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ABSTRACT 

As a continuation of an 'earlier report pertaining to the z)IN ---t 1/3 

resonance, the stability boundary for the equation 

has been studied analytically and (for b 1 ::: 1. b 3 ::: 3/4., b 5 ,", l/Z) by digital 

computation. A relatively simple trial function, 
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is employed in a variational procedure or with harmonic balance to obtain 

an estimate of the unstable equilibrium (perbdic)solution and associated 

fixed points. Application of the Moser method of solution is also carried 

through, to include terms of order (V/N - 1/3)2. The results are compared 

with computational data for .,)/N ~ 0.3267, 0.33. O. 3367, and O. 34. 

>,'<
AEC Research and Development Report. Research supported by the Atomic 
Energy Commission. Contract No. AEC AT(11-1)-384. 

**nepartment of Physics and Institute for Atomic Research. Iowa State College. 



MURA-459� 

A. MOTIVATION 

In a previous report, 1* hereinafter designated as I, a study was made 

of the differential equation 

(1) 

with particular attention to the limiting-amplitude solution governed by the 

one-third resonance (zAN ~1 13). As was pointed out in I, if the coefficient 

of the linear term in (1) had not been constant but involved a periodic function 

of the independent variable t, it would be possible2 to remove this t-depend

ence by a suitable transbrmation. Such a transformation, however, has the 

effect that the quadratic term becomes more complicated than in eqn. (1). 

As an extension of the results of I, we therefore consider in the present re

port the equation 

2+ (2 VIN)2 Y + (1/2) [I: b m sin 2 m 11 y * 0, (2) 
m=l 

with b1 +O. 

As before, 1 results of a variational solution and of application of the 

Moser procedure 3 will be presented and compared with computational results. 

In particular we shall be concerned with the limiting-amplitude solution 

governed by the one-third resonance, and undertake to carry the analysis 

consistently through terms of order (z)IN - 113)2. 

*References are given in Section E. 
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B. THE VARIATIONAL METHOD 

The unstable equilibrium orbit, or the associated "fixed points" 

characterizing the limiting-amplitude solution of eqn. (2). 

2 2d v + (2 -z}/N)2 v + (1/2) [L b sin 2 m t] v =: 0.,mdt2� m;;: 1 

may be sought by insertion of a suitable trial function into the variational 

statement 

3bf.(dV/dt)Z>- (Z V/N)Z <. v 
Z>- (1/3) m"2;l b m <. v sin Z m t >} ~ O. (3) 

We shall employ here the trial function 

v :;'; A 1 sin 2 t / 3 + B 1 sin 2 t + C1 sin lOt / 3 

+ m0JAm sin (Z m - 4/3) t + Bm sin Z m t + C m sin (Z m + 4/3) t], (4) 

in which the first term is the dominant one and the remaining terms are then 

of a form suggested by considerations of harmonic balance. 

In the substitution of the trial function (4) into the variational statement (3), 

only those terms need be retained which will contribute terms of order no 

higher than (V/N - 1/3)2 to the solution--to this accuracy it is then sufficient 

to retain (cubic) terms in <. v 3 sin 2 m t> which involve Al squared or cubed. 

With this approximation the variational statement (3) then becomes ( on multi

plication of (3) by 72): 

16 [1 - 9 (z}/N)2]Al + 16[9 - 9 (,V/N)2] B[ + 16 [25 - 9 (Z}/N)2]Cl 

+ 16 J::J[<3 m - Z)Z - 9 (V/N)Z] A;;' + [(3 m)Z - 9 (ZJJN)Z]B£, +[<3 m + Z)Z 

-� - 9 (V/N)Z] C~j 
3 2 

+� 9 b1 [A1 /3 - 2 A 1 B1 + Al C11 

+ 9 ~ 2 bm [A[ (Am 2 Bm + Cm .)} to be stationary. (5) 
3 
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By performing the appropriate differentiations of the algebraic form (5) the 

simultaneous algebraic equations for the coefficients of the trial function are 

then obtained directly: 

2 
32 [1 - 9 (thN)2J ~1 + 9 b1 [A1 - 4 Al B 1 + 2 Al c1 l 

+ 18 bm Al (Am - 2 Bm + Cm) = 0 (6a)L: 
m::::2 

32 [9 - 9 Cz)/N) 2]B1 - 18 b 1 Af ~ 0 (6b) 

32 [25 - 9 (z}/N)2J C1 + 9 b 1 At =: 0 (6c) 

32 [(3 m - 2)2 - 9 (V/N)2] Am + 9 bm Af ~ 0 . (6d) 

2
32 [(3 m)2 - 9 (V/N)2] Bm - 18 b A 1 = 0 m ~2 (6e)m 

32 [(3 m + 2)2 - 9 (V/N)2] C + 9 b Af :: 0 • (6f)m m 

In solution of eqns. (6a-f). one may first express B1. C1• Am. 

in terms of Al by means of eqns. (6b-f) and substitute the results into eqn. (6a) 

to obtain an equation involving the unknown Al alone. An approximate solution 

of this last-named equation. valid through terms of order (z)/N - 1/3)2. may 

then be obtained and the remaining coefficients (B 1> C1• Am•..• ) determined 

[Appendix AJ. We thus find 

2 
Al = - 36: (1/3 - V/NJ 1 - Sri + 2: ~m'f 9 m - 5 \1/3 - z)/N~(7a) 

1 (r m=2~lJ(m2-1)(9m2-1J ) 

32 _ 1 2 
B 1 :: b1 (l/3 - 1//N) (7b) 

C 1 = - 3
1
;1 (1/3 - V/N)2 (7c) 

A __ 128 bm /b1 (7d) 
m - 3 b 1 (m - 1) (3 m - 1)� 

256 bm /b1�
Bm =-- m~2 (7e) 

b1 9 m 2 - 1 
128 bm /b1 

(70
Cm = - 3 b 1 (m + 1) (3 m + 1)� 

4� 
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These coefficients. when employed in the trial function (4). provide us with 

an approximate representation of the unstable equilibrium orbit in the form 

of a trigonometric series. 

From the foregoing results for the unstable equilibrium orbit. the 

coordinates of the fixed points may be obtained. as desired. Thus. at· t =O. 

one finds 

v = 0 (8a) 

(8b) 

From the experience reported previously in I (Section C of reference 1) 

it may be expected that the accuracy of these results. being carried only 

through second order terms, will be somewhat limited unlessl ~ - ~ Iis 

small; reasonable accuracy might be expected, however. if f ~  -fl-I were, 

say. as small as 0.01. A comparison of the analytic results with digital com

putationsywill be presented later in this report (Sect. D). We turn next to the 

apj>1ications of the analytic method of Moser to eqn. (2). 

C. THE MOSER PROCEDURE 

1. The Forward Transformations 

In this section we undertake to treat eqn. (2) by the Moser procedure. 3 

in a manner paralleling that presented in Sect. D 3 of I. 1 Our basic equation, 
5 
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eqn. (2) J follows from the Hamiltonian 

H = (1/2) p2 + (1/2) (2 VIN)2 y2 + (l/6) [;;1 b", sin 2 m t] y3, (9) 

which we now subject to a series of canonical transformations designed to 

eliminate the t-dependence from the cubic term in (9). 

We commence by employing the generating function 

(10) 

so that 

p = 'dGol av = (2 ~/N) v ctn Yo (lla) 

2 2
Jo :: - dGol d ~ = (VIN) v csc r: (lIb) 

thus 

ctn ~:: ~V ~ (l2a) 

1 '- ~ + .! E2 1J) v 
J 

N 2 (l2b)Jo = "2 ,TVI p 2 N
2 

• )12. '/~ v 
v = (N Iv) J o sin I 0 (12c) 

P = 2 (z}IN)'/~ JoY'-- cos Yo (12d)J 

and the new Hamiltonian is 

= H 

= 2 (VIN) J o + (l/6)(NIV)J!z J;jt- sin3 to ~ b sin 2 m t m 
m=l 

= 2 ( -V/N) J o 

+ (1/48}(NIU,iz. 'k I; b r3 cos (Yo - Z m t) -3 cosa;, + 2 m t~
Jo m 

m =1 l+ cos (3 Yo +2 m t) - cos (310 - 2 m t) JJ 

(13) 

with Yo and J constituting respectively the new coordinate and momentum.o 

6� 
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We� now select as a second generating function 

sin ( ~ - 2 t) sin (~ + 2 t) . sin (3'X> + 2 t) 

1 - DIN + 3 1 + lJIN ...· 1 + 3 7N 

sin (Yo - 2 m t) + 3 sin ( Yo + 2 m t) 

m - iJ/N m + V/N (14) 

b 
+L _ sin (3 Yo - 2 m t) _ sin (3 (0 +2 m t) 

m=2 m - 3 iJ/ N m + 3 'VIN 

so that 

COS(Yo - 2 t) cos(~ + 2 t) cos(3t + 2 t)lo 
[ 1 - iJIN + 1 + VIN - 1 + 3 1)IN ] 

cos (Yo - 2 m t) + cos (~ + 2 m t) 

m - 1)IN m + D!N (15a) 

_cos (3~- 2mt) _ cos(3Yo + 2mt) 

m - 3 i)/N m + 3 N 

hI� r. sin( Yo - 2 t) + 3 sin( y" + 2 t) _ sin(3 y" + 2 tJ r 1 - zJ!N 1 + i/!N 1 + 3 i71N ] 

sin (Yo - 2 m t) 3 sin (16 + 2 m t) 
3 + 7J (15b) 

m - 1/IN m +/N+2:bm 

m=2 _ sin (3 to - 2 m t) _ sin (3 ~ + 2 m t) 

m - 3 i/lN m + 3 7J!N , 
and 

b r_ 3 cos( Yo - 2 t) + 3 cos(Yo + 2 t) _ cos(3 ~ + 2 t 
i 

[ 1 - VlN 1 + V/N 1 + 3 N 

_ 3� cos (Yo - 2 m t) + 3 cos (~ + 2 m t) 
(16)

1 -� VlmN 1 + rmN 

+ ~~m + cos (3 Yo - 2 m t) _ cos (3 y., + 2 m t) 

1 - 3 1JImN 1 + 3 ill roN 

7� 
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it is now in order, of course, to express the new Hamiltonian, K1• explicitly 

in terms of 'Y;. and J l' As a first step. substitution of J o ' as given by 

eqn. (15a), into K ' as given by eqn. (13), results (after considerable simo 

plification) in eqn. (16) assuming the following form, through terms of order 

J1 : 

_ J b 1 iN ~3ft, 3/2,
K1 = 2 (-v7N) J 1 - 48 \vJ J 1 cos (3 Yo - 2 t) 

!1..J.N \3 2 6 tAN 1 
+ 2048 ~ V) J 1 1 - if /N2 - 1 + 3 1J/N 

+ 6:1 :hz~7; [mZ ~VZ/NZ + m Z -\VZ/NZ] 

+ L: bmbm + Zr 1 _ 1 ] cos Z (3 y,. -Zt) 

m=l bf Lm+3V/N m+2-3zJNJ 

+ terms which are neither constant, nor involve 
circular functions of an argument which is a 
multiple of 3 't. - 2 t o 

It can be seen that the introduction of Y1 in place of Y in eqn. (17) 
o 

need not change the form of this result, since the substitution, based on 

eqn. (15b). which is involved in expressing cos (3 Yo - 2 t) in terms of Y1 

does not introduce into the J f term any terms of the form which we have 

elected to retain. It may moreover be noted that there is little point to re

taining the last term in eqn. (17). involving the cross products bm b + 2 ' m 

since, to this order, 3 -,}/N may here be set equal to unity with the result 

that the term in question vanishes. In this spirit, and in the interest of . 

simplicity. we therefore write 

(18) 
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where 

1 

1 + 3 -V/N 

+ 6 ~ h2(-:~/ [m2 _lVZ/N2 + m2 _ / 1f/N2 l(19) 

ecf. eqn. (Z5) of I) and in which t-dependent terms have deliberately been 

omitted from the J f term of K1. 

For the final transformation we now. as in I. introduce the third 

generating function 

(ZO) 

which effects the transformation 

J 1 = dGzl d '(1 = J Z (21a) 

ZYz = "iJGZ/dJZ = Y1- 3 t (Zlb) 

with 

z 
= K -

1 3 

= - 2(-~ 
and in which <X.- is given by eqn. (19). KZ' which. as written. is independent 

of t. is now to be regarded as substantially a constant of the motion. 

z. The Separatrix and Fixed Points 

The expression (ZZ) for KZ> which we take to be a constant of the 

motion,is virtually identical in form to eqn. (57) of I [Section D 3 of refer

ence 1] and the succeeding step thus will parallel the corresponding work 

9� 
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in I, save that the values of J 2 (= J l) will contain a factor lib: and eX�
is to be interpreted in the manner of eqn. (19).� 

The fixed points, corresponding to the unstable equilibrium orbit,� 

are characterized by K being stationary; i. e., by�
2 

cos 3 ¥2 :: - 1 (23a) 

Y2 = + '7113, /f( (23b) 

~ = + '!t13 + 2 t/3, 'f( + 2 t/3 (23c) 

and 

(24) 

where� 

n /1 + 8 Dl. (i /3 - z)/N)' - 1� (25a)(1 = 4 ()(, (l 3 - 1JIN) 

= 1 - 2 ()(; (l 13 - VIN) + .••. (25b) 

Other points on the separatrix are determined by eqn. (22), with K given2 

• the value [implied by eqns. (23a) and (24)J 

K = _ ~ (7Jr (-~ _Jl'f 
23b Nt 3 N7 • 

(26) 

l 

3. The Inverse Transformation 

To obtain an expression for the unstable equilibrium orbit in terms 

of the original dependent variable, v, we perform the inverse transformation 

from Y
I 

, J l' making use of eqn. (24) and (say) setting 

[CL eqn. (23e)]. We thus write 

J 'It. ~ ,J '/~ ~ _ b 1 m \3/"J 1~. a] (27a) 
a 1 ~ "fiZI\771 1 

sin 'fa ~ sin ~ - (cos "il ) (~ - Yo) 

• if b i cos Yl (N-'~ '/1J= sin, 1 +-"';;;;"'6r 4T---=- V) J 1 . S (27b) 

10 
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and 
, 

cos� Yo = cos )'1 + (sin ~) ( ~ - ~) 

.� bi sin 11(-N~'ft. 'It. 
= cos� . S J (27c)~ 64 ~ J 1 

where 

cos4t/3 +cos8t/3 cos 4 t� 
R:! 1 - UN 1 + DIN 1 + 31/!N� 

cos� (2/3) (3 m - 1) t + cos (2/3) (3 m + 1) t 
m - 7)IN m + 1)IN 

(27d) 
cos 2 (m - 1) t cos 2 (m + 1) t 

m - 3 illN m + illN 

and 

3 sin 4 t/3 sin 8 t/3 sin 4 t + 3 
S= - 1 - 2J/N 1 + 7)/N 1 + 3 iIIN 

_ 3 sin (2/3) (3 m - 1) t + 3 sin (2/3) (3 m + 1) t 
m - iJ!N m + 1/IN 

(27e) 
sin 2 (m - 1) t sin 2 (m + 1) t 

+ 
m - 3 iJlN m + 3 2/IN 

sin 2 t/3 + 4( Z);N)sin 2 t _( 1 ~ 
1 - UN 1 -1J2 /N 2 ~-l + 'UN - f+317IN) sin lOt/ 

r.. 1 1 1� ' 
~m	 - UN - m - 3 'ZllN sin (2/3)(3 m - 2) t 

'\7 b + 4 ( V/N) sin 2 m t 
L.� bl m 2 _ - JZ/N 2
m=2� V-

m + ~ 1J/N'j sin (2/3)(3 m + 2) t 

.
(28a) 

11 
I 
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similarly [cf. eqn. (lZd)] 

p =Z (z}IN)~J!z cos Y 

= - z (v'N)~4~~ -(~ ~~) 11 ., [ - G-~Yf1 ~in¥-) s]cos Z t/3 

coszt/3 

cos zt/3 _ 4 cosZt \+f 1, 1 _\cos lOtI 
- IN 1 -1J IN?} \1 +aN 1 + 31J1N) 

(m - ~/N + m _ i illN) cos (ZI3) (3 m - Z)t 

4 m cos Z m t .~bm 
Z 

~ b1 m - 7Y/N2 
=Z 

1 
+(m + 'ilfN + m +1 3l)fN}COS (Z/3) (3 m + Z)t 

(Z8b) 

For comparison with the results of Section B. we may first examine 

the coefficient of sin Z t/3 in the expression for v shown in eqn. (Z8a). 

making certain simplifications consistent with retention of terms through 

those of order (~ This coefficient i.- *'J. 
(Z9a)A1=-:; 0-~Xr:)~1 [1 -11~3 M~N '11] 
(Z9b)~ -;: 0 -~ 00 [1 - (z ot + 1-V/NJ G- ~)] 
(Z9c). 64 (.! _VV~) [1 - Iz 0(, + 3) (.! _1d.Jl 

= - h 1 3 N "-N/ l' Z 3 N ~ 

;, -~~1 G-~) [1 - (z 0(, + ~ (~ - ~~J (Z9d) 

[cf. eqn. (19)]. (30) 

1Z 
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2 
. 64. (1 1J~ [ ~ Gm)2 9 m - 5 J(1 - 7J)~ (2ge)A:::------1-81+LJ-� 

1 3 b 1 3 N� m::::2 bl (m2 - 1)(9 m 2 - I) 3 N . 

in agreement with the expression given as eqn. (7a). A similar reduction 

of the coefficient of cos 2 t/3 in the expression (28b) for p leads to a 

quantity which is 2/3 of formula (2ge) for AI' as it of course should since 

P :':: dv/dt. 

Similar reductions of the remaining (second order) terms in the 

1rigonometric series for v and P. as given by eqns. (28a. b). leads to the 

coefficients listed below in Table 1. 

TABLE I 

COEFFICIENTS OF SECOND ORDER TERMS IN THE TRIGONOMETRIC� 

SERIES FOR v AND P. FROM EQUATIONS 28a AND 28b•� 

.

Argument Sine Coefficient in v Cosine Coefficient in p� 

2�(1...- Vj� _ 1...-_v/�2 t + g� + 64 (
bl 3 N� bl 3 N 

160-~ (1... _Vj2� - (1..... - v/10 t/3 
3 b 1 3 N 9 b1 3 N 

128bm 1 C-..JLy - 256 bm 3 m - 2 e.,)J(2/3)(3m- 2)t 
- 3 b l (m - 1)(3 m - 1) 3 N� 9 bl (m - 1)(3 m - 1) 3' - N 

512 bm m256 bm 1 (12mt� + Z 2
f/)2 

b1� 
(; -~J+� bf 9 m 2 - 1 3' - N 9 m - 1 

_ 256 b 3 m (1(2/3)(3m + 2)t - 128 b m 1 e_1Jj m + 2 12.)2 
3 b 2 (m + 1)(3 m + 1)3 N 9� bt (m + 1)(3 m + 1) 3' - N ~ 

1 

The coefficients listed here for the terms appearing in eqn. (28a) for v are immediately 

seen to be concordant with the coefficients of the trial function of Section B. as listed in 

eqns. (7b-f). Similarly the coefficients listed for p are seen to be related to those given 

~r v in'a way consistent with p =dv/dt.� 

13� 
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Coordinates of fixed points may of course be obtained directly from 

eqns. (28a, b). Thus, for one of the fixed points at t ~ 0 one finds 

v=O (31a) 

1 

(31b) 

This expression (31b) for p may be somewhat simplified if various reductions 

are made by aid of ~ 1 ~ 1 - 20<. (~ - *). use of eqn. (30), and the approxi

mation (V!N)22/ ~ [1 -6 G-~)] : 
p ;; _ 128/.1_ ul ItJf ~ 1 _ [2 _16 ~ m (bm/b l) ](1 _ ~~1 

b 1 V Nj W) >11 t 4 m~2 (m2 - 1)(9 m 2 - 1~ 3 NjJ 
2; -~(.!.- JlJ/JJf[1 _[21 -8 E 2m(bm/b l)-(9m -5)(bm!bl)2 (1 _~,1 

b 1 3 NJ \NJ 4 m~2 (m2 _ 1) (9 m 2 - 1) 3 NjJ 
2~ _ :~8 (~ _ W'[1 -[ ~5 _ 8 L 2 m (bm!b1)- (9 m - 5) (bm!bl)21 (1 _1L\} 

1 NJ m=2 (m2 - 1) (9 m 2 _ 1) j 3 NI , 
(31b') 

which is in agreement with the result C8b) found in Section B. The other 

unstable fixed points associated with this value of t likewise may be 

obtained, by the substitution of t :: ±. rr in eqns. (l8a, b): 

2 1 

1 + 3 -z//N 

14� 
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10 1 

+ 1 + 3 z}IN 

The reduced forms (32a') and (32b') agree with the value of the trial function 

of Section B and its derivative at t:::: + 'IT.., namely v =+ (1'312) ~: (Am-C )m 

and dv/dt = - (l/3) l=~ [(3 m - 2) Am - 6 m B m + (3 m + 2) Cm ], when 

the coefficients are taken as given by eqns. (7a-f). 

The coefficients of the trigonometric development of the unstable equi

librium orbit, and particular fixed-point coordinates, are thus seen to agree, 

through terms in (~ - ~)2 , when obtained by the variational method or by the 

Moser procedure. In the following Section we present some computational 

checks of these results. 
15 
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D. COMPUTATIONAL CHECKS 

The analytic results of Sections Band C for the limiting-amplitude 

solution of eqn. (2), for which the solution was carried through terms of 

order (z}/N - 1/3)2, have been subjected to computational checks4 for a 

series of examples in which 

b 1 :: I, b 3 = 3/4, and b 5 = 1/2 , (33) 

and in which .,)/N successively assumed the values 

o. 3267,� 

0.33,� 

0.3367, and� 

0.34. 

The computational results for the trigonometric representation of the 

unstable equilibrium orbit, and for the coordinates (v, p) of the fixed points 

corresponding to t = 0, were compared with the results of the analytic work, 

both in the form obtained directly from application of the Moser method and 

in the simplified, or "reduced '.. forms in which the results also could be 

expressed. A particularly decisive test of the results might be afforded by 

examining explicitly the coefficient of (1J/N - 1/3)2 in the results- -thus by 

forming 

9 b1 (- p)
1 - ""T""n>H.O 1 _ V 

"3 N 

one might expect to obtain a result which would approach 

245 _ 8 "'E 2 m (bIn /bl) - (9 m - 5) {bm/b l)2 • 11. 80 
4 m=2 (m2 - 1) (9 m 2 - 1) 

16� 



MURA-459� 

as 1JIN ~ 1/3 [ef. eqn. (31b'~. From such tests it appeared that the 

coefficients of interest were approximately of the size expected but assumed 

limiting values which depended appreciably on the Runge- Kutta interval 

employed in the computations--thus with NRK =64 (requiring runs of length 

NE= 960 Runge- Kutta steps), the limiting value of 

(- p) 

.!._11 
3 N 

1- -3 

appeared to be about 11. 7. In the results reported below, the computational 

results are taken primarily from runs made with N 64.
RK 

= 

In Table II we list the Fourier coefficients of the unstable equilibrium 

orbit for the cases studied. For each argument listed, the first line gives 

the value of the coefficient expected from the results of the Moser theory 

~qns. (lBa, b) J; the second line gives the value obtained from the reduced 

forms &ee eqn. (lge) and Table IJ; and the third line gives the coefficients 

obtained computationally. 

In Table III we similarly list the fixed-point coordinates, for t =O. 

The agreement between the analytic and computational results, as illustrated 

by Table II and Table ill, is felt to be completely satisfactory. 

17� 



TABLE II MURA-459 
FOURIER COEFFICIENTS IN Ul'\l"$TABlE EQUILIBRIUM ORBIT

) b1 := 1 b'J = } 4 bl;: = 1 12 )-
Sine Coefficient 

-

in v Cosine Coefficient in p 
Argument -vtN ~'N 

o ~?f\7 o ~~oo o ~~f\7  o ~400 o ~?f\7 o ~~OO  o ~::if\7 o ~A.OO 

-.1339152(a -.069 1337 +' .073 9787 .... 150 9863 -.089 1973(a) -.046 0785 T.049 3068 f .100 5561 
2 t/3 -.1334186(b -.069 0676 -to .073 9068 +.1503963 -.088 9457(b) -.046 0451 +.049 2712 -to.100 2642 

-.1341 351 (c -. 0691 799 + .073 9996 .... 151 3 083 -.089 423 (c) -.046 120 +.049 333 of' .100 872 
~.  001 2792 +.000 3385 .... 000 3818 "" • 001 5780 + .002 5584 l' .000 6771 •. 000 7637 +,.003 1561 

2 t -t.001 4080 +.000 3556 -to.OOO 3627 +.001 4222 +'.002 8161 .... 0007111 + .000 7254 .,. .002 8444 
-t.001 2594 -+.000 3357 + .000 3859 0/0 .001 61 75 t .002 51 9 .,. • 000 671 +.000772 .... 003 23 5 

-.0002175 -.000 0570 -.000 0630 -.000 2578 -.0007192 -.000 1892 -.000 2109 -.000 8662 
10 t/3 -.000 2347 -.000 0593 -.000 0605 -.0002370 -.0007822 -.000 1975 -.000 2015 -.000 7901 

-.000 2101 -.000056 -.000 0643 -.000 2693 -.00070 -.000 18 -.00021 4 -.000 8980 0 7 
- 0000 0794 -.000 0211 -.000 0240 -.000 0994 -.000 3724 -.000 0987 -,0001115 -.000 4611 

14 t/3 -.000 0880 -.000 0222 -.000 0227 -.000 0889 -.000 4107 -.0001037 -.000 1058 -.0004148 
-.000 0785 -.000 020 ~.  000 0241 -.000101 3 -.000 367 -.000 09 -.000 11 -.000479 8 3 3 
1-.000 0964 +.000 0254 +. 000 0286 +.000 1178 +.000 5782 +.000 1527 "'.000 1714 +.0007069 

6 t "1".000 1056 + .000 0267 ot' • 000 0272 T. 000 1067 1'.000 6336 .,..000 1600 +.000 1632 .... 000 6400 
.,..000 0947 +.000 0252 or. 000 0289 +,.000 121 0 .... 000 568 +.000 151 +.000 173 +.000 72 6 
-.000 0324 -.000 0085 -.000 0095 -.000 0390 -.000 2365 -.000 0623 -.000 0697 -.000 2869 

22 t/3 -.000 0352 -.000 0089 -.000 0091 -.000 0356 -.000 2581 -.000 0652 -.000 0665 -.000 2607 
- 0000 031 8 -.000 008 4 -.000 009 6 -.000 0399 -.00023 -.000 06 -.000 07 -.000 2934 2 0 

-.000 0152 -.000 0040 -.000 0045 -.0000188 -.000 1322 -.000 0350 -.000 0394 -.000 1625 
26 t/3 -.000 0168 -.000 0042 -.000 0043 -.0000169 -.000 1453 -.000 0367 -.000 0374 -.0001467 

-.000 0148 -.000 003 9 -.000 0046 =.0000195 -.000128 -.000 03 4 - 0000 040 -.000 169 
. 

+.000 0230 "'.000 0061 +.000 0068 .... 000 0280 +.000 2295 +.000 0606 ;-.000 0680 +-.000 2804 
lOt +0000 0251 +.000 0063 +. 000 0065 or. 000 0254 +.0002514 +.000 0635 to. 000 0648 +.000 2540 

-t.000 022 5 +. 000 006 0 +.000 006 9 +.000 0288 .... 000 22 5 .... 000 06 0 + . 000 069 +.000 288. 
-. 000 0090 -. 000 0024 -.000 0026 -.000 0109 -.000 1014 - 0000 0267 - 0000 0299 -.000 1233 

34 t/3 -. 000 0098 -.000 0025 -.000 0025 - 0000 0099 -.000 1108 -0000 0280 -.000 0285 -.000 1119 
- 0000 009 0 -. 000 002 3 -.000 002 6 -.000 0109 -.000 103 -.000027 -.000 03 0 -.000123 
(a)Eqn. (28a) (a)Eqno (28a)� 
(b)Reduced forms(2ge), et seq. (b)Reduced forms� 
(c )Computational - --- (c)Computational� 
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~N 

0.3267 

0.33 

0.3367 

0.34 

MURA-459� 

TABLE III� 

FIXED POINT COORDINATES� 

(t = O. mod. 2 "IT)� 

On Symmetry Axis 
p 

-.087 393(a) 

-.086 955(b) 

-.087 64 (c) 

-.045 600� 

-.045 542� 

-.045 65� 

+.049 849� 

+.049784� 

+.04987� 

+. 102 799� 

+.102 275� 
-�

+. 103 16� 

(a) Eqn. (3Ib) 

(b) Eqn. (3Ib') 

(c) Computed 

b3 = 3/4 bS = 1/2 

To Right and Left of Symmetry Axis 
v� 

'+.115 832(a) 

+.115 396(b) 

'+.116 0 (c)
40�

+. 059 834� 

+.059 777� 

+.059 892� 

+.064 108� 

±. 064 043� 

.t. 064 112� 

+.130 922� 

+. 130 396�-
:!:.. 131 200� 

(a) Eqn. (32a) 

(b) Eqn. (32a ') 

(c) Computed 

19� 

p 

+ . 048 746(a) 

+.049 029(b) 

(c)+.048794 

+.024136� 

+.024173� 

+.024 1�53� 

-.023 420� 

-.023 462� 

-.023413� 

-.045 185� 

-.045 530� 

-.045 204� 

(a) Eqn. (32b) 

(b) Eqn. (32b') 

(c) Computed 
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1.� L. Jackson Laslett, MURA-452 (April 13, 1959). hereinafter designated as 1. 

2.� E. D. Courant and H. S. Snyder, Annals of Physics ~3 No.1, 1-48 (Janu

ary, 1958)--Section 4a, esp. eqns. (4.4) and (4.5), p. 18. 

3.� Jiirgen Moser, Nach. Gott. Akad. (Math. - Phys. KI.) Nr. 6, 87-120 (1955). 

4.� The computational work was performed with the MURA IBM 704, by means 

of the DUCK-ANSWER program [J. N. Snyder, (IBM Program 75), MURA-237 

(1957)J, with the independent variable, L , of the program identified as 

7: ::; 5 t and with the dependent variable ( fJ or "Y') usually identified as 

10 times the dependent variable (v) of eqn. (2). Accordingly, dv/dt is 

then represented by 0.5 d I IdZ or 0.5 d rId 1::. The coefficients of 

the program are then taken to be Sl = S2 ::: - 0.016 (z}IN)2 , 

A3� ::: A 15 ::: 0.001, 

B 2� ::: B15 :; 0.002, 

C3� =C15 ::: 0.0015, 

with N1 ::: 10, N2 ::: 5, and ~3 = «'15 =;83 ::: ~15:;: ~::: r;. 5 :;: O. 5. 

If one selects NRK :::: 64, a computational run through an interval At = 31L. 

requires a total of NE ::: 960 Runge- Kutta integration steps. For Fourier 

analysis of the results of a DUCK-ANSWER computation, the DUCKNALL 

program was employed [JOhn McNall, (IBM Program 219), MURA-438 

(1958)], this program constituting basically an incorporation into the 

DUCK-ANSWER program of the FORANAL program [J. N. Snyder, (IBM 

Program 52), MURA-228 (1957)J. 
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APPENDIX A 

SOLUTION OF EQNS. 6a-f FOR THE COEFFICIENTS OF THE TRIAL FUNCTION 

(A-la)� 

(A-lb)� 

(A-lc)� 

m~2 (A-ld)� 

(A-le) 

By insertion of the expressions (A-la-e) into eqn. (6a), and rejection of the trivial 

root A 1 = 0, the quadratic equation for A 1 is obtained: 

-) 2J 2 2f 1/4 9/16]~2 1 - 9 ( v'lN) + 9 b 1 A 1 - 9 b 1 A 1 _ 1 Z + z) 2~ 1 - (v'/N) 25 - 9 ( /N) 

81 2 ~ 2 [1 + 4 + 1 ]

-16A 1 £i;2 b m (3 m - 2)2 - 9 (~/N)2 (3 m)2 - 9 Cz)/N)2 (3 m + 2)2 _ 9 (-z)/N)~ = O. 

(A-2) 

21� 
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(A-3a) 

in which -z-}/N has been replaced by 1/3 in terms such that a simpli~ation could 

thereby be achieved consistent with the objective of retaining accuracy through order 

(l /3 - V/N) 2. To this same order we also obtain, by substitution of 

Al ~ - 64 (l_ -zJ) into eqns. (A-la-e) in turn,
3 b1 3 N 

/"" B 1 :: E (l -JL¥ (A-3b)
b1 3 NJ 

C :: -~ (l- ~)2 (A-3c)1 
3 b1 3 NJ 2� 

128 bm /b1 (1 _ ~) :: _ 128� (A-3d) 
Am :: - bl (3 m - 2)2 - 13 N/ 3 b 1 

m ~2 (A-3e) 

128 bm /b1 (1 _ ])r 128 bm/bl (1 vr 
(A-3f)

Cm =-~ (3 m + 2)2 - 1 3 "N) =- 3b (m+ 1) (3 m + 1) 3' - 'WJ .
1 

It is these equations which have been taken as eqns. (7a-f) in the main body of the 

text. The results for the special case bm = 0 (m ~2) can be seen to be consistent, 

through order €. 2, with equations (lOa-c) of I f]>ection C 1 of refereence I} . 
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