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ABSTRACT

The Moser method of analysis, as applied through terms of order (2//N - 1/3)Z

in an earlier report, is here employed to determine the variation of rotation number

(or "tune') with amplitude for solutions of the non-linear differential equation given

in the title. The result is given in terms of a complete elliptic integral of the first
kind, with a modulus determined by the roots of a quartic equation. The rotation
number is thus calculable in terms of an amplitude characterized by the value of the
Moser t-independent Hamiltonian and this in turn may be related to some desired
salient dimension of the phase curve of interest. This result, although by no means

as convenient for hand calculation as the handy formulas sometimes employed for this
purpose, is found to give results in very good agreement with numerical computations
for a problem in which the small-amplitude frequency corresponds to 2//N = 0.3. As
is typical, the rotation number in this example departs initially from its small-amplitude
value (0. 3) by an amount proportional to the square of the oscillation amplitude and only
near the stability limit undergoes a rapid variation to attain the value 1/3. The area
enclosed by the phase curves, most specifically by the separatrix, is also briefly

examined.
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A. INTRODUCTION

In an earlier report, 1, * hereinafter denoted as I, a differential equation of

the form

42 2
y (27/\ + —(sm 2t)vZ = 0 (1)

N/ 2

was discussed, the dependent variable v being so scaled, for convenience, that

b]. =1:
2 2
d°v 2 1. 2
== +(—'Q)N v + 3 (sin 2t) v© = 0. (2)

In that reportl the Moser method? of solution was applied to eqn. (2), through terms

of order (2//N - 1/3)%, to obtain an approximate t-independent Hamiltonian

= -zJJ - (1/48) (N/7J) 3/2 cos 33’2

+ (K /2048) (NP 3,2, Ba)""
with
64/ N 1
ol = - ok
1-@JNZ 1+ 3dJIN (3b)
and
d= 1/3-39)IN, (3¢)

the expression K, thus representing an approximate constant of the motion.

In I the results of the analysis were specifically applied to examine the character
of the limiting amplitude solution of eqn. (2), resulting from the 2//N-1/3 resonance--
in the present report we apply the results of the same general analysis to examine
the dependence of the "rotation number'" on amplitude.

The Hamiltonian K, [eqn. (3a)] was obtained in Sec. D3 of I by a series of

canonical transformations.

*References are given in Section D.

**Eqn. (57) of I.

ok
Egn. (25) of 1. 2



Coordinate Momentum
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x
in which a/Z;—: a’l-?_t 2y -2
3 3
, = &
and J2 = J1 = Jo
with
1/2 1/z2 .
v=(N/v')/ J / sinb/
o o
and p = 2('1//N)1/2 Joll2 cos‘/o .
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(4a)*

(4b)**

(53)***

(5b)****

Phase plots of solutions to eqn. (2), plotted in v, p-space att = 37/4, mod. T, show

a transition in form from elliptical to roﬁghly triangular curves (as illustrated) as the

amplitude approaches the stability limit.

R /-\ ’ V-
<y N,
I

Separa trix —?/7

*Eqns. (56b) and (52b) of I.
**Eqns. (56a) and (52a) of L.
SRk

Egns. (49c) of 1.
>M‘M‘Eqn. (49d) of 1.

For //3v“7)/N > O
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Operationally, the amplitude may be characterized by the intercept v; (see sketch),
with v_ then serving to denote the value of this intercept for the separatrix. The

I

corresponding values of J » or J; may be similarly designated. In the present

report we shall examine analytically the dependence of the rotation number on (J Z)i
and hence on Vi/ Vi specifically for a case in which the small-amplitude frequency
is characterized by -,)/ N = 0. 3, and compare the results of this analysis with

corresponding results obtained from computer solutions. A brief examination will

also be made of the area enclosed by particular phase curves, in specific limiting

cases.

B. THE ROTATION NUMBER
1‘.; Analytic:
To illustrate the procedure to be followed in obtaining a rotation number to
characterize a particular solution, we may first note that, due to the non-linear
character of the differential equation [eqn. (2)] s J 2 is not a constant of the motion

but is governed by the following differ‘enﬁal equation:

dJ,/dt = - 3K,/ 2%,

“ai1ea/e)? %5, ¥ ain 5Y ©)

and dZ’Z/dt is similarly given by & KZ/ 2 J,. Inthe course of integration of dJ,/dt,
J2 may go from an extreme value (say a minimum value) corresponding to its value
(JZ)iE a at the intercept vi to a s‘ecoﬁd extreme value (say its maximum value) b in
an interval At = T. The corresponding changes of the variables of interest are then

as listed below:

At =3, | ¥ Ab’l
0 a 0 0
T b -7/3 2T/3-7/3
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Afrequency of revolution may then be taken as

il

2 =AYt
2. T

3 3T

Bt

or, since we consider N = 2 in eqns. (1) or (2), a ''rotation number" introduced as
g

21 _
~ - 37 %T . (7)

This quantity, ¢)' /N, will be seen to vary from the small-amplitude value, 2/ /N,to 1/3
as the amplitude increases to the value corresponding to the stability limit.

The differential equation (6) may be integrated by making use of the constancy
of K.2 [given by eqn. (Sa)] to eliminate YZ .

dJ,/dt =-6K2/ ? \67’

3
-(1/16)(N/J ) /2 JZ 3/2 sin 3 5/2

3/2 3 Y\ 3 3 2 ‘
() Yo old) s ()]

(8a)

. 16(21\{)3/2 ds,

¢ \/ -2304(11 [_é_(g)s JZZ-ZS-J2~KZJ

2

dJ‘2

4
11 3
20( (jl‘-y' i 3 2
Kot L2t i )

(A @] -,

2

2
%) @) «

"\ me K » . /

\ i %

5
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In the particular case that ¥/N = 0.3, & = 1/3 - 0.3 =1/30 and & = 1.4517 ;

eqn. (8b) above then assumes the form
dJ

T = 12.696 785 71 2

4 3
-J, + 28.401 684 09 J2

2
2
+ (76,180 714 27 K2 ~ 6,448 334 695)J2 (8c)

— 193, 450 0409 szz - 1450, 875 307 KZZ

12.696 785 71/ dJy

& A - - e - I - 3) 8c")
| 25.39357142 Lo )
V(e - a)(d - b) (8c )

where a, b, ¢, d represent the roots of the equation obtained by setting the denominator

of the integrand in eqn. (8c) equal to zero ( a{b{c<d),

(b - a}{d - ¢) .
k= \f(c-a)d-b) , (8d)

3
and K(k) denotes the complete elliptic integral of the first kind (modulus k). The
values of T computed from eqn. (8c"'!) may then be substituted into eqn. (7) to obtain

1
the estimated rotation number, ?) /N, for this case,

2, Comparison with Computational Results

In applying the results of the previous sub-section, the value a = (J 2), = (J 1),
i i
may be related to a corresponding value of Jo by aid of eqn. (52) of I and thence

2
directly to the intercept coordinate, v The quantities (Vi/ vI) and (J1)~/ (J 1) will,
: 1 I

ia

of course, be roughly proportional to one another. The root "a'" will have the value

>;:Fr'orn Egn. (3b), or from p. 16 of L



MURA-461
(Jl)i ; for small (Jl)i the roots a and b each approach zero, while for (J 1)i near
the limiting value (J 1}1 the roots b and c each approach 0.103 6384 and
a = 0,027 5557.

The results for a series of selected values of (J l)i are listed in Table I, For
small values, the modulus k varies directiy as (J 1 )i , being approximately equal
to 4(J1)i3 * - - see Fig, 1. Observed rctation numbers from a series of computer
runs, made with the MURA I, B. M. - 704 computer by use of the DUCK~ANSWER
program, 4 were obtained from examination of suitably numbered points on phase plots
of the output data - - see Fig. 2. - - and are included in Table I. The results are
expressed in terms of vi/ Vi, Or ('vi/ vI)Z,‘ using the value of vy reported previously in 1.

The variation of rotation number with "amplitude' (or amplitude squared) is,
finally, depicted in Fig. 3, in which the curve has been drawn to pass through the cal-
culated values listed in Table I and the circles represent the results obtained from the
machine computations. The agreerﬁent between the calculated curve and the computer
resultsAis seen to be close, °

Since the enclosed phase-space area is proportional to K_, to a reasonable

29
approximation, an effective average value of <IN may be taken as given by

1 1
f (¢ /N) dKZ/J) dK2 - -1i,e., by an average of J /N sampled in equal intervals

of KZ. For the case considered, there thus results the effective value

<'In) ¥ 0.306 . )



TAL._E 1

CALCULATED AND OBSERVED VALUES OF g /N

(v;/v)?

1/2
(1),

(),

-103
10 Kﬁ

a,
c,

£l

L )

K

/N

Calc.

2N
Obs,

od| v

.228 8851
28.172 7990

w2 =
1.5708

107/2=
15.708

1/3-1/30
= 0.3

050 _ . 1865867

.268

0.3481

.030918

. 000 9559

0.06745

.000 9559
. 001 0797
.227 0228
28,172 6257

. 02331

1,5710

15.808

0.3002

0.3002

.100
.268

=.373134

.13923

. 061 860

. 003 8267

0,2847%

. 003 8267
.004 9413
.220 8204
28,172 0957

.07139

1.5728

16.155

0.3009

0.3010

. 5427

.2945

.09

. 0081

0.63071

.008°1

.012 0251

.210 3242
28,171 2348

.13883

1,5784

16.796

0.3 022

.150

-~
T —

.268

.559 701

.31327

. 092 826

.008 6167

0.67391

. 008 6167
.012 9909

.208 9491
28,171 1274

.14725

1.5794

16.886

0.3023

0.3023

2200 745 269

.268

.55692

:12382

,015 3314

1,25661

.015 3314
.028 0399
.188 5344
28,169 7784

227010

1.6007

18,411

0.3049

0,3051

.1534

.5676

125

.015 625

1.28289

.015 6250
. 028 9322
.187 5105
28,169 6164

.27746

1,6024

18.502

0.3050

.250

-
R -

.268

.932 836

.87018

.15483

.023 972

2.05366

. 023 972
.060 689
.149 319
28,167 704

. 54037

1,7093

23.125

0.3107

0.3111




TABLF 1
(conti. Xd)

il vy

(Vi/VI)z

172
(3y),

),

-103
10 K2

L ()

L
Y IN
Calc.

JIN
Obs.

. 9640

.9293 .16

.025 6

2.20878

.025 600
. 071 529
.137 236
28,167 319

.64067

1,7849

25,593

0.3129

.166

. 027 556

2.39707

. 027 5557
.103 6384
.103 6384
28.166 8515

w| -

Wl

*For small (3,)

)
1

3
k is proportional to (J 1 )i

/4

, being approximately 4(J1

)i‘

3/4
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C. THE PHASE SPACE AREA
1. Analytic Introduction

It may be of some interest to inquire concerning the area, S, in phase space
included within a curve of constant KZ’ taking, as before, K2 as given in eqn. (3a).

We thus investigate

S Efpdv
/3

5 (10)

with K‘2 given in terms of J, (=J1) and XZ by Eﬁ‘rom eqgn. (3a) with 7J/N = 0. QJ

L 6 3/2 ¥ 2
K,==7¢ J,~0.126787 6293,  cos 3¥, + 0.026 253 363723, .  (11)

Equation (11) may be used to eliminate XZ from eqn. (10), with the result (written in

terms of Jl) #

-3K, - (1/15) J; - 0.026 253 363 72 le

S = 38.090 35713 dJ, ,
VU - ab -3 - J)d - 3)) (12)

where a, b, ¢, d have the same meaning as before [i. €., in connection with eqgn.
(80')] .

If one were to undertake to evaluate the integral of eqn. (12) directly, it appears
that the (complete) elliptic integral of the third kind would appear6 and we shall not
further pursue this matter with such generality here. The character of the integral,
and hence the value of the area S may, however, be examined with some interest in
the case (i) that K2 is small and (ii) in the case that K2 = (KZ)I, corresponding to the
separatrix which encloses the entire stable area of phase space.

' (i) For K‘2 small, the numerator of the integrand in eqn. (12) is approximately
..3K2 - (1/15) J2 or (2/15) Jq and is approximately constant, Whﬂem)
=4cd = 2.539 357 [gf_ Table IJ . Accordingly, in this limit, we may write

eqn. (12) as 10
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. dJ1
S 2<J1>q Y Ty
= 2 ‘W(Jl) (by an elementary integration)
= Zﬂ'Jo
= 2rIM v,° by eqn. (5a)] . (13)

This result is immediately seen to be correct, for the area enclosed within an
elliptical phase curve of semi-axes Vi 2(JIN) vy [Sf‘ eqn. (5b)_] , and thus,

to a degree, constitutes a check of eqn. (12).

T
Fon =2y
v
?Wf

&

(ii) When K2 assumes the value (KZ)I characterizing the separatrix,
b = ¢ and the numerator of the integrand in eqn. (12) moreover may be factored to

give us ‘e’

(b - Jl)(J1 + 2.642 995) dJ,

S = , withc =b
a 1/(?1 - a)(b - J]_)(c = Jl)(d = Jl)
- JJ_ + 2. 642 995 dJl

b

X YU -a6@-3)

- J, - a A
- [(5.28599 +a+d tan L 1 ] -7, - a)d - Jl)]
= R
= (5.28599 + a + d) tan”t bo2 -fo-a)@-b)
= 0.2805 . (14)

11
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b); use of the values a = 0,027 5557, b = c = 0.103 6384, and d = 28.166 8515 listed

in Table I

2. Computer Result for Area Within Separatrix

From computer results obtained in connection with the work reported previously
in I, one finds (after scaling of those results so as to apply to the case by =1 under
consideration here) that the area enclosed withinthe separatrix (estimated from the

original plot in the v, p-plane) is approximately

S = 0,296, (15)

computer
This area is some 5 or 6 percent greater than that suggested by the analytic result,
eqn. (14), as might be expected in view of the observation that the computer values for
salient coordinates and momenta on the separatrix were found correspondingly to be

a few percent greater than the values derived from the Moser theory employed here
[see, f.ex., Table IV or the first line of Table VI in IJ .

Finally, it may be noted in closing that if the small-amplitude result,

e

s = 297fi5¢-x,)]

307]’(-K2) s [for K, smalg (16)

of eqn. (13 had been applied in this form to the large value K2 ==0, 002397 which
corresponds to the separatrix, one would have obtained the result

S =0,2259  ;
the value obtained in this way thus would have been some 20 percent lower than that

calculated by eqn. (14).

12
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D. REFERENCES AND NOTES

L. Jackson Laslett, MURA-452 (April 13, 1959), hereinafter denoted by I.
Jiurgen Moser, Nach, Gott, Akad. (Math. - Phys. Kl.) Nr. 6, 87-120 (1955).

Cf. B. O. Peirce, "A Short Table of Integrals™, Ed, 3 (Ginn and Company, Boston,
Massachusetts), Formula 552, p. 70.

J. N. Snyder, DUCK=-ANSWER (I, B, M, Program 75), MURA-237 (1957). In the
actual use of this program for the work reported here, the coefficient b, in

eqn., (1) was given the value 1.15; the computational values of v and p, accordingly,
each required multiplication by the factor 1.15 to bring them into agreement with
the quantities employed in the analytic work presented here.

Although the analytic approach outlined in the present report is of interest as an
illustration of the applicability of Moser methods, and the results appear to be
quantitatively quite accurate, the results obtained here [eqn. (8¢c"), etc.] cannot
be regarded as particularly convenient for numerical evaluation. It therefore
may be of interest to recall, as Dr. G. Parzen has kindly pointed out (private
communication, 27 May 1959), that a "handy formula' has been proposed to
describe the variation of "tune' in cases such as we consider here. One form of
this formula is such that one would write for the present problem

W'N? 2 a9 - [09? - @ v Y - @i, an

where A and A, respectively denote the "amplitudes' of the actual oscillation
and of the limi%ing stable motion. In the present instance we might, perhaps
somewhat arbitrarily, identify A% as proportional to K2 and write

(V' 1% ¥ a3’ - [1?-0.9%4] 41 S KM L (8)

We now may make a comparison, presented below, of (i) the results derived in
the body of the text, (ii) the prediction of the handy formula noted here, and (iii)
the rotation number derived from the computer results:

2'IN
KZI (K3)
I Formula of text Handy formula Computer

0 .3 .3 .3
. 028 139 . 3002 . 3005 . 3002
.118 786 . 3009 ' . 3021 . 3010
. 281 137 . 3023 . 3053 . 3023
.524 226 . 3049 . 3107 . 3051
. 856 737 . 3107 . 3211 . 3111

1 1/3 1/3 1/3

13
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Although the handy formula certainly represents correctly the general trend
of ¥'IN, it appears to be somewhat inferior quantitatively, at least as
applied here, to the more elaborate result given in the text.

6. See, f. ex., W. Grobner and N. Hofreiter, "Integraltafel", Ed. 2 (Springer,
Vienna, 1957) in regard to integrals such as they denote bX/in dx, n 2 1

y
[2s in Pt. I, Indef. Int., Sect. 244, pp. 81 £f .

14
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