscillations, but these eff.e;:ts are small except when close
to coupling resonances. We can discuss the phase volume as roughly three
separate phase areas.

Betatron oscillation phase space can be described by the radial and
vertical amplitudes ay and ay (in centimeters, say) and the momenta py

and Py. If we call p the total momentum, py /p is the sine of the angle
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Internal
which the projectioﬁ of an orbit on the median plane makes with the equilib-
rium orbit (which lies in the median plane} and py/p is the sine of the angle
which the projection of an orbit on the vertical plane tangent to the equilibrium
orbit makes with the median plane,
The momenta are given in terms of the appropriaie velocities by
m Yr

mY z : (1)
2)‘72 |

[

Px

i

Py

Y - - g

As a particle is accelerated, its mass changes and @ , its frequency of

revolution, changes. In the linear betatron oscillation approximation, the

quantities

Ix =mYw o/ gy (9)

o 2 4

Jy = m Yw ay!/sy {8) (2)
are adiabatic invariants. /f < and /Jy are functions with the period

of the magnets which describe the A.G. oscillations. If we average over
) L > - / -
one magnet period ( ng = z{ and { 7; > = 4 , where dx and
ﬂ), are the numbers of radial and vertical betatron oscillation waves per
revolution, which must be constant during acceleration in order to avoid

resonances. Then during acceleration a, and ay vary as

-4 )

(m Ya) ) ~ B 72 (3)

where B is the magnitude of the average guide field. This is just the tradi-

tional adiabatic damping‘,2 The momenta p, and Py vary as By"‘ (since
-l

phase space is conserved), while the angles p,/p and py/p vary as (rB)

during acceleration. In a scaling FFAG accelerator non-linear amplitude
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stability limits are proportional to radius and momentum siability limits
to p, sotat the region of phase space occupied by particles shrinks rela-
tive to the stability limits during acceleration.

In an FFAG accelerator, synchrotron oscillation theory can be written

in Hamiltonian form. 8 The equations of motion are
W = e V sin ¢9
. (4)
<P= 2 h (f - fg) |

where h f, is the oscillator frequency, f the particle frequency, h is the
harmonic of the oscillator, P the particle phase relative to the oscillator

and

dE

W = T

(5)

is essentially the kinetic angular momentum about the z axi's. Egs. (4)

follow from the Hamiltonian

H =eVecos +z'7(h[E(W)-Wfo] (6)
Then, neglecting interaction between betatron and synchrotron oscillations,
the area in W - ? space occupied by a group of particles is a constant of

the motion. If AW is small, it is related to the energy spread AE by

AW = -?LE- ' (7)

When an rf voltage is present, curves of constant H in W = q space
are closed curves for certain values of H. H depends on time only through
V and f{,. If these change adiabatically, particles remain on curves of
constant H and therefore execute stable oscillations when on closed curves.

The region of closed curves is called a "bucket." The area of a bucket
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whose freQuency is being modulated iz}”moving” bucket) is
/
2

8 2 EeV
- 8
A fo Tth K “’3 ([-')) 8)
where
K=-E _of
f dE

[’ = sin % . (9}

?s being the stable phase angle. A bucket must of course be larger in
phase area than the group of particles it is accelerating or it will lose some.
We now discuss the Liouvillean restrictions.

A, Restrictions at Injection

It is better at iniection to fiil betatron phase space, because betatron
oscillations car aid in missing the injector. Trying to spread particies in
synchrotrdn phase space would require inconveniently large voltages to attain
enough bucket area to contain the energy spread, since bucket area varies
as 7/_\7 , from (8). Instead, one fills betatron phase space with the rf off,
then adiabatically turns on the rf to capture all the particles.

The beam from an injector (assumed circular in cross sections), has
a given half-width 4Qx, angular spread + A8 and enérgy spread AE.
The phase area occupied per betatron oscillatior: dimension is approximately
TCp &Ax A6, assuming thai the area occupied ir: piiase space is an ellipse
with coordinate dimensions Ax and momentum dimension Ap = p A& 0,
and the total betatron phase volume occupied in the zccelerator by one in-

jected turn is



MURA-462

v, = (Tp &x &0 (10)
The accelerator has given maximum radial and vertical betatron oscillation
amplitudes, ax, and ay,, due either to the finite aperture or to a non-linear
stability limit. The smaller of the two (aperture or stability limit) for each
dimension determines the maximum amplitude. * Corr esponding to the maxi-

mum amplitudes are maximum momenta. If the oscillations are quasi-linear,

these are

el
¥
(@]
il
o
N
®
o]
e
=
—
3
»

(11)
Pyo 2P Hay/ry i
where r; is the injection radius and fy and fy are the beat factors due to
alternating gradient focusing (7 £~ ‘ny ~42 in most cases).

The total betatron phase space available is then

1ne

Vi =T 8xo Pxg 1{ 2yq Pyo

(12)

o 7-(2p27)x7J az'av2

Yy Xo Yo

Clearly, Liouville's theorem restricts the number of turns which can be

injected into the betatron phase space. This number is

g & —— (13

If the injector current during injection is Il’ the total circulating current

* . . . i v e . ,
For radial motion, the non-linear stability iimit is usually smalier, while
for vertical motion the aperture is usuaily smaller. In most cases the effect

of coupling resonances ensures that A, and ay  are of the same order,
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whick can be injected is np I,. This injected beam has an energy spread
A\E; and occupies area 2 TUC AE;/f; in synchrotron phase space.

One may also consider filling separately the radial and vertical beta-
tron pﬁase spaces. If, for example, the beam is injected onto the median
plane, no attempt is made to [ill vertical betatron phase spaée at all. How
far oﬁe should attempt to go in filling betatron phase space is usually deter-
mined by the space charge limit, which is discusseq in Section III below,

It is hoped that 50 Mev linear accelerators now being built will give
a 5 ma output current with Ax 2 < 0.5 cm, ABZE + 1.5 - 10°3 |
AE 250 kev, giving a phase area 0,75 - 10”3 9T p per betatron mode. A
.tvypical 15 Bev radial sector FFAG has ay Lay 215cm, 2 ¥ 25,

v),.'.‘.' 4, r & 2.10% cm, fx"g’fygti., Then Vi, 0,14 p 7C and
Viy 20,027 p, so that radial betztron phase space aione can take 180

turns and vertical 30, A typical 15 Bev spiral sector FFAG has

0¥7‘,5cm, 7/)(37/,3 8. r¥ 7.5 103 cm, fy & f, 224, Then

a.xo o a. y

y
Vig ¥ Viy + 0,031C p, so that radial and vertical betatron phase spaces
can each accommodate about 40 turns., We shul: see later that about 130
turns fill the radial sector ¥FAG to its space cha: ge limit, while about 460

turns are required to fill the spiral sector FFAG to its space charge limit.

B. Restririions on Arceierated Beam

The time-average accelerated current is clearly dei:: mined by the
restriction on injected curreni. Injecticn takes place during a time interval
nB/f1° If the repetltioh time of the acceleration cycle is T, the accelerated

time-average current, assuming no losses during acceleration, is nBI1 /fl T.
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The restrictions on current density in a stacked beam, which are of

!.J

interest for col.iding beams, are more complicated. There ic first a
Tipuvillean restriciion in synchrotron phase space. If a pulse of
particles ic¢ injected at energy El with an energy spread LSEl; this

pulse occupliec an area

A, =277 A W, = 2T A E/f,, (14)

e

in the W ~£p plane, where f. is the frequency of revolution at injection.

¢
e

If it is desired to stack at energy E2 within an energy spread A<E29 the

phase area avallable is

A, =2 T4 wy =2 TIA EyE, (15)
f, being the revolution frequency at energy Ezo Then at most
N L AL (16)

A, £, AE,

pulses can be stacked in the energy interval A E20

lLiouvi!le's theorem a’'so demands that care be taken when a bucket
approachec the c<tack. Since phase points move iike an imcompressible
fluid, 1f empty area is brought up to the stack, an equal area must be
displaced downward in energy. When an area A moves through the stack,
the prewvious.y stacked particliles must dispiace in the opposite
direction by an average amount given by Eq. (7):

L8, -5 ()

It is therefore important to arrange that the bucket area A be no
larger thar i< needed %o contain the particles being accelerated. As
the stacking process continues, the energy width of the <tack
increaces for two reasons. Firct, the average displacement given by
Eq (:7) implies that after n buckets have been delivered to the
ctack. itc width wil. be at least rz<23£i>a\o Second.y the particles
phace displaced by a moving bucket have a st;tistica; distribution in
energy abou* the mean vatue given by Eq. (17). This energy «<traggling

. fao . , , 1%
resultc in an additional increase in stack width proportiona. %o n2,
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From the constancy of synchrotron phase area, the current I, at

energy E, resulting from a current I; at energy E, is

AE2 (18)

I, = I, S22
. 1 "AE;

where A E, is the final energy spread and A E; the initial energy spread,
which is determined by the injector. The final energy spread AE, occupies

a certain spread in radii A r,. Ina scaling FFAQG,

mc (19)

AE, = (+ DAY, Ar;Z 2

The particles were injected with a maximum radial betatron oscilla-

sion amplitude aj- This amplitude has been adiabatically damped to

N &,
/B &
az = ay (_1) = al(ﬁ) (20)

since B ~v rko As groups of particles are stacked close to each other in
energy and radius, their betatron osciilations move particles in and out
radially around the equilibrium radius for a given energy, so that both beta-
tron and synchrotron phase spaces contribute to the current density. The
center of the stack will have higher current densily because particles from
the edges will spend some {raction of their time tsere on betatron oscilla-
tions. All particles stacked with an energy difference such that A r, L2 a,
will add to this central current density. Then clearly the maximum current
density occurs when A\r; = 2 a,. A plot of current density vs. radius will
then be a triangle. If more groups are added to the stack, so that A.r‘2 >2 a,

they will add to the total current, but not to the current density. A plot of

current density vs. radius for Arz >2 a, will then be a trapezoid with a
10
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horizontal top. The maximum current density is then (neglecting factors

of order unity which depend on the shape of the beam)

Y 2
I
J =2 _dq (k + 1)/ 1y me (21)
max ’7"( azz AEI az rz
Terwilliger4 has shown that the maximum current density can be in-

creased by introducing a non-scaling field perturbation at the stacking energy.
If done properly, a coherent betatron oscillation is induced which brings
orbits of all energies within A E, through a narrow range of radii.

III. SPACE CHARGE RESTRICTIONS

We shall calculate space charge effects with a simple model. The

- main effect on betatron oscillations is to increase the wavelengths of oscilla-
tions because of the repulsive electric force, which pushes a particle away
from the center of the beam.

At first we shall neglect A.G. effects, as well as the effects of charges
of opposite sign collected by the beam and of images in the conducting walls.
We take a cylindrical beam at radius r with minor radius a. If /o is the
charge density in the beam, the electric field at radius x in the beam can be

found by applying Gauss' law

fv~£ldf=fEndd‘ 22)

to the Maxwell equation

v E-aTp

(23)
Since we are interested in the transverse force, we take the integrals of (22)
to be over a unit length of the beam. Then

11
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E, = 27TP x (24)
To this repulsive electrostatic force must be added the attraction of parallel
currents, which is just - /5,2, times the electric force. For relativistic
particles space charge effects are very small, approaching zero as v
approaches c. Note that for two beams in opposite directions, as in a collid-
ing beams accelerator, the electric and magnetic forces add, so that there
are large beam-beam forces. Then we must add to each transverse equation

of motion a force

2TC Pe
ra

times the displacement from the central orbit. If we denote by x the relevant
betatron oscillation variable, the linearized smooth approximation equation

of motion is

d2 2_ )% 27 pe
mY_Tth + meJ,x=—)/?_L X (25}
and if we change to 6 = ¢«J t as independent variable, (25) becomes
2 »
x4 (2 2EA )x =0 (26)
dgz (-} m wa)/.?

The frequency has been lowered to

Z)Z_ .U?’_ 27T e

m w* y
Charge can be added to the beam until the frequency has chariged enough to
reach a resonance. The total charge density is then
foE %eLj 2vavY (27)
where A‘l) is the ailowable freguency change. The tota: charge in the beam

is
12
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Q- Pz %r: Ja®

and the total current is
_ 9w  Jay(EY 3 28
I = EYd Io _ r) (/6 Y) (28)

c
where Io = me3 = 3.129 - 107 amps for protons and we have used @ = -fs;— .
e

Note that we have done this calculation for one betatxton oscillation dimension,
From (28), the dimension with the smaller U dominates. The space charge
limited current depends strongly cn energy and in practically all cases of
interest the space charge limit at injection dominates. The effect of the AG.
ripple has been calculated by Jones. S In cases of practical interest it is small.

For the 15 Bev radial sector FFAG discussed above, the space charge
limit at injection (50 Mev) is 0, 64 amps (with A?) = % ). For the spiral
sector FFAQG, the space charge limit is 2. 3 amps. The smaller size and
consequent smaller wavelengths in the spiral sector are the reason for the
difference. The radial machine can be filied to its space charge limit using
only radial betatron phase space, while the spiral machine requires both
radial and vertical filling. If they can be filied at injection to their space
charge limit, a reasonable repetition rate of 10 pulses accelerated per
second give for both radial and spiral sector accelerators a time-average
output current of over 60 microamperes.

When the injected beam is bunched by arn rf voltage, the local current
increases. Then the space charge limit (28) is decreased by a factor F,
which is the fractiion of the azimuth in which the beam is bunched. F can
be calculated i1n terms of bucket areas, It is apprcximately

13



o

MURA-462

Z/A
F 2 0.72 c (29)
A7

where A, is the area in W - ? space occupied by the beam and Aj is the
area given by (8) with 0(.3 = 1. In practice F = % is reasonably attain-
able. This will reduce the time-average output current attainable to abput
15 microamperes for either radial or spiral accelerators.

If we substitute (28) for the I. of {(21) and use the adiabatic damping

1

law (20), tne maximum theoretical current density can be written

J =1, 22k UﬂdUFKz

Pr; (30}
where P is the reiative energy spread of the injector. We have made the
approximations /dizé‘:" 1, ﬂ/ ¢+ % /512. .k Z71,

In both the 15 Bev accelerators discussed above, adiabatic damping
reduces the ampiitudes by a factor of approximately 7 during the accelera~
tion from the 50 Mev injection energy to 15 Bev. Then we take ay % 2 for
the radial sector and a, 2% 1 for the spiral sector. We use av- % and

F = for both. The radial sector has k 3200, while the spiral sector has

1
4
k & 75. (30) then gives 100 amps/cmZ for the radial sector accelerator
and 710 amps/cm2 for the spiral sector accelerator. These are, 1t shouid
be noted. theoretical upper limits. Any non-adiabatic rf processes, for
example, will mix empty phase space with the beam and reduce the current
densities.

‘> Charges of opposite sign (mostly electrons in a proton accelerator)

will be attracted to the beam and wiil tend to neutralize the space charge.

Because they do not rotate with the beam, these charges cancel only the
14
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electrostatic force. They leave the magnetic force essentially unaltered
and thus can even lower the space charge limit. If we take only the magnetic
attraction into account, the space charge limited current (28) is replaced by
1= 1, ﬂA?J(%)zﬁ 4 (31)
Effects of space charge and positive ion attraction to the beam have been
observed and the frequencies changes measured by Mills6 on the MURA spiral
sector electron model. The theory appears to be in semi-quantitative agree-
ment with experiment.

The neutralized space charge limit given by (31) has its most serious
effect at the stacking energy. For a 15 Bev accelerator, the limiting current
given by (31) is over 200 times smalier than the limiting current (28) without
neutralization. For the 15 Bev radial sector accelerator. (31j gives 5 amps
with a = 2 (from adiabatic damping) while for the spiral sector, with a, = 1,
(31) gives 9 amps. In order to attain useable current densities. it is neces-
sary to clear the neutralizing particles with an electric field. The electric

field due to a relativistic beam is (in volts/cm)

E = s (32)
where 1 is the current in amperes and a the radius in éentimeters. The
clearing field must then be greater than the value given by (32}. The effects
of this field on particle dynamics can be made very small by reversing it
with a period equal to that cf the magnets. Such clearing fields undoubtediy

also have interesting pumping effects,
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Images of the stacked beam in the walls can have important effects
on the space charge limit. 7 A linear charge density A halfway between
conducting walls separated by a distance 2t has images of alternating
sign (-l; A ) at distances 2t, 4t, etc. above and below the beam. A
current I halfway between walls of infinite permeability separated by a
distance 2 G produces image currents I of constant sign at distances
2 G, 4G, etc. above and below the beam. Both electrostatic and mag-
netostatic image forces are radially focusing and vertically defocusing.

The resultant forces can be given in terms of the quantities

=2,
n
— -1
ac_——Z(; & 0.803
n = n
o0
S
Koy = oz = 1. 447
n=i

The betatron oscillation frequency with images and charges collected by the

beam (which we shall call ions) is

T el I [( Felas) g2, +_uza;)]

m Yy w#?

N where a is the beam radius, ng and n; are beam and ion densities and the
upper sign refers to radial oscillations and the lower to vertical,

z If the beam size is comparable to the apertures, the cancellation
between electrostatic and magnetic forces can be lost and the space charge
limit lowered. A great deal of the image effects can be cancelled by suitable
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pole-face currents, whose magnitude, of course, depends on the beam
intensity. Very little work has been done on such possibilities.

Note that all of the betatron oscillation space charge calculations
outlined above are traditional in their basic approximation that the distribu-
tion of particles in phase spac.e is stationary. In this way they are not differ-
ent from the very earliest such calcuiations. 8 They do have other physical
effects taken into account.

The synchrotron space charge limit has been calculated by Nielsen

and Sessler9

for a self-consistent stationary distribution., Here the longi-
tudinal force must be calculated, but only those particles which are close
in azimuth are effective, because of the shielding of the walls. For non-
relativistic particles and a uniform distribution inside buckets, Nielsen and

Sessler find for the total charge which can be contained in the h bunches of

the hth hkarmonic

Vr
Q=——7m— BI(]), : 34)
2TCghn [1 (

where
(B(H Y2 a-)?

g o214+ 2 fn2t

a

(35)

g is a geometrical factor (t and a have the same meaning as in Eq. (33))
which is of order 3. For either the radial or spiral sector 15 Bev acceler-
ators above, the longitudinal space charge limited current is about 3 amps

at injection with V = 50 kilovolts.
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Some investigation of dynamic effects of space charge has taken
place. These concern the stability against small perturbations of the
static distributions discussed above., So far results have been
obtained only for the longitudinal ( synchrotron) motion,lo’ll. A simple
physical argument shows that in an accelerator operating above the
transition energy {so that%ﬁ%;‘O), a monoenergetic distribution is
longitudinally unstable when particle-particle forces are considered,
A particle approaching a bunch from behind is repelled by it, loses
energy and therefore increases its frequency of revolution to catch
up with the bunch, just as if 1t had negative mass. This 1s clearly
an unstable situation which will cause the beam to collapse into very
small bunches. A linearized Boltzmann equation treatment shows that

there is a critical energy spread of the beam above which the beam is

longitudinally stable. The critical energy spread is roughly
-
NES iy bl o 20 ) 1A
QW Ag:&
3 F.

where N 1s the total number of particles in the beam and s denotes

(36)

evaluation for a typical particle in the stationary distribution.
When two beams interpenetrate, as in a colliding beams accel-
erator, "two-stream amplification" processes similar to those in
travelling-wave amplifiers can occur. Such processes produce
instability only for very intense beams where the number of particles

is greater than /‘92\'[5 r
o~ ety (37)

This number is very much larger than any beam so far contemplated

in an accelerator.
As noted above, the electrostatic and magnetic space charge forces
add for two oppositely directed beams, instead of cancelling as they do foz

.]-8 L]
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parallel beams. If two beams of current I intersect at N points around

the accelerator, there is a detuning effect on the vertical betatron oscilla-

tions. The change of ﬂy is

4INPT
Aﬂ?’ =‘1071’7/Y°B.,/oatan3 , (37)

where /0 is the radius of curvature of the beam in the guide fieid and ¢
is the angle of intersection of the beams.

This effect can be large enough to move the betatron oscillation to a
resonance, especially in a two-way radial secfor accelerator, where
r/,o ~ 6. One can overcome this by introducing a vertical equilibrium orbit
scalloping by radial magnetic fields in the median plane, so that the beams
intersect only a few times per revolution. When the two beams do not inter-
sect, they induce in each other an additional vertical equilibrium orbit dis- _

placement per pass of amount

Az= 8T71r
10B/92§, tan¢

(38)
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