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ABSTRACT
As an introduction to certain non-linear dynamical problems in which

the 1/3-resonance plays a dominant role, the stability boundary for the equation

V

v+—(s1n2t)v =

dtz
has been studied analytically and by digital computation. Use of a relatively
simple trial function in a variational procedure or with harmonic balance is
shown to lead to simultaneous algebraic equations, for the coefficients in the
trial function, whose solution affords a good estimate of the unstable fixed
points. Application of the Moser method of solution is also carried through
in detail, to include terms of the order (2Z//N - 1/3)2, and the resuits com-
pared with computer data for various values of Z//Nn
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A. MOTIVATION

Simple applications of a variational methcd or of harmonic balance

have been used previouslyll% to obtain "handy formulas'' to indicate the
stability limits for certain non-linear differential equations, with periodic
coefficients, ocarring in the theory of cyclic accelerators. The applica-
bility of the method described by Moser? has also been recognized and it
may be noted that this latter method affords the opportunity of obtaining
more detailed information concerning the solutions, since the previous
methods are most simply applicable to the special problem of determining
the unstable equilibrium solution, whose period is a multiple of that for the
periodic coefficients in the differential equation.

Work currently in progress3 concerning the possible practicality of
injection into FFAG accelerators with a ''field bump' deliberately introduced,
with a period which is some integrall multiple of the basic period of the un-
perturbed structure, has made it desirable to re-examine the analytic methods,
in comparison with computational results, and to attempt to obtain analytic
formulas of accuracy adeguate to provide quantitatively useful orientation for
detailed computational studies.

In the present report we develop analytic methods, which are compared
with computational results, for solutions--particularly at the stability limit--
to a simple type of differential equation for which the stability limit is deter-
mined by the one-third resonanc‘e(?]N —>1/3). The application of these methods

in the present case has been felt to be fruitful and later reports may make use

of similar methods in more complicated situations.

* . . :
References are given in Section E.
2
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B. THE DIFFERENTIAL EQUATION EMPLOYED
In the theory of spifally-ridged FFAG accelerators the radial betatron
motion, about the stable equilibrium orbit, may be convenienty represented by4
dZu/dG)2 + [a + b cos NO]u = b1 (8) u2/2 + -, (1)
where u denotes the departure from the stable equilibrium orbit, in units
of the radius,
b 2 f/w, and (2a)

b, () & - (f/w?) sin N6 . (2b)

By introducing the scaled variables

t = (N/2)e, (3a)
v=4_F u (3b)
wN2 w

eqn. (1) assumes the form

d?v/dt? + 4[_3— + 1

> cosZt]v*l-l (sinZt)v2 = 0. (4)
N wN?% © 2

Although it is possible by a suitable transformation to remove the

alternating-gradient feature of the linear term, 5

it is frequently convenient,
in the interests of simplicity, to replace(’ the A-G coefficient by (2 3/ /N)z.
The equation which results is, then,

a2v/dtZ + 22 /N2 v + (1/2) (sin 2 t) v2 = 0. (5)
It is this equation with which we shall work in the present report, being
concerned in particular with the limiting-amplitude solution, governed by
the one-third resonance ( 2//N = 1/3). Results of a variational solution
(or equivalently, of harmonic balance) and of application of the Moser pro-

cedure will be presented in Sections C and D, respectively, and compared

with computational results.
’ 3
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Illustrative machine pé.rameters might be
f=1/4, N =33 k=79, 1/lw= 1252,
for which

K/NZ = 0.0729, —— = 0. 2875,

w N2
and, from the approximate equations of motion, the frequencies of the
small-amplitude (A-G) radial and axial oscillations are respectively such
that
2V [yl = 0.5994, 2 V /NZ o jw =0.1983;

in some of the work to follow the case 2 'UX/N = 0. 6 will be specifically

considered.

C. THE VARIATIONAL METHOD

1. Analytic Development

The unstable equilibrium orbit, or the associated 'fixed points"
characterizing the limiting-amplitude solution of eqn. (5),
d%v/dt® + 22/ /N)? v + (1/2) (sin 2 t) v% = 0, (5)
may be sought by insertion of a trial function of suitable form into the
variational statement
§ [avian® - @2/ /2 v2) - (1/3) 3 sin 2 t}] =0. (6)
We shall employ here the relatively simple three-term trial function

vZ A, sin2t/3 + A,sin2t + Agsin 10 t/3, (7)

1
in which the form of the last two terms may be suggested by insertion of

the first term into the differential equation (5) and considerations of

harmonic balance.
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By insertion of the trial function (7) into the variational statement (6),
or by harmonic balance in the differential equation (5), the following three

simultaneous non-linear algebraic equations are obtained:

[ 2
4_ (24 1,2 _1 1 1 _
S- (B) A+ 2af-Lam, + 2aay - 2AA = 0 (82)
29)\ 2 1 2 3 2 1 1.2
[ 100 (21/ 2 1 .2 1 1
p -—N) Ay + 3AT - A4, - SA,A, = 0.  (8)

A systematic solution of eqns. (8a-c) in ascending powers of € = (4/9) - (2 V/N)?
may be obtained, but for operation an appreciable distance away from the
Y/N = 1/3 resonance--i.e., when € is not very small--it may be con-
sidered more satisfactory to solve these equations numerically.
For the case 2/ /N = 0.6, a direct numerical solution of eqns. (8a-c)

leads to the values

A; = - 0.5751g517

A, = +0.02295,,
Ag = - 0.0041g574 ,

so that the approximate solution

vE - 0.57515,7 sin 2 t/3 + 0.0.229394 sin 2 t

- 0. 00415.74 sin 10 t/3, (9a)

dv/dtZ -0.38344,. cos 2t/3 + 0.0458,55 cos 2t

- 0. 013858 cos 10 t/3 (9b)

is obtained.
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) )
An algebraic solution of eqgns. (8a-c) in ascending powers of € = 4/9 - (2 <//N)? leads to

the series

_ o4, 1 32 2 2
A = -8€ [ 1 Z(F" G)E + 4(P2 + QZ)E
652 , 292 , 79 10
-4 + + + 3
P3| plq PR @3 ) €
o 4 4 (14912 + 8294 , 2808 _ 577 6 )e 44 ... (10a)
Pt  pP3q@ P2Q2 pP@3 @t -
2 -
A.— 16€ [1 fs 3 326 100 4(1864 785 ,188 | .
2 P \p Q)E+(P2 PQ QZ)e p2g PQ2 )€ roee (10b)

2 2
Ag = - .3_5_[ 1 -4 (341 )e +y¢ +——+—€-4‘(1234+ 744 1219, 28 )e3yp . (0c)
Q ( ) ( PQ Qz) P3  P2Q PQ2 )
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In the case considered previously, in which 2 1//N = 0.6, so that
é = 19/225 = 0.08444---, the series (10a~c) appear to converge rather
slowly. Evaluation of the terms listed would suggest

Aj

i

-0. 6755 555 [1 - 0.2013 012 + 0.0774 000
- 0.0379 715 + 0.0209 305 + - -2

e

-0.6755 555 x 0.8590 578 = ~-0.5803 413,
A, = +0.0313 445 [l - 0.3947 478 + 0.1945 985 ~ 0.1074831 + -- J
Y $0.0313 445 x 0.6923 676 = + 0.0217 019,
Ag = - 0.0053 061[1 - 0.3098 062 + 0.1414 688 ~ 0.0755 171 + ]
T - 0.0053 061 x 0.7561 455 = - 0.0040 122.
As was just mentioned, it is seen that the convergence of the expressions
for Ay, A,, and A3 is quite slow in this example, each term being roughly
minus 50 or 55 percent of the term before it, and only about two-figure
accuracy is obtained® for the solution of the algebraic equations in this
case without extension of the series to include terms beyond those shown
here. The convergence, of course, would be markedly better if one were,
say, one-third as far from the resonant frequency as was the case in the
example considered here.
It may be noted in passing that retention of only the leading term in
A, leads to
Ampl. of v¥ sl€] =8| @9 - v /nm?|, (11a)
or

Ampl. of u & (2 w2 N2/f) | (4/9) - (2 V/N)Zl

= @ wiin| /32 - v2|, (11b)
in agreement with the "handy formula' previously cited.

*_C_f_._ the results of the numerical solution which led to eqns. (9a, b).
(
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2. Computational Results

(a) The coefficients of the trial function: For comparison with the

solution (9a, b) which was found in sub-section 1 by a variational method,

the unstable equilibrium solution (period At = T /3) of eqn. (5) was found
computationally for 2 2/ /N = 0.6 by means of the DUCK-ANSWER program7
and subje-cted to Fourier analysis by aid of the FORANAL program. 8 The
result of this computational work is given below:

v = - 0.5751 16 sin 2t/3 + 0.0229 44 sin 2 ¢t

- 0.0041 59 sin 10t/3 + 0.0001 82 sin 14 t/3
-0.000019sin6t + -, (12a)

dv/dt = - 0.3834 11 cos 2t/3 + 0.0458 88 cos 2 t
- 0.0138 65 cos 10t/3 + 0.0008 51 cos 141t/3

~ 0.0001 16 cos b6t + *°° . (12b)
It is seen that the coefficients found for the first three terms of v and dv/dt
check quite closely the results obtained by hand calculation in sub~section 1
[eqns. (9a, b)] and that the remaining coefficients are relatively small,

(b) Coordinates of fixed points: The predicted coordinates of the un-

.4
stable fixed points for t = 0 (mod. 7 ), or alternatively for t = T (mod. T),

may be obtained by substitution of these values into the expressions of eqns.

(9a, b). The results ii’l the first case,' then, refer to solutions of
d2v/dt % + @¥/N)2v + (1/20sin2t)vZ = 0 att =0, mod. 7 ,
and in the second case to
dzv/d‘t2 + 2 /N)2 v - (1/2) (cos 2 'Z’)v2 =0 atg =t-37/4=0, mod.7r,
which are examples for which computer information has been obtained.
The results are summarized in Table I. The agreement between the results of

eqns. (9a, b) and the computational values is seen to be quite good in these examples.
8
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TABLE I
COORDINATES OF UNSTABLE FIXED POINTS, AS CALCULATED

FROM EQNS. (92, b) AND AS OBTAINED FROM COMPUTER RESULTS

From Eqns. (9a, b) From Computer*
t v dv/dt v dv/dt
0, 0 - 0.3514 0 - 0.3506 |
mod. 7 + 0.4945 0. 2445 + 0.4943 0. 2440
3w/4, ‘- 0.6022 0 - 0.6024 .0
mod. 7 0.2667 + 0. 3201 0.2668 ¥ 0.3207

D. THE MOSER PROCEDURE

1. Outline of Method

The differential equation (5), with which we are concerned in the
present report, may be derived from the Hamiltonian
2 2 2 . 3
H = (1/2)p° + (1/2) 2 2//N)“v“ + (1/6) (sin 2t) v° , (13)
with p = dv/dt. It is the purpose of the work to transform the variables
(v, p) in such a way that the time-dependence is removed from the cubic
term in H; the resultant Hamiltonian through terms of this order (and in-

cluding the time-independent part of the terms of next higher order) may

*In much of the computational work the variables actually employed were

v/1.15 and (dv/dt)/1.15, representing respectively u/w and (2/N)(du/de)/w

when W4N2 = 1.15. To avoid complexity, however, the results are presented

here in terms of the variable v which is employed in the analysis of the pre-~

sent report.
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then be taken as an approximate constant of the motion, from which invariant
phase curves can be constructed and values of fixed points determined.
The work first will be outlined in terms of complex variables (jo ,_‘z; R
"4/ ,-g/ ) of the sort introduced by Moser, 2 and secondly will be carried out
in a way which may be somewhat simpler for the present purposes, using

quantities akin to angle-action variables. The use of these two methods may

be of some inherent interest and serves to check the algebraic work.

2. Use of__‘( ,,Z Variables

(2) The forward transformations: Commencing with the Hamiltonian

(1'3), which is expressed in terms of v, p, and t, a first transformation
is made to variablesJ’{o , g: which are complex conjugate quantities (with
v and p real) but which are to be regarded as independent for the purposes
of Hamiltonian theory, with } playing the role of a coordinate and g
representing the canonically-conjugate momentum. and}o are de-
fined in terms of v and p as follows:

Y= (VN [v+-zi-g-p] (14a)

3 (‘z//N)/ [v - % p] , (14b)

and, correspondingly,

am iy [, 3] (14¢)
- (-z//N)/ [ﬁa -Eo]. (14d)

It is noted that the functional determinant is

'0(3&30) = -1, (15)

o v, p)

v

p

but that one can write

10
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pdv = + i(ﬁ;’ d }o ) + perfect differential; (16)
hence, although the transformation from v, p to jo ,,'fa is strictly not
canonical, the pair g R g may be regarded as canonically-conjugate

0 o
in association with the Hamiltonian
f,--iH (17a)
. 7] , 92 . y 3
-1eYINE Y - /48 (N2 sinzn (e 47 @)

A canonical transformation from xo , }o toj ,g' is now per-
)

formed by means of a generating function F, (g 0 j ). The generating
function is so chosen as to remove from the Hamiltonian all time-dependence
in the cubic term, save that associated with the resonance 2//N —> 1/3,

the coefficients of the transformation thus remaining finite as the resonance
is approached; supplementary fourth-order terms are also included in the
generating function in order that, to the order that the work is carried, the
new variables} ,,g; conveniently will be complex conjugates. 9 The

generating function selected is

F(%,8)=4,3- (4/vg(~/u)/‘[s53+¢u+gu 7]

+(hs2)yp) [fﬁ i}ﬁﬂljj E +if 3‘% ‘If J
(18)

where §0 , °°° are taken as periodic solutions of the differential equations

i @@, /at) + 3@Y/NE, - /et =0 (19a)
i@ /at) + @ Y + (3/2) 2 1t-e72ih 2 0 (1b)
i (d?z_ /dt) -~ (2 V/N)fz + (3/2) (21t - 2ty (19¢)
i@ ja - seUmB + w2t -, (194)

namely

11
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1 -21it
(20a)
41+ 37 /N] ) :
3 2it 3 -2t
a[1-2J/N) © ' +4[1+7J/N]e (20b)
3 Q2it 3 et2it o p * (20c)
ITT+ 7 /] ITi-7 /N = %
1 2it _ *
ifi+son ° b, (20d)
‘%: - (3/4)§o§, ) (21a)
T--waid -an (21b)
1}7; RIS §3 - (5/4@ § (21c)
Y- - g ® - (1/2)@ -y (21d)
7}{/: - (3/4)@5} = E_U; * (21e)

The transformation equatlons then read

=Py =0~ o) 3 2 +2547 ,«gg
+(I///5z)(/v/z))[6’3r5 +3 17,‘1,’( +2L ?Z:z z + 5 (22a)

2Py =y - (b/ye)(m/y) [M #2484 % *

S

z

9,
1'/’///51)////:/) [-.[_f 1-2@'5 _Z +3f3$+ '-/.?i‘/g (22b)

and

./)./ =1L + 9ﬁ/a2:

=0~ (k) [8'4+3'8

/2 2

'

0

+(l///.5:z)(/v/y)s[l{'/,’5y+z,’,533"' ¥y 3

0 o 272

, -
{.’5 (23)
/

If

12
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with primes denoting differentiation with respect to t. It is now necessary,
of course, to solve eqns. (22a, b) algebraically with sufficient accuracy

that eqn. (23) for ﬂ, may be expressed explicitly in terms of the new

variables 5/ . gl

The algebraic steps leading to the expression of .f); in terms of

B' s }’ are detailed in Appendix A, with the result

_3
g B (zv/N)z B -<1/96)<N/u> [Z”S '2“1 ]

3
A 2048 (N/Y ) g g , (24)

where

- YN 1
L= 6 1-(72J/N)2 "1+ 32/N (25)

and where we have only retained in the quartic term that part which involves
3 z' and which is independent of t. 10
It is now convenient to introduce variables & and J, to play the

roles of coordinate and momentum, defined as

¥

HIJ

21 (26a)

s 26
v 4 (26b)
so that, correspondingly,

% o 52 1Y (27a)
.o ar

i

= J (27b) .

In this case the functional determinant is

M (28)

a(sf,,z)

-igd¥y + 4 a3

3

and

AW
[e R
L
1]

1]

-iJdX + perfect differential, (29)
13
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so the new variables .4 , J may be referred to the Hamiltonian
Hl = iﬂ-, . (30)

It is noted that the functional determinant of the over-all transformation

from v, pto & , J is
2 - _LZI_L;KL’_}_L) () (N ()=,
v, P 7(!, 2) 4% 2tv, p) (31)

so that the pair § , J may be regarded as canonically related to the
original pair v, p.
From the expression (24) for -/l-' and the relation (30) which

connects H; with _./). , we immediately find

3/2. 3
= (22/N) T - (1/48) (N/2)) J/z'sm BY¥ -21)

+ (0¢/2048) (N/ 2))3 J% . (32)

A final canonical transformation to variables & s J , defined by

the generating function

F(Y .D=3(% -%01, (33)
leads to
s=2Fh/)y -7 (34a)
'5'=’5/35 =Y -5t (34b)
and
H, = H; + 2F 5z
- H, - % T
32 3/2 -
- (% - ( sin 3%
2
o ( ) @ (35)

By a sequence of transformations between the pairs of variables

14
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we— are thus led to a Hamiltonian H.2 [eqn. (35)] from the first two terms

of which the independent variable t has been entirely removed and in the

last term of which we have retained the t-independent part. * The retention

of the last term in this form is believed to be desirable, since it can exert

a significant influence on the J-dependence (or amplitude~-dependence) of

the oscillation frequency. 10 76 the degree of approximation considered

here, then, we take Hj in the form expressed by eqn. (35) to be a constant

of the motion. In this spirit invariant phase curves of the problem are

determined.

(b) The separatrix: The assumed constancy of H, means that for

any particular value of t and points homologous thereto (t taken modulo 77),

the quantity

(E 2_?/_) 1 (N)%- = 3Y -21) + =% N)3 2. 6
-7 - % J-4_8_? J sin ( - t+T48& J% = H, (36)

is constant.

If we introduce for convenience the scaled quantities

*A little reflection will show that only that part of the quartic terms in ﬂl

which have been retained in (24) make a t-independent contribution to the

final HZ'

15
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2

} . J (37a)
(48)2 (2/3 - 2 IN}® (2 /N)3
= - 1 - (37b)
4832 (2/3 - 2V /N3 (2 /)3 2
and
A= (2/3-27Y /IN)ek
2 2 . JIN 1 *
=3 N 6 7y 37
& 1-(/N)? 1+ 37N ] (87)

eqn. (36) assumes the more concise form

}2+}35m(33"2t)'(97‘/854=k, (38)

The fixed points for the motion, in particular, are characterized by
expression (38) being stationary with respect to ). 4 and; . For the un-
stable fixed points associated with the separatrix between stable and un-

stable regions, we take & as having values for which™*

sin (3 -2t)=~1 , (39a)
[ = - 76+ 21/3 mod. 27/3] (39b)
and; to be the root 5, ., near 2/3, of the quadratic equation

(97\/2)} 2+3§ -2=0: (40)

3x (41a)
, 2
=§E-7\+27\2-57x3+14)k4-“']. (41b)

*FOI‘ 2//N=0.3, A=1.451706, “n=0.0967804, and (9/8) X = 0, 108878,

**With this choice of sign for sin (3¥ - 2 t), the value of } which we

select is positive.
16
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In the work to follow it will be convenient to employ a quantity, normally

near unity, © which we denote as Y,

7.“2‘5:
Y1+4NXN -1

= 2%
1-7\+2>~2-57~3+ 147\4-“',

e

Abeing defined by eqn. (37c). The associated value of k is**¥
2 3 Yy
X - 5 - j - (9x /8) 5
/ / / p
2
} @ - 5 )/4
1 /

N
27 2

it

i

Associated with this value of K there is a value of j , which we
denote by SL and which is normally roughly 5 p /2, which corresponds
3
to setting sin (32 - 2t) = + 1 in eqn. (38); if we write 1] 5 = 551 ,
koK
in analogy to eqn. (42a), 71 will be roughly 1/2. :
In summary, then
/2 Fa
i L saa/s- PN (D) i

l cf. egn. (37a_)j; points on a particular phase curve specified by its value

452

(42a)

(42b)

(42c)

(43a)

(43b)

@3c)

(44)

of k , are then obtained by use of values of ¥ and J which are mutually

consistent with K through eqn. (36) or (38), evaluation of the correspond-

ing values of }, s .Z, , and finally proceeding back through the trans-

formations to obtain the associated values of v and p. Without continuation

*For 2//N=0.3, 5«- 0.61225and %, = 0.918374.

*For ¥J/N=0.3, = 0. 130049,
'
*¥*¥por ZJ /N = 0.3, the valuej:;~ corresponding to X, = 0.130049 is

}1 = 0. 31570 and 7;,\ = 0.4731575.
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of the analysis beyond the transformations described here, it is pointless
to express the results to terms be&ond those which are second order in the
* quantity (1/3 - YJ /N).

We give below, in Table II, such values of j, R g , for the two
types of locations considered in the examples of Section C 2 b, namely
t=0(mod. 77 )andt= 37 /4 (mod. 7 ).

(c) The reverse transformation to the original variables: For evalua-

tion of go , go , and hence of v, p, we now make use of the transforma-
tion equations previously exhibited. Since by eqns. (14a, b), the quantities
required for evaluating v and p are explicitly E + 30 and l”o - ..’;o ,

respectlvely, we make use of eqn (A4) of Appendlx A,

Yr % 23+ v (Lhsdup) L33, +8)4+(25+28 )4 §
"+ 3B 3+3%) EI 1, (45)
and the corresponding expressmn

4,50 2 4 -F +(vs)lup) [/3§+§)3 (29428 )45+ (8438)5]

(46)
obtained by subtraction of eqns. (Al) and (A2). It is a matter ‘' then of
straight-forward algebra to evaluate ‘§o WY, ésfor the value of t which is
of interest, to evaluate _So + _‘30 from the previously written 5, ,_zl
€.g., those listed in Table II), and thus determine v, p. The results, for
the cases to which Table II pertains, are given in Table III.

B Intercept P £R
FR FR
Intercept
; ; _ ER

v U

~ Separatrix ",Separatrix

FR

18
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)

VALUES OF _%’ AND % CORRESPONDING TO THE SEPARATRIX OF

EQUATION (5) FOR t = 0 (mod.7r ) AND FOR t =377 /4 (mod. 7))

The first lines apply to the unstable fixed points; the last line refers to the intercept of the
separatrix with the symmetry axis of the v, p diagram.

For t = 0, mod. 9

For t= 37r/4, mod. 7r

2

3,

)

2,

o
w TN

327313 - Z)(2 ) )

-32(75 - 1) -2) (Ji) I

"6‘“(%{ = 'L) 7/

3
32(1/5-;)(15 - %}(-71\/7)\7,

34
_32(7'5'1-1)(%- EN)(JJ_) ",
N

3/
641 (G- 2YZ) »,

Y2

32(1 7/'1)(—- 7))(.7’_)

Ly 3,
321 +7B1):- N)(—%);]I

L 7}3/2.
- 64(5 - %) 4,

0
32(1+73 i)(%-%X%) P

Tl 2y )%
32(1 - 73 )(5 N)(Jl\%) ,

64( i)(l)) 7’

5.

o
-'.
N

cAJ|

3z
64 1('13_ B 1/1\?)(_‘1%) 7=

3/
- _)(1) 72.

- 641

1 13/2.
64(§ B —N')( N) .79.
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) TAL X III )
VALUES OF v AND p CORRESPONDING TO THE SEPARATRIX
OF EQUATION (5) FOR t = 0 (mod. 7C) AND FOR t = 3 77/ 4 (mod. 7T)

The first lines in each group give the coordinates of the unstable fixed points; the last line
refers to the intercept of the separatrix on the axis of symmetry.

TR N E—STIS T —— 4/
0 '128<§—%X§7I'E C 2 /N2 1+3V/E @n]
0 128(1 u)(V) YlﬂH v2/N2'1+;V/N)\3 JA)Y{’J

32(%_%%)”'E (110%§7 1+3;)/ﬂ)(§_ﬁ) j %41/3_ 3 )(N) ( 1*12-3/2171\12 ) 1+;7J/N 72]
_64(%_%XE)YI'E 12- zél/\INz ) 1+311)/A 3 N) Y('_ X

64&'%&!}-}% '(12-342\12 ] 1+;7)/N % ~ Jl%)nb]

Since the foregoing results have not been carried consistently beyond terms of orde? ﬂjz , it may be
considered sufficient to replace the coefficients of 1. N in the lastterm of the correction'factors by the value which

- these coefficients assume as U/N —»1/3. Thus the correction factor for the value of v given in the first line of
Table III might be consistently written as[i -(7/4)(1/3 - 7J/N)J Indeed, since ‘rl @21 -AE1-(1/2)1/3 - YIN),

the factor Yl outside the square bracket might be replaced by unity and a composite correction factor
[1 - (21/4)(1/3 -¥YN employed in this case.® Although this contention cannot be gainsaid, we elect, however to leave

our results in the form summarized in Table III, being guided, in part, by some computational results pertaining

to the case t =0, mod.'Tf[Sect. D 4].

*Also N /2)a - 5 A/8). 20
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3. Use of Quantities Akin to Angle-Action Variables

(a) The forward transformations: We commence again with the

Hamiltonian of eqn. (13),
H = (1/2) p2 + (1/2) (2 Y /N)? v% + (1/6) (sin 2 t) v3 , (13)
and make a series of canonical transformations from the conjugate pair

v, pto ¥, , J,; b4 » J;; and X J. . The first transformation

o ! 2’ "2

is defined by the generating function

Go (v, % ) = (PN vPetn ¥, | (47)
so that
p= 2Gy/av=0QY/Nveny, (48a)
Jo == 2Gola¥ = (VN v? csc?y, (48b)
thus
N
ctn yg =52 —%' (49a)
_ 14 N\.2 1 4 2 2
o= ()7 + T (46b)
! 1
v = (N/? )/1 Jo /zsin /a (49¢)
Y2, Y
p=2(Z//N) Jo > cos Y, , (49d)

and the new Hamiltonian is

Ko = H+ 2 Go/a t
= H
32 2
= 2(J/IN) Iy + (1/6) (N/2/) ) Jo/“' sindy sinzt
3/a

"

3
2 (2P /IN) Iy + (1/48) (N/v ) Jo/:'[3 cos (¥, - 2t)

- 3 cos (Dﬁ +at) + cos (3Xo+ 2t) - cos (3 ag- Zt_)],
(50)

21
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In analogy to the procedure followed in Section D 2 in formulating
the transformation from l_’)a , .Zo to 3, s 3, , we now introduce

a second generating function

sin (% - 2t} , g sin (Yo + 2 1)
T2/ /N T+ 2 IN

Y2 Ya
Gy (R, =Y + AI9ON/Y) I, Js

sin (325 + 2 t)

1+3=2//N » (51)
so that
Jo = 2 G, /a YO
32, 3
=3, +(1/32(N/2) Iy ,[Ccis_( 7}/%") coler({z*/; LI °1°S+(§ {5"[1\21 t)J (52a)

=6

26G1/ 3 I,

1

34- //L Sln( y Zt) . / .
e sm( vt 2t) _sin(3 2/+ 21t)
2& (1/64)(N/2)) J, !3 X TN TR TN (52b)

and

=
-
[}

K, + @G/t

3 3/
R 3Cfi({j/£t) 30(1)%%/21\? _cos(3 5/?:}(53)

The new Hamiltonian, Kl, can be expressed in terms of the new

variables 37 » J7 without much difficulty L-Appendix Bj, with the result
3/2- 3/2
=2(7//N)J1-(1/48) (N/2/)) Jl/ cos (32/-2.t)

+ (1/2048) (N// )3 JZ[ 67/2/N - 1 j (54)
/N2 1+ 372/N

ql0

in which we have retaine only terms independent of t and of 3/,7 in

the term involving le .

22
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It now only remains to introduce a third generating function,

, 2
G (. T =30 - 50, (55)
which effects the transformation
Jp = @Gy =71, (56a)
2
Y= 2623, = o -3¢ (56b)
with
K, = K, + & G/at
2
= K -3
K 32
= - (2/3-22IN) J, - (1/48) (N/=J) - J, cos 374,
+ (% [2048) (N/ )3 37 , (57)

where, as previously,

A = 6 2JIN - 1 cf. eqn. (25)
1-2/%/N% 1+ 32N E_

and t-dependent terms have been omitted!? from the term involving J 22

This final Hamiltonian K,, as expressed by eqn. (57) and which we
shall take to be substantially a cqnstant of the motion, is seen to be identical
in form to the Hamiltonian H, of eqn. (35), as developed in Section D 2
save that the sine function is here fortuitously replaced by the cosine. It
remains to perform with the present variables the reverse transforma tions
required to carry particular values of a{ » J5 back to the original
quantities v, p--both the forward transformation and the reverse trans-
formation which follows, however, appear to be somewhat simpler alge-
braically than the corresponding steps required with the g , g

variables.

23
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(b} The separatrix: To initiate the reverse transbrmation in this

case, we shall focus our attention as before [éection D2 IJ on the par-
ticular salient points of the separatrix:*

For the Fixed Points

/3 + 2t/3,
Yz, e
3/' = {-w/3+ 2t/3, withy, =64(1/3-7/NNJ/N) Y, ; (59
I+ 2t/3,

For the Intercept of the Separatrix

34
a,/=o+.§3L, with Ji/& = 64 (1/3-#/1\1) (7)/N) '7'72_ , (59)

(c) The reverse transformation to the original variables: For evalua-

tion of the original variables v, p one notes from eqns. (49c, d) that the

‘.

quantities explicitly required are sin b/o and cos Sé , in addition to J, .
To the degree of accuracy with which we are concerned in the present

work, it is sufficient for this purpose to refer to eqn. (52b) and write

sin/, _'sinY, -(cosY/)(\{-Xo)
2 Uy . .
sin f, - %Zl_(g)s;l 7-E s1n(y, - 2t)+,2s1n(a,/+ 2t)_ sin(3a/,-+ Zt)]

1-=//N "1+ 2Z//N 1+32 /N
(60a)

cos &, écosb/,'+(sin)/, )(b{- Y )

Y : »
siny v 'e[sin(¥-2t) sin(¥ +2t) sin@3Y,+ Zt)]“
. ! - !
cos ¥+ —gp (7) I1 Z;Ll-v/N+31+—,j/N TN !
-, (60b)

[1IEN

*Because of the presence of cos 3 ‘a’a in eqn. (57), in contrast to the pres-

ence of sin 3 Y in eqn. (35), the values of yz which are of interest here
may be related to the corresponding values of ¥ by ¥ = 2 + 7 /2, or,
similarly, 2, =79 + /2. This distinction between ¥, and 2 of course
could have been avoided by introduction of a phase shift in the generating
function G, . 24
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o
while obtaining J, by |cf. eqn. (52a)]

’/2. fa 1 /N tafeos (] - 2 t) cos(b/+2t) cos (3% +21)
To =J; {1+FI(7)J1L1-1J/N 1+-;JfN 1+3-1//NJ'(6OC)

Thus for t = 0 and 5{ = + /3, eqns. (60a-c) give

sin o - @[1 LT (%%)U

1 9 1
°°S¥° vl R 1- Y2/N2 (T'%)?p]

Jo/_64( i)('ﬂ')'?[{ '2J2/N2 +1+;1//N)('—%--_Ni)z]’

so that, by egns. (49c, d), the fixed point coordinates

v=+3273 _'Z(N)Z \1 7)2/N2 1+ 317//N )(_1_-31\4_)7’]

= 64 ("" (L 7 [1 +/ u T TS 137J/N 1_)7]

are obtained. Similarly for the next case in the list (58), with t = 0 and

/, -

and

sin ){, =0
cos )/o = -1
‘o 1 _ 2V % L2 - 1 1.2
Jo = 64(_3— %ZXN') 7:[1 (1-2/2/8% 1+ 37J/N)(-§- N )7']J
so that
v=_0

p"lza(l 1)/1)7[ 1-7J‘/N2 1+37J/N _ N)l?]

In this same way one finds complete agreement with all the results listed

in Table III.
25
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s

(d) The unstable equilibrium orbit: The procedure just followed can,

of course, be employed in general to provide, as a function of t, the equa-
tion of the unstable equilibrium orbit, which is represented (mod. ) by
fixed points as listed in sub-section (b).

For the unstable equilibrium orbits, in particular, the Hamiltonian
equations which follow from Kj; ann. (57)] permit Y& and J, to be

constant, with, let us say,

/ ¥,
oz U and 7,7 - 64 /3 - /M) (VW) h [ © ]
/
Then
a{ = ))1 +—23—t (61a)
= W + 533_ ,
/
I /& R 7
3/a,
= 64 (1/3 - 27 /M) (P/N) %, [f. eans. (58)] . (61b)

By making use of eqns. (60a=-c), in conjunction with eqn. (49c), the

equation for the unstable equilibrium orbit, v(t), is then found to be

T SR AT . Zt_,:sin 2t/3 (2//N)sin2t _ 1 _ 1 . 10t]
vit) =-646 N‘M‘ﬁ)?,ém—s_ [Tow v znz (1 VTN 1+37JN)5m 3
1
(‘37' JNL)L} . (62)

through quantities of the order of (1/3 - 2/ /N)2. The expression (62) is

seen to contain circular functions of argument 2 t/3, 2t, and 10t/3, as
was the case for the trial function (7) employed in the variational treatment
of Section C. By substitution of particular values of t, the specific values

of v for the fixed points listed in Table III may be obtained.
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It may be noted, however, that differentiation of (62), which results in

= _ <2/ cos 2t/3 (7//N) os 2t
p = dv/dt 128( )( _4)7 os 2 [1 s +12 - 7j§/NZ

-5/ 1 - 1 1071_
(1+7//N 1+3z/7N)C°S 3 (3 71\%)7, - (63)

does not lead exactly to the specific forms listed in Table III, although the

forms become coincident through (1/3 - 2//N)? when(_ l/) is expanded as
(-71) [1 +3(1/3- ‘J/N)] An expression for p may be obtained directly
from eqn. (49d) of course, just as eqn. (62) was obtained from eqn. (49c), with

the result

2
_ . 1 _ 2t |cos2t/3 cos 2 t
p = 128(_3_ %X‘%) 1 {co e S

1 1 \ 10t)f1 /) [, (64)
+(1 TN T 3v/N>COS—3 J(E"‘N‘)ﬂ:}

from which the ""momenta'" for the fixed points listed in Table III follow for

the special cases.

4. Computational Results

(a) The unstable equilibrium orbit: To establish a connection with

Section C, in which the results of the variational method were presented,
we note first that for 2J/N = 0.3 egn. (62) leads to the unstable equilib-

rium orbit as given by

v (t) =-0.56206 sin 2t/3 + 0.02373 sin 2t ~ 0.00437 sin 10t/3 , (65)

-

while the alternative forms for p jeqn. (63), obtained by differentiation
of eqn. (62), or eqn. (64), obtained directly from Xz s JZJare

s -(iz = - 0.37470 cos 2t/3 + 0.04745 cos 2t - 0.01457 cos 10 t/3 (66)

- dt
27
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or
p = -0.36808cos 2t/3+ 0.04745cos 2t - 0,0139£; cos 10t/3. (67)

These expressions may be compared with the Fourier analysis of computer

results for this case, as given by eqns. (12a, b) of Section C 2. There is,

of course, no fundamental basis for choosing between formulas (66) and (67)

since, as noted previously, eqns. ¢63) and (64) are identical through terms

in (1/3 - 7J/N)2 . It is in any event clear that the present results differ by

a few percent from the computer results for Z//N = 0.3.

(b)The fixed points: The results presented in Table III for the unstable

fixed points at t = 0 (mod. 7 ) and at t = 3 9r/4 (mod. -7 ) have been sub-
jected to computational checks for 2/ IN = 0.3 and for 2/ /N = 0. 3275.
Computational data pertaining to the fixed points at t = 0 (mod 9r ) have also
been obtained for a series of values of 2/ /N, ranging from 0.30 to 0. 36,
in order to exhibit the dependence of the accuracy on the proximity to the
<2/ /N =5 1/3 resonance. We preéent these results below, to be followed
in the suceeding sub-section by data for 2//N = 0.3 which pertain to the
"intercept' of the separatrix on the symmetry axis of the phase diagrams.
Tﬁe coordinates of the fixed points, as calculated by the expressions

listed in Table III, are compared with computer results for <2/IN = 0.3

in Table IV, The agreement with the computer results is seen to be poorer
in TablelIV than was obtained by the variational method summarized in

Table I for Z//N = 0. 3.

28
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COORDINATES OF UNSTABLE FIXED POINTS,

AS CALCULATED FROM THE EXPRESSIONS OF TABLE III

AND AS OBTAINED FROM COMPUTER RESULTS

2N = 0.3
t From expressions of Table III From Computer
v P v P
0, 0 - 0.33461 0 - 0. 3506
mod.Jr || + 0.48297 0.23849 + 0. 4943 0.2440
374, - 0.59015 0 - 0.6024 0
mod.Jr 0. 25949 ¥ 0. 30665 0.2668 ¥ 0.3207

To illustrate results applying to operation nearer the '7//N - 1/3
resonance, the coordinates of the fixed points, as calculated by the ex-
pressions listed in Table III, are similarly compared in Table V with com~

puter results for 2J/N = 0.3275.

TABLE V

COORDINATES OF UNSTABLE FIXED POINTS,

AS CALCULATED FROM THE EXPRESSIONS OF TABLE III
AND AS OBTAINED FROM COMPUTER RESULTS

2 /N = 0.3275

From expressions of Table III From Computer
t v p v ’ p
e
0, ﬁ 0 - 0.07778 0 - 0.07793
mod. 7 || + 0.10284 0.04191 + 0.10295 0.04195
37 /4, - 0.12009, 0 - 0.12021 0
mod. 0. 05854 ¥ 0.06812 0.05861 | + 0.06825
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As is to be expected, the agreement in this case, with 7J/N = 0. 3275,
is considerably better than for the case 2/ IN = 0.3 for which the results
were described previously in Table IV.

As was mentioned earlier, it is of interest to examine the analytic
results, in comparison with computer data, for various values of 2/ IN.
The results of such a comparison, for t = 0 (mod.?y ) and </ /N in the
range 0. 30 to 0. 36 are summarized below in Table VI, * in which the
formulas used to obtain the theoretical results are those of Table III. The
data are presented graphically in Figs. 1 through 3, and the percentage of
error in the theoretical results is shown in Fig. 4.

A detailed numerical examination of the computer data summarized

in Table VI (forming, for example, such quantities as

1 p -
V/N- 1/3 128 (2//N)% (+//N - 1/3) U ]

and

1 p -
VIiN-1/3 [ 128 (<//N)? (Z//N - 1/3) ]

for the various values of 'U/N employed and noting that these quantities
respectively approach 7/4 and 21/4 as ‘ﬁ/N =¥ 1/3)suggests that the
theory has, in fact, been carried correctly through terms of second order
in 2/ /N - 1/3. The correctness of this conclusion may, in fact, be
immediately apparent from the second order dependence of the relative

error on "2/ /N - 1/3 in the graphs of Fig. 4.

T am indebted to Mr. Igor Sviatoslavsky for assistance in performing some
of the calculations necessary in the processing of these data.
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N

AS CALCULATED FROM THE EXPRESSIONS OF TABLE III AND AS OBTAINED FROM COMPUTER RESULTS
t= 0 (mod.77)

Fixed Point on Symmetry Axis

Fixed Points to rgght and left of Symmetry Axis

31

YIN D D FrTor TV TV Error P ) FTTor
ormula computer % formula computer % formula computer %
0.300 -0.33461 -0.35065 -4.57 4+0.48297 4£0.49430 -2.29 + 0.23849 + 0.24398 -2.25
0.305 ||~0.29897 -0.30971 -3.47 +0.42445 |4.0.43205 | -1.76 +0.20384 | +0.20731 -1.67
0.310 -0.25895 -0.26554 -2.48 +0.36171 +0.36638 -1.27 +0.16850 +0.17049 -1.17
‘;7 0.315 ~0.21416 -0.21768 ~1.862 +0.29439 +0.29689 -0.84 +0.13262 +0.13361 = ~0.74
_‘ 0.320 -0.16408 -0.16558 -0.91 +0.22202 +0.22310 -0.48 +0.09639 +0.09678 -0. 40
' 0.3225 [|-0.13688 -0.13774 -O.62 F' +0.18379 +0.18440 -0.33 +0.07822 +0.07843 -0.27
10.325 -0.10815 -0.10856 -0.38 || £0.14409 +£0.14439 -0.21 +0.06004 +0.06014 -0.16
0.3275 |(|-0.07778 -0.07793 -0.20 - 10.10284 £0.10295 -0.11 <+ 0.04191 -\-0.04195 -0.08
0.33 -0.04568 -0.04571 -0.0é +0.05994 +0. 05997 ~-0.05 + 0.02386 +0.02387 -0.04
0.3325 (|-0.01174 -0.01176 --- +0.01529 4+£0.01531 .- +0.00594 +0.00595 -—
0.340 +0.10237 +0.1026é -0.30 +0.13038 +0.13060 -0.17 -0, 04649 -0.04654 -0.10
0.345 +0.19025 +0.19226 -1.04 +0.23878 30.24027 -0.62 -0.07961:] -0.07987 -0.31
0.350 +0.28943 +0.29655 -2.40 +0.35808 +0.36341 ~-1.47 -0.11042 -0.11106 -0.5%7
0.355 +0.40211 +0.42186 -4.68 +0.49047 10.50549 -2.97 -0.13781 -0.13883 -0.74
0.360 7 +0.53130 +0.58071 -8.51 1-0.63906 +£0.67734 -5.65 -0.1603 -0.16070 (-0.25)

»



MURA-452

(c) The intercept: The intercept of the separatrix on the symmetry

axis, for which formulas have been given in Table III, is somewhat more
tedious to determine computationally than the location of the fixed points.
Computational estimates of the intercept have been obtained, however,

for 7J/N =0.3att=0(mod.ow )andatt = 3 /4 (mod. 7). The
comparison of the theoretical and computational intércepts for these cases

is given in Table VII.

TABLE VII

LOCATION OF THE INTERCEPT ON THE AXIS OF SYMMETRY, 7//N= 0.3

; LOCATION OF INTERCEPT Relative Error
(mod. T) From Table III From Computer %
0 P =
0.1886 0.191 2
v =
3M/4 0. 3024 0. 308 2
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) APPEN'EJL} A )

—

EXPRESSION OF { L EXPLICITLY IN TERMS OF _?/ , 5

An iterative solution of eqn. (22b) for £ ( 5 .5 ) leads to
£=5+wwm)*[$5+28,5%+38,% ] .
- /1152 5/ 2B [(§]+ W) _?3+(343 @, + 2 ?pz)_? ? + (39, é*zé *39%)% ?,_ dd ””4)-?,
-5 s [8,8+28,28% +38,% ]
+(1/1152) (N )3 [((3/2.);5 2 - (/g)¢z)f +((7/z)¢ Gy (1) @)35(7)¢¢ N )35' (A1)

in which the cubic term has been simplified by elimination of ‘51), , * ++ through use of eqns. (2b-e). Solution
of egn. (22a) for j", (3; , _g ) similarly gives
— . 2 2. —a
£-5 -/48) v/ 2 )Y [38.% +2¢9§ g ]
/

+a/1152) (v H3[ (B8, 55"’4{00)3 +(6&, @_+¢ 3¢)53(7§ﬁ*2¢¢+3¢933*@fé*ﬁ)g’
=5 _u/48) (N/V)/z[ﬁ'g* 3559/ +%, §J

rajusy o V3[R ES(E)SS Hm g (w8 @zﬁ(w &-(g, )5’ - (a2)
It may be noted that, since jz = é’ and ¢3 = ¢; [eqns. (20c, d)] , eqns. (Al, 2) are consistent

with the statement that , form a complex conjugate pair to this order.
/ 7 g

Forming the product of eqns. (Al, 2) then leads, through fourth order terms, to

fj 55+(1/48)(N/U)3/z[3¢5 ﬁf\g éfﬁ’ fg] s »
ramen) 51D 8% 48P 82 +(7¢'é,+—¢¢,)3’”j+4ﬂ¢5’3} 2.5 ] . (A3)

In addition
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5,42 -%+8 + (c'/dx)(/(lv))m[F-?i +8)%°+(-24,+24,) %, 5 +(-8,+34,)5,
*+ terms of third order, (A4)

so that 2 ey

(5+3)- & +35/5 +385% + . .
rtunxe) [C386+8)8 % (44 +28) § % +(-38-38+381 38)3 RN (33B)% ] as)

Finally, the expression for 9 Fl/ 2 t, which appears as a function .?; s g’ in eqn. (23), assumes

the form

SFI 2t = - /ee) v B % 3+é’g‘_§' +g’ 3’5 3]
+(1/2304) <N/7J)3[(31?r+2¢ % f(éﬁ¢+2¢¢ *2¥)5 3
OGB48 5 58 2 US F A B BB 0BT |
- (1/48)<N/d>[¢f +£'5°2 fgg ¢_5’] .
+0/1530) N/ VY (BE-8 819 4E G fd)j’f*@f?*ﬁﬁ B4-388)5°%
128455055 (3-8 ] (a6)

in terms of the variables 3/ s 3
7
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Yccordingly, the Hamiltonian {1, becomes ) )

LL,= 2, +2F /ot
= (zU//v)_? Z, - (1) (¥ e * ) (4 +8 )’ + 0F ot
=-¢(2 ZJ//V)\??

[B +em)g, + (et -*C)]5°
L (P +Le j + 2 (NG, +Cfe) (> - e-?it) ]3;
7 (7) +[L¢- Z.(U//V)J *‘(3/2)(157“ it_e z:r) J5 y
L Li -6 (U/A/)éa *(’/Z)(c 2it zat)] 5:,

(L'z'p;’ +e(2ING, +()e?*-e?¥)] F ) ¢
L'zé,%z(v//v)d +(%)(e 2"‘-:'?:“)]@ - (138 - F) (7 - ) 5

(Z[L’é’ +é(m)g + (%)(cz‘t—e'ut)]ﬁz )gag
+ 'Z,[ % _Z(y/,v)¢ +(~Yz.)(¢z"t c-z&)]é (343‘0 _fz)@,zzt_e—zat)

3{;&% +4?U/;V$§+§/)§CL: al;):‘]]d
(A (@ +R(UN)G +(3o)(c* Rl ) 2
I5‘3L<2)) + —[Lg? Z(U/ ?5' (3/2)(c“t —ad-u@z‘ 3}5,
L@ é(u/m)g +(f)(eit- ez‘ojg -GG+ 8 -B, - B, e e

2§+ 2(IN)E +a)(*-e )]G, > P 5;3

z[tqf LN, +Ch) (2 4] f - (F - 3g) (et -e*t) )71

[, -2 (W), (1) -] 3 j
\-Lg; ()G, + () * TN, -G-8 et %)) ,
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Whic‘,)by virtue of eqns. (19a-d), reduces to" )
73 32 ¢ g3 it Z°
(), =-i(2UMEZ -(fs)w/)" [ 5 —e*" g /
[-3& (2 -c-2%) 1+ & (2% -e )] 54
b [-LE (e2it -2*) + 24, (22t emt)] 3,35
, + (-3¢ (Fit-2e%Y)-3§ (e¥t-e??)
_fﬁ(g) ,,_3@&( 20t ztt)+3¢— (2 2ct -z‘t)]g 5’
+ [Z¢ (e2t-2e7%%) Ho @, (#te 'a‘t)]f 5;
+[-@ (e** -Ze,‘z‘*) +3Q53 (e?t. 'z‘t] 5 J

_

With respect to the quartic terms, use will be made in particularlo

of that part of the coefficient

2, —c
f which is independent of t --this specific contribution to ﬂ_ is

N __YIN 1 e
ow (7) [ 1o (Y2 1+37)/N]g/-?;

as is readily found by use of eqns. (20a-d) for the functions ?o s é’ R @a ., and és

*

It was to effect this specific reduction of the cubic term that the quantities @o sttt é were required

to satisfy eqws (19a-d).
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) APPENDL)?B )
EXPRESSION OF K, EXPLICITLY IN TERMS OF YI s J1
The Hamiltonian K; as given by egn. (53), with K, represented by eqn. (50) and the dynamical
variables by eqns. (52a, b), may be expressed
- o . 3 cos()/-Zt) cosQ’Zt) o CO8 (3 Yo+ 2 t) ]
Ky =2 (V/N) 3, +(1/48) (/)P 5] [3 TN TR e T
| 8j2 32 2> cos (Y, -~ 21t) cos (%1'2 t) _cos (3 ot 2 t)
+ (1/48) (N/V) {Jl +3/64) (N/2)) " I Yl A e 11~ s
x{S cos (¥ -2t)-3cos (¥+2t)+cos (3%+21t)-cos (3% - 2At)}
o3[ _cos (Yo -2t) cos ( Yo+ 2 t) cos. (3%t 2 t)
+ (1/48) /Y70 [ - 3SR Ieg e g3 SR e -
cos( 2t) cos (Yo + 2 t) cos 3)o+ 21) 1)
=20Y/N) I+ (1 /48xN/P 2 5312 [s ¥ T UIN 3 Tx 3 YN ] (
+ 3 cos (% -2t)—3cos(Yo+2t)+cos (3{0 + 21t) - cos (3){, -2t)
_3 cos(Y,_,-Zt‘)+ cos (Yot 2 t) cos(3)€+ 2 t)
UV " TTFUIN T T+ 3U/N
3 1 _3 1 o1 1
2 1 - N 2 1 N 2 1
N (1/1024)(N/7))3/2 i t ] + 3 V/N
plus terms of argument
at,2Y,, 4% ,6),.2%+ 4t, 4Vo+ 4t, 6Yo+at] . (B1)

e
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By the nature of the transformation, as determined by the selected generating function Gl, the coefficient

3/2
of J / is such that a considerable cancellation is seen to be possible. Those terms in the coefficient of

1

J12 which involve t and/or ){, will be ignored, since, to the order to which the analysis is to be carried,

they will not contribute t-independent terms to the Hamiltonian which results from the final transformation. 10
In view of the remarks just made, K1 is taken to be effectively
Ky =2 (VN 3, - (1/48) (/)32 5312 cos 3% -2 1)
+(1/2048) (8 V)7 5 [f -vgl/mz TFT oIS J (B2)
Since [c_Leqn. (52b)J the variable \/o differs from ‘6 by terms of order J11/2, we may expect that
substitution for X, in the second term of eqn. (B2) will contribute additional terms to the coefficient of
le; this substitution, however, will not introduce terms other than those of the form which already have
been ignored in the coefficient of le and we therefore write, finally,
K= 2 ('U/N) Jy - (1/48) (N/ V)sl%:f/zcos(B )7 -21t)
+(1/2048) 8/ )3 52 6 YIN - 1 ]
1 - 2)?/N? 1+3 YIN (B3)
2

The last factor appearing in the J.° term will be recognized as the parameter denoted by &, in the

1
text [eqn. (25)_].,
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