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ABSTRACT 

The Moser method of analysis, as applied through terms of orde~ (-z//N - 1/3)2 

in an earlier report, is here employed to determine the variation of rotation number 

(or "tune") with amplitude for solutions of ,the non-linear differential equation given 

in the title. The result is given in terms of a complete elliptic integral of the first 

kind, with a modulus determined by the roots of a quartic equation. The rotation 

number is thus calculable in terms of an amplitude characterized by the value of the 

Moser t-independent Hamiltonian and this in turn may be related to some desired 

salient dimension of the phase curve of interest. This result, although by no means 

as convenient for hand calculation as the handy formulas sometimes employed for this 

purpose, is found to give results in very good agreement with numerical computations 

for a problem in which the small-amplitude frequency corresponds to -z.//N = 0.3. As 

is typical, the rotation number in this example departs initially from its small-amplitude 

value (0.3) by an amount proportional to the square of the oscillation amplitude and only 

near the stability limit undergoes a rapid variation to attain the value 1/3. The area 

enclosed by the phase curves, most specifically by the separatrix, is also briefly 

examined. 

~ * AEC Researc h and Development Report. R~search supported by the Atomic Energy 
Commission, Contract No. AEC AT(11-1)-384. 

**Department of Physics and Institute for Atomic Research, Iowa State College, 
Ames, Iowa. 
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A. INTRODUCTION 

In an earlier report, I, * hereinafter denoted as I, a differential equation of 

the form 

2
d v + (2 zJ\2 v + b 1 2 (1 )dt2 Nl T (sin 2t)v =0 

was discussed, the dependent variable v being so scaled, for convenience, that 

'?::J!j2 1. 2 
+ ( N) v + "2 (sm 2t) v =o. (2) 

In that report1 the Moser method2 of solution was applied to eqn. (2), through terms 

of order (V /N - 1/3)2. to obtain an approximate t-independent Hamiltonian 

3/2 3/2
K2 =-24 J - (1/48) (N/71) J cos 3;(2

2 2 

2+ (0( /2048) (N/.,,) )3 J (3a)**
2� 

with� 

1� 
(3b)***

1 + 3OJJ/N 

and 

J:: 1/3 - .,)/N • (3c) 

the expression K 2 thus representing an approximate constant of the motion. 

In I the results of the analysis were specifically applied to examine the character 

of the limiting amplitude solution of eqn. (2), resulting from the 7//N-t1/3 resonance-­

in the present report we apply the results of the same general analysis to examine 

the dependence of the "rotation number" on amplitude. 

The Hamiltonian K2 [eqn. (3a») was obtained in Sec. D3 of I by a series of 

canonical transformations. 
r" 

*References are given in Section D.� 

**Eqn. (57) of 1.� 

***Eqn. (25) of 1. 2� 
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Coordinate Momentum 

v p 
Yo J{) 
v 1 J1 

j 2 J2 

in which = ~ _ 2 t ~r' -2 t ' (4a)*
0t 2 - 3 3 

and J (4b)**J 2 =- J 1 
1¥= o 

with 

1/2 'liz J 
v = (NIz) ) J sin lJ (5a)***

o 0 

and P =2(vIN)1/ 2 J 1/2 cos..' . (5b)**** 
o 0 

Phase plots ,of solutions to eqn. (2), plotted in v, p-space at t ::= 3"1r1 4, mod. 1"(, show 

a transition in form from elliptical to roughly triangular curves (as illustrated) as the 

amplitude approaches the stability limit. 

'llI 
Sepo.ro.trix 

*Eqns. (56b) and (52b) of 1. 
r'" ** Eqns. (56a) and (52a) of 1.� 

***Eqns. (49c) of 1.� 
****Eqn. (49d) of I.� 

3 
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Operationally, the amplitude may be characterized by the intercept vi (see sketch), 

with v then serving to denote the value of this intercept for the separatrix. The 
I 

corresponding values of J or J 1 may be similarly designated. In the present2 

report we shall examine analytically·the dependence of the rotation number on (J2 ). 
1 

and hence on v/v , specifically for a case in which the small-amplitude frequencyr 

is characterized by -JIN = 0.3, and compare the results of this analysis with 

corresponding results obtained from computer solutions. A brief examination will 

also be made of the ~ enclosed by particular. phase curves. in specific limiting 

cases. 

B. THE ROTATION NUMBER 

To illustrate the procedure to be followed in obtaining a rotation number to 

characterize a particular solution, we may first note that. due to the non-linear 

character of the differential equation [eqn. (2)] , J 2 is not a constant of the motion 

but is governed by the following differential equation: 

dJ21dt = - 8K2/-e¥ 2 

= -(1/16)(N/v)3/2 J 3/2 sin 3t2' (6)2 

and d't/2/dt is similarly given bye K2/9 J2. In the course of integration of dJ2/dt. 

J 2 may go from an extreme value (say a minimum value) corresponding to its value 

(J }i= a at the intercept Vi to a second extreme value (say its maximum value) b in
2

an interval At =T. The corresponding changes of the variables of interest are then 

a,s listed below: 

.At J2 =J1 ~2 .A~ 

0 a 0 0 

T b -71'/3 2T/3-1T/3 

4 



MURA-461 

Af,requency of revolution may then be taken as 

V'=L\~/T 

2 1r
:::; 3- 3T 

or~ since we consider N :: 2 in eqns. (1) or (2), a "rotation number" introduced as 

Vi 1 1'f- = _ .... - (7 )N 3 6T. 

This quantity. ~'/N. will be seen to vary from the small-amplitude value, V /N,to 1/3 

as the amplitude increases to the value corresponding to the stability limit. 

The differential equation (6) may be integrated by making use of the constancy 

of K [given by eqn. (3a)] to eliminate lIl :l 

dJ2 / dt =-8 K2 / a ~7,..
 

3/2 3/2 ~/
= -(if 16)(N/V ) J sin 3 ~
2 2 

do (N)3 2J
2048 1J J 2 

(8a) 

3/Z dJ
T :: 16(?{) 2

1/J3_230411/.)3 [..5£ (N)3
Q, V~ {N 112 2048 

q -Jz
4 +~;Q(~ (~) 1 + ~ .,(.$ J; + z~z 

(8b)i- (~#l(*nJ/ -(~lf(*tcf . KlJl 

tf~/ (~)6 K: . J 
5 
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In the particular case that .JIN :;:: 0.3. " = 1/3 - 0,3 = 1/30 and c( = L 4517 06;*� 

eqn, (8b) above then assumes the form� 

Z. 
T =12.696 7851 

4� 3 
-J� + 28.401 684 09 J

2� 2a 2 
+ (76.180 714 27 K - 6,448 334 695)J2 (8c)

2 
2

-193.450 0409 K 2J - 1450,. 875 307 K 22 

,
(8c ) 

25.393 571 42 
K (k) , 

(8c 
= J(c -a)(d - b)� 

iU 

) 

where a. b. c. d represent the roots of the equation obtained by setting the denominator 

of the integrand in eqn. (8c) equal to zero ( a( b <c <d). 

(b - a)(d - c) 
k :::: (c - a)(d - b) • (8d) 

3 
and� K(k) denotes the complete elliptic integral of the first kind (modulus k). The 

I! 
values of T computed from eqn. (Bc) may then be substituted into eqn. (7) to obtain 

the estimated rotation number, -z)
I 
/ N. for this case. 

2. Comparison with Computational'Resu.lts 

In applying the results of the previous sub-section. the value a ::.: (J_) :=: (J1) 
t:. i i 

may be related to a corresponding value of J by aid of eqn. (52) of I and thence o 
2 

r"� directly to the intercept ooordinate. Vi' The quantities (vi/vI) and (J1)/(J1 )I will. 

of course. be roughly proportional to one another. The root "a" will have the value 

*From Eqn. (3b). or from p. 16 of I.� 
6� 
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(JI)i; for small (J1)i the roots a� and b each approach zero, while for (J )i neal:' 1

the limiting value (J } the roots b and c each approach 0.103 6384 andI . .1

a =O. OZ7 5557. 

The results for a series of selected values of (J ) are listed ir.. Table 1. For
1 0 

small values, the modulus k varies directly as (J >. 3/ 
4 

,1 being approximately equal
1

3/4 1 
to 4(J.,) - - see Fig. 1. Observed rotation numbers from a series of computer 

.. i 

runs l made with the MURA I. B. M. - 704 computer by use of the DUCK-ANSWER 

4 
program I were obtained from examination of suitably numbered points on phase plots 

of the output data - - see Fig. Z.� - - and are included in Table 1. The results are 
. 1 

expressed in terms of vi/vII or (vi/vI)ZI' using the value of vI reported previously in I. 

The variation of rotation number with "amplitude" (or amplitude squared) iS I 

finallYI depicted in Fig. 3, in which the curve has been drawn to pass through the cal­

culated values listed in Table I and the circles represent the results obtained from the 

machine computations. The agreement between the calculated curve and the computer 

results is seen to be close. 5 

Since the enclosed phase-space area is proportional to to a reasonableKzl 

approximation, an effective average value of-cJ'/N may be taken as given by 

j' (-z)' IN) dKZI f dK - - i. e., by an average of.J' IN sampled in equal intervalsz 
of K • For the case considered l� there thus results the effective value 

Z 

N 
0.306 •� (9) 
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) TAb"'-'k I , 

CALCULATED AND OBSERVED VALUES OF.,j/N 

) 

' ..~<  

vilvI (vi/vI>2 
1/2 

(.:r1 >i (J1 >. 
1 

-103K2 
a l 
C I 

b l 

d 
(*>k K T 

.,) IN 
Calc. 

, 
?lIN 
Obs. 

0 0 0 0 0 

u 
0 

.228 8851 
28.172 7990 

0 
'7(/2 = 
1. 5708 

10.1112 ::; 

15.708 

1/3-1/30 

=0.3 0.3 

._­
:~:~ = . 188567 0.3481 .030 918 .000 9559 0.06745 

.000 9559 

.001 0797 

.227 0228 
28.172 6257 

.02331 1. 571 0 15.808 0.3002 0.3002 

.100 

.268 =.373134 .13923 .061 860 .003 8267 0.28474 

.003 8267 

. 004 9413 

.220 8204 
28 172 0957 

.008·J 

.07139 1.5728 16.155 0.3009 
. 

0.3010 

.5427 .2945 .09 .0081 0.63071 .012 0251 
.2103242 

2R 1 71 2~4R 

.13883 1. 5784 16.796 0.3022 - - ­

.150 

.268:: .559701 .31327 .092 826 .008 6167 0.67391 

.008 6167 

.012 9909 

.208 9491 
28.1711274 

.14725 1. 5794 16.886 0.3023 0.3023 

.200_ 74' 269.268 -,; b. .55692 .12382 .. 015 3314 1.25661 

.015 3314 

.028 0399 

.188 5344 
28.169 7784 

.27010 1.600'1 18.411 0 0 3049 0.3051 

.7534 .5676 .125 .015 625 1.28289 

.0156250 

.028 9322 

.187 5105 
28.169 6164 

.27746 1.6024 18.502 0.3050 ~  - ­

.250 

.268:' .932 836 .87018 .15483 .023 972 2.05366 

.023 972 

.060 689 

.149 319 
28.167 704 

.54037 1. 7093 23.125 0.3107 0.3111 

8 
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vi/vI 

) 

(V/VI)2 (J
1

)i1 /2 (J1 ). 
1 

-103K2 
a, b, 

c, d 

TABLF. 1 
(conti. }d) 

k(*) K T 
, 

V/N 
Calc. 

, 
V/N 
Obs. 

) 
• 

.9640 

1 

.9293 

1 

.16 

.166 

.025 6 

.027 556 

2.20878 

2.39707 

.025 600 

.071 529 

.137236 
28.167319 

.027 5557 

.103 6384 

.103 6384 
28.166 8515 

.64067 

1 

1.7849 

OQ 

25.• 593 

00 

0.3129 

1 
3 

- ­

1 
3 

-

(*)For small (J1 )i' k is proportional to (J1 )i
3 

/ 
4 

, being approximately 4(J
1 

)i 
3

/ 
4 

. 

9� 
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C. THE PHASE SPACE AREA 

10 Analytic Introduction 

It may be of some interest to inquire concerning the area, S, in phase space 

included within a curve of constant K ' taking, as before, K as given in eqn. (3a).z z 
We thus investigate 

S =.1 p dv 

'.t13 ? 
= 61 J z d"tz ' (10) 

with K given in terms of J 2 (=J ) and (/z by Grom eqn, (3a) with ,)/N =O. :iJ
2 1

..L 3/2 J 2 
K = - /5 J 2 - 0.126 787 629 J2 cos 3~ 2 + 0.026 253 363 72 J 2 , (11)

2 

Equation (11) may be used to eliminate tl from eqn, (10), with the result (written in2 

where a, b, c, d have the same meaning as before [1. e., in connection with eqn. 

(8C')] • 

If one were to undertake to evaluate the integral of eqn. (12) directly, it appears 

6that the (complete) elliptic integral of the third kind would appear and we shall not 

further pursue this matter with such generality here. The character of tIE integral, 

and hence the value of the area S may, however, be examined with some interest in 

the case (i) that K2 is small and (ii) in the case that K2 = (K2) , corresponding to the 
I 

separatrix which encloses the entire stable area of phase space. 

(i) For K small, the numerator of the integrand in eqn. (lZ) is approximately
Z 

-3K - (1/15) J or (2/15) J ' and is approximately constant, while7<'c - J2)(d - J )
2 z 1 2

::-~ = z. 539 357 [d. Table rJ. Accordingly, in this limit, we may write 

eqn. (12) as 
10 
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= 21r(J ) (by an elementary integration)
1� 

= 217 J�o 

:: 21r(V/N) v/ (by eqn. (5a» (13) 

This re sult is immediately seen to be correct. for the area enclosed within an 

elliptical phase curve of semi-axes v .• 2(.,)/N) v. [cf. eqn. (5b)1 • and thus. 
11- ~ 

to a degree. constitutes a check of eqn. (12). 

t 
l~ It· =fl(~)1{ 
I 

I 

(ii) When K assumes the value (K ) characterizing the separatrix.
2 .2 I 

b =c and the numerator of the integrand in eqn. (12) moreover may be factored to 

give us 

= 0.2805 (14)� 

11� 
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by use of the values a =0.027 5557, b =c =0.103 6384. and d =28. 166 8515 listed 

in Table 1. 

2. Computer Result for Area Within Separatrix 

From computer results obtained in cotmection with the work reported previously 

in I, one finds (after scaling of those results so as to apply to the case b 1 =1 under 

consideration here) that the area enclosed wi1hin the separatrix (estimated from the 

original plot in the v, p-plane) is approximately 

(15)Scomputer ~. O. 296. 

This area is some 5 or 6 percent greater than that suggested by the analytic result. 

eqn. (14), as might be expected in view of the observation that the computer values for 

salient coordinates and momenta on the separatrix were found correspondingly to be 

a few percent greate~ than the values derived from the Moser theory employed here 

[see, f. ex., Table IV or the first line of Table VI in I] • 

Finally, it may be noted in closing that if the small-amplitude result, 

S ; 2 7T~5(-K2>J 

= 301(-K ) , (16)
2

.ofeqn. (13) had been applied in this form to the large value K2 =-0.002397 which 

corre sponds to the separatrix, one would have obtained the re sult 

s = 0.2259 

the value obtained in this way thus would have been some 20 percent lower than that 

calculated by eqn. (14). 

12� 
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50 Although the analytic approach outlined in the present report is of interest as an 
illustration of the applicability of Moser methods, and the results appear to be 
quantitatively quite accurate. the results obtained here [eqno (8c"), etcJ cannot 
be regarded as particularly convenient for numerical evaluation. It therefore 
may be of interest to recall, as Dro G. Parze.n has kindly pointed out (private 
communication, 27 May 1959). that a "handy formula" has been proposed to 
describe the variation of "tune" in cases such as we consider here. One form of 
this formula is such that one would write for the pre sent problem 

(17) 

where A and AT respectively denote the "amplitudes" of the actual oscillation 
and of the limiting stable motion. In the pre sent mstance we might, perhaps 
somewhat arbitrarily, identify A2 as proportional to K and write 

2 

(-,.)' IN)2 ~ (1/3)2 - [(1/3)2 - (0.3)2) -11 - K2/{K2). (18) 
I 

We now may make a comparison, presented below. of (i) the results derived in 
the body of the text, (ii) the prediction of the handy formula noted here, and (iii) 
the rotation number derived from the computer results: 

K21(K2)
I 

0� 
.028 139� 
• 118786 
0281 137 
0524 226 
.856 737 

1 

Formula of text 

o3 
.3002 
.3009 
03023 
03049 
03107 
1/3 

7./IN 

Handy formula Computer 

.3 • 3 
.3005 .3002. 
.3021 .3010 
.3053 03023 
.3107 03051 
.3211 .3111 

1/3 1/3 

13� 
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Although the handy formula certainly represents correctly the general trend 
of V' IN1 it appears to be somewhat inferior quantitativelYI at least as 
applied here l to the more elaborate result given in the text. 

6.� See l f. ex.• W. Grabner and N. Hofreiterl IIIntegraltafel"I Ed. 2 (Springer l 

Vienna l 1957) in regard to integrals such as they denote Pyxn dxl n» 1 
Y� 

[as in Pt. I, Indef. Int•• Sect. 244. pp. 81 ff] •� 

14� 
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