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ABSTRACT 

As an introduction to certain non-linear dynamical problems in which 

the 113-resonance plays a dominant role, the stability boundary for the equation 
2 2d� v (2 V~ 2 1--+ v+- (sin 2 t) v "" 0 

dt2 N 2 

has been studied analytically and by digital computation. Use of a relatively 

simple trial function in a variational procedure or with harmonic balance is 

shown to lead to simultaneous algebraic equations, for the coefficients in the 

trial function, whose solution affords a good estimate of the unstable fixed 

points. Application of the Moser method of solution is also carried through 

in detail, to include terms of the order (z) IN - 1 13)2, and the results com­

pared with computer data for various values of VIN. 
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A o MOTIVATION 

Simple applications of a variational method or of harmonic balance 

have been used previouslyl:9: to obtain "handy formulas" to indicate the 

stability limits for certain non-linear differential equations, with periodic 

coefficients" oca.rring in the theory of cyclic accelerators. The applica­

bility of the method described by Moser2 has also been recognized and it 

may be noted that this latter method affords the opportunity of obtaining 

more detailed information concerning the solutions, since the previous 

methods are most simply applicable to the special problem of determining 

the unstable equilibrium solution, whose period is a multiple of that for the 

periodic coefficients in the differential equation. 

Work currently in progress3 concerning the possible practicality of 

injection into FFAG accelerators with a "field bump" deliberately introduced, 

with a period which is some integral multiple of the basic period of the un­

perturbed structure, has made it desirable to re-examine the analytic methods, 

in comparison with computational results, and to attempt to obtain analytic 

formulas of accuracy adequate to provide quantitatively useful orientation for 
• 

detailed computational studies. 

In the present report we develop analytic methods, which are compared 

with computational results, for solutions--particularly at the stability limit-­

to a simple type of differential equation for which the stability limit is deter­

mined by the one-third resonance(U'N ~1 /3). The application of these methods 

in the present case has been felt to be fruitful and later reports may make use 

of similar methods in more complicated situations. 

*References are given in Section E. 
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B. THE DIFFERENTIAL EQUATION EMPLOYED 

In the theory of spirally-ridged FFAG accelerators the radial betatron 

motion, about the stable equilibrium orbit, may be convenienty represented by4 

(1) 

where u denotes the departure from the stable equilibrium orbit, in units 

of the radius, 

b ~ f/w, and (2a) 

(2b) 

By introducing the scaled variables 

t = (N I 2) 9 , (3a) 

4 f uv = (3b)---' 
wN2 w 

eqn. (1) assumes the form 

d2v/dt2 +4[~ + _f_ cos 2 t] v +.! (sin 2 t) v 2 = o. (4) 
N2 wN2 . 2 

Although it is possible by a suitable transformation to remove the 

alternating- gradient feature of the linear term, 5 it is frequently convenient, 

in the interests of simplicity, to replace6 the A-G coefficient by (21J IN)2. 

The equation which results is, then, 

(5) 

It is this equation with which we shall work in the present report, being 

concerned in particular with the limiting-amplitude solution, governed by 

the one-third resonance ( .,; IN ~ 1/3). Results of a variational solution 

(or equivalently, of harmonic balance) and of application of the Moser pro­

cedure will be presented in Sections C and D, respectively, and compared 

with computational results. 
G 3 
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Illustrative machine parameters might be 
~ 

,., / '" f ~ 1/4, N = 33, k == 79, 1 w =1252, 

for which 

k/N2 = 0.0729, f 2 ::: 0.2875, 
wN 

and, from the approximate equations of motion, the frequencies of the 

small-amplitude (A-G) radial and axial oscillations are respectively such 

that 

2,) '" =t:r hr = 0.5994, 2 V IN: tr 17T =0.1983;x x y y 

in some of the work to follow the case 2..,)x/N = 0.6 will be specifically 

considered. 

C. THE VARIATIONAL METHOD 

1. Analytic. Development 

The unstable equilibrium orbit, or the associated "fixed points 11 

characterizing the limiting-amplitude solution of eqn. (5), 

(5) 

may be sought by insertion of a trial function of suitable form into the 

variational statement 

We shall employ here the relatively simple three-term trial function 

vi: Al sin 2 t/3 + A2 sin 2 t + A 3 sin 10 t/3, (7) 

in which the form of the last two terms may be suggested by insertion of 

the first term into the differential equation (5) and considerations of 

harmonic balance. 

4 
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By insertion of the trial function (7) into the variational statement (6), 

or by harmonic balance in the differential equation (5), the following three 

simultaneous non-linear algebraic equations are obtained: 

1 1 1 
+ = (8a)[:- e:)2]A1+ .!. Af - '2 A 1A 2 4 A 1A 3 - 4 A2A 3 0 

8 

1 2 1~A2 - _ .!.A2[4 _(~) 2] A2- - A - = 0 (8b)4 A 1A 34 1 8 2 4 3 

1 1[l~O _(2; ~j A3+ .!.AZ _ 
4 A1A z - "2 A ZA 3 = O. (8c)8 1 

A systematic solution of eqns. (8a-c) in ascending powers of ( :: (4/9) - (Z Y/N)2 

may be obtained, but for operation an appreciable distance away from the 

V/N ~ 1/3 resonance--i. e., when Eo is not very small--it may be con­

sidered more satisfactory to solve these equations numerically. 

For the case 2'; /N = 0,6, a direct numerical solution of eqns. (8a-c) 

leads to the values 

Al = - 0.5751 517 

A 2 = + 0.0229 394 

A 3 = - 0.0041 574 ' 

so that the approximate solution 

v ::: - O. 5751 51 7 sin 2 t / 3 + O. 0229394 sin 2 t 

- 0.0041 574 sin 10 t/3, (9a) 

dv/dt"v -0.3834345 cos Zt/3 + 0.0458 788 cos Zt 

- 0.0138 58 cos 10 t/3 (9b) 

is obtained. 

5 
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. \An algebraic solution of eqns. (8a-c) in ascending powers of E = 4/9 - (2-z//N)2 leads to 

the series 

Ai = -8E [ 1 - 2(-.!-'" -..!..-)~  + 4(E- + ---.!.!:.... + ~)f 2 
P� Q p2 PQ Q2 

_ 4 (652 + 292 + ~ + .!..2-) 3 
p3 p2Q PQ2 Q3 E 

d .... 4 (14912 +8294 + 2808 t 577 +~)  E 4.,. .. J (lOa) 
p4 p3Q p2Q2 PQ3 Q4 

A2= 16E 2 [1 _/1 6 +2..),.,.(326 t 100.,. 15)f;1_.f1864 t 785 +!..!!!+...!!:....)€ 3 ......J 
p (]? Q p2 PQ Q2 ,. p 3 p2Q pQ2 Q3� . (10b) 

A3 = - 8E 2 [ 1 _ 4 (~+...!...)E- +~ (~+~t~)f2._,1i234+ 744 + 219+ 28 )E 3t- .... (lOc) 
Q p Q p2 PQ Q2 \.: p3 p2Q PQ2 Q3 

where 

E =� ..i. (2 zJ ,2
-.9-!r1 

P=� 4_(2:t)2 

Q=� 1~0 _(2;/)2 

6� 
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In the case considered previously, in which 2 .,;/N = O. 6, so that 

E = 19/225 :: 0.08444·", the series (lOa-c) appear to converge rather 

slowly. Evaluation of the terms listed would suggest 

A1 ::: -0.6755 555 [1 - 0.2013 012 + 0.0774 000 

- 0.0379 715 + 0.0209 305 + .. J 

~ -0. 6755 555 x 0.8590 578 :::: -0.5803 413, 

A2 :: + 0.0313 445 [1 - 0.3947 478 + 0.1945 985 - 0.1074 831 + .. .J 
~ + 0.0313 445 x 0.6923 676 == + 0.0217 019, 

A 3 := - 0.0053 061 [ 1 - 0.3098 062 + 0.1414 688 - 0.0755 171 + .. .J 
~ - 0.0053 061 x O. 7561 455 = - 0.0040 122. 

As 
; 

was just mentioned, it is seen that the convergence of the expressions 

for A1, A2, and A is quite slow in this example, each term being roughly
3 

minus 50 or 55 percent of the term before it, and only about two-figure 

accuracy is obtained* for the solution of the algebraic equations in this 

case without extension of the series to include terms beyond those shown 

here. The convergence, of course, would be markedly better if one were, 

say, one-third as far from the resonant frequency as was the case in the 

example considered here. 

It may be noted in passing that retention of only the leading term in 

Al leads to 

Ampl. of v ~ 81 E, = 8 t (4/9) - (2 V /N)21 ' (l1a) 

or 

Amp!. of u ': (2 w2 N2 /f) I (4/S) - (2 11 /N)21 

= (8 w2/f) I {N/3)2 - ?J 21, (llb) 

in agreement with the "handy formula" previously cited. 1 

*Cf. the results of the numerical solution which led to eqns. (Sa, b). 
7 
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2. Computational Results 

(a) The coefficients of the trial function: For comparison with the 

solution (9a, b) which was found in sub-section 1 by a variational method, 

the unstable equilibrium solution (period At,." '1r /3) of eqn. (5) was found 

computationally for 2 V IN "" 0.6 by means of the DUCK-ANSWER program 7 

and subjected to Fourier analysis by aid of the FORANAL program. 8 The 

result of this computational work is given below: 

v� ;0: - 0.575116 sin 2 t/3 + 0.022944 sin 2 t 

- O. 0041 59 sin 10 t / 3 + O. 0001 82 sin 14 t I 3 

- 0.0000 19 sin 6 t + ... » (12a) 

dv/dt .- - 0.383411 cos 2 t/3 + 0.0458 88 cos 2 t 

- 0.0138 65 cos 10 t/3 + 0.0008 51 cos 14 t/3 

- 0.0001 16 cos 6 t + .... (12b) 

It is seen that the coefficients found for the first three terms of v and dv /dt 

check quite closely the results obtained by hand calculation in sub-section 1 

[eqns. (9a, b>] and that the remaining coefficients are relatively small. 

(b)� Coordinates of fixed points: The predicted coordinates of the un­

37(
stable fixed points for t=,O (mod . ." ). or alternatively for t = -4- (mod. 1f), 

may be obtained by substitution of these values into the expressions of eqns . . . 
(9a, b). The results in the first case, then, refer to solutions of 

d2v/d t Z + (z1I /N)Z v ;. (l/Z)(sin Z t) v Z :: 0 at t = 0, mod. 11' , 

and in the second case to 

dZv/d7: Z + (ZozIIN)Zv - (liZ) (cos Z'Y)vZ :::: 0 atT=t - 3.,,/4:: 0, mod."", 

which are examples for which computer information has been obt ained. 

The results are summarized in Table 1. The agreement between the results of 

eqns. (9a. b) and the computational. values is seen to be quite good in these examples. 
8 
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TABLE I� 

COORDINATES OF UNSTABLE FIXED POINTS, AS CALCULATED� 

FROM EQNS. (9a, b) AND AS OBTAINED FROM COMPUTER RESULTS� 

From Eqns. (9a, b) From Computer* 
t 

v dv/dt v dv/dt 

0, 0 - O. 3514 0 - 0.3506 

mod.7f + 0.4945 0.2445 + 0.4943 0.2440 

37/4, 
j 

- O. 6022 0 - 0.6024 .0 

mod . ." 0.2667 + O. 3201 0.2668 + 0.3207 

D. THE MOSER PROCEDURE 

1. Outline of Method 

The differential equation (5), with which we are concerned in the 

present report, may be derived from the Hamiltonian 

2 3H ~ (l/2) p2 + (1/2) (2 V/N)2 v + (1/6) (sin 2 t) v , (13) 

with p :. dv/dt. It is the purpose of the work to transform the variables 

(v, p) in such a way that the time-dependence is removed from the cubic 

term in H; the resultant Hamiltonian through terms of this order (and in-

eluding the time- independent part of the terms of next higher order) may 

*In much of the computational work the variables actually employed were 

viI. 15 and (dv/dt)/I. 15, representing respectively u/w and (2/N)(du/d9)/w 

when 4 f2 = 1. 15. To avoid complexity, however, the results are presented
wN 

here in terms of the variable v which is employed in the analysis of the pre­

sent report. 

9 
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then be taken as an approximate constant of the motion, from which invariant 

phase curves can be constructed and values of fixed points determined. 

The work first will be outlined in terms of complex variables t1 ,!
o () 

~ ' ~ ) of the sort introduced by Moser, 2 and secondly will be carried out 

in a way which may be somewhat simpler for the present purposes, using 

quantities akin to angle-action variables. The use of these two methods may 

be of some inherent interest and serves to check the algebraic work. 

2. Use of.$ , j Variables 

(a) The forward transformations: Commencing with the Hamiltonian 

(13), which is expressed in terms of v, p, and t, a first transformation 

is made to variablesA ' X which are complex conjugate quantities (with 

v and p real) but which are to be regarded as independent for the purposes 

of Hamiltonian theory, with ~o playing the role of a coordinate and ~ 

representing the canonically-conjugate momentum. ~ andrt are de­

fined in terms of v and p as follows: 

'12
( .,) IN) [v 

i N
p] (14a)~o= + 217 

iNJo= (7/ IN{2 [v - -- pJ ' (14b)27,) 

and, correspondingly, 

Jh. [ - ]
v = (l /2) (N / -zJ ) :4, +J (14c) 

_0 

p = - i (-ZJ IN) 
'/2 

[J" -J0 ] . (l4d) 

It is noted that the functional determinant is 

= - i J (15) 

but that one can write 

10 
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p dv = + i (,!JO d :JO ) + perfect differential; (16) 

hence, although the transformation from v, p to Jo 'J" is strictly not 

canonical. the pair :to ' jo may be regarded as canonically-conjugate 

in association with the Hamiltonian 

.fl,:: - i H (l7a) 

~ 
= -i(2"ZJIN)~i- (i/48) (Nlz}) (Sin2t)(J,+.!Jo)3. (17b) 

A canonical transformation from~" ,Jo to j 1.1 is now per­

-
formed by means of a generating function F 1 (;It, 'JI ). The generating 

function is so chosen as to remove from the Hamiltonian all time-dependence 

in the cubic term, save that associated with the resonance V IN -t 1 13, 

the coefficients of the transformation thus remaining finite as the resonance 

is approached; supplementary fourth-order terms are also included in the 

generating function in order that, to the order that the work is carried, the 

new variables~ ,j, conveniently will be complex conjugates. 9 The 

generating function selected is 1~ 3 Z 2...J 
F, (J,(JJj,) =j,~ - (" /JiK)6Jh) 2[~~ +11 j +~ ~,g +1 ~ ]

3 " 0" , 1. 0 I :l I 'I] 
+(1/1/$2)(11;';) [i; ~ to ~~: ~ 1"t -t~.r1"t ~$, i-~~ I 

(18) 

where it' are taken as periodic solutions of the differential equations 

i (di Idt) + 3 (2 -z) IN)I - (l/2) e- 2 it = 0 (19a)o o 

i (df, Idt) + (2 z) IN)j, + (3/2) (e2 it - e- 2 it) 0 (19b)= 
i (df~ Idt) - (2 1J IN)!,. ... (3/2) (e2 it _ e -2 it) = 0 (19c) 

i (d~3 Idt) - 3 (2 -z) IN)} + (1/2) e 2 it = 0, (19d)
3 

namely 

11� 
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(20a) 

;t 3 
1:, =4[ 1 - ,) IN] 

3i = 411 + z) IN)
2. 

and where 

2 it 
e 

2 it 
e 

3 
+ 4 ( 1 + V IN] 

3 
+ 4[ 1 - 1) IN] 

- 2 it 
e 

e-2 it :::;h
'rl 

* 

(20b) 

(20e) 

(20d) 

and 

(23)� 
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with primes denoting differentiation with respect to t. It is now necessary, 

of course, to solve eqns. (22a, b) algebraically with sufficient accuracy 

that eqn. (23) for 11, may be expressed explicitly in terms of the new 

variables !j , 7J 
J -',� 

The algebraic steps leading to the expression of ~ in terms of� 

~, ' ~, are detailed in Appendix A, with the result� 

- 3/2. r 3�.JL, ::-i (2 -U IN) ~ ~ - (1 196)(N Iv) Le2 i t ~ 
I I i 3 ~ _2. I 

- ~ 2048 (N I -V) ~ 1./ , (24) 
I -1 

where 

- VIN 1 
J. = 6 1 - (1J/N)2 - 1 + 37.1 IN (25) 

and where we have only retained in the quartic term that part which involves 
2 :z.. 

~ fJ and which is independent of t. 10 
I .!:JI 

It is now convenient to introduce variables 0 and J, to play the 

roles of coordinate and momentum, defined as 

7) (26a);= -f-;-k (~, /~/) 
-

(26b)J :: ~, ~J 

so that, correspondingly, 

~, = J I/Z. e-i~ (27a) 

- '/2-' ¥j = Jel, (27b) . 
I 

In this case the functional determinant is 

(28) 

and 

1 d~, = - i J d ~ + ± dJ 

= - i J d~ + perfect differential, (29) 

13 
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so the new variables tI , J may be referred to the Hamiltonian 

(30) 

It is noted that the functional determinant of the over-all transformation 

from v, p to ?/ ' J is 

ttl, J) 
~(~, 3:) 

~ (l,t~) ;; (jlJl j,,)= (l..) (I ) (-~ ) =It 
~ (~o' ~) ;; tv, ~) (31) 

so that the pair lr , J may be regarded as canonically related to the 

original pair v, p. 

From the expression (24) for Jl., and the relation (30) which 

connects HI with A, ' we immediately find 

3/2.. 3/2­
HI :: (2 -z)IN) J - (1/48) (NIV) J sin (3 ~ - 2 t) 

+ (0(.. 12048) (N 1 -zJ)3 J2 

-
A final canonical transformation to variables ?f, J. defined by 

(32) 

the generating function 

F 2 (')f • J) = J (~ - t t) • (33) 

leads to 

J = oFJ../a'(f ::: J (34a) 

r= ~~/~j = ~ - j-t (34b) 

and 

H 2 = HI + aFlaz 
=H -~j" 

1 44 3/ 
2 2 -zJ - 1 IN) -"..~ -= - (3 - ~)d- 48 lV­ (;> sin 3 ~ 

ce:. (N)3 -2 
+ 2048 V (J). (35) 

By a sequence of transformations between the pairs of variables 

14 
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Coordinate Momentum 

pV -:it> j() 

J, j, 
t J 

-¥ J 

we- are thus led to a Hamiltonian HZ [eqn. (35)J from the first two terms 

of which the independent variable t has been entirely removed and in the 

last term of which we have retained the t-independent part. * The retention 

of the last term in this form is believed to be desirable, since it can exert 

a significant influence on the J-dependence (or amplitude-dependence) of 

the oscillation frequency. 10 To the degree of approximation considered 

here, then, we take HZ in the form expressed by eqn. (35) to be a constant 

of the motion. In this spirit invariant phase curves of the problem are 

determined. 

(b) The separatrix: The assumed constancy of HZ means that for 

any particular value of t and points homologous thereto (t taken modulo 71), 

the quantity 

is constant. If we introduce for convenience the scaled quantities 

*A little reflection will show that only that part of the quartic terms in ..J1 
which have been retained in (Z4) make a t-independent contribution to the 

final HZ' 15 

I 
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",..... 

1 
(37a)r.'J'­

(48)2 (2/3 - 2 V IN)2 (V IN)3 
J 

1X -, (37b) 
(48)2 (Z/3 - 2 V IN)3 (-zJ IN)3 

HZ 

and 

A = (2/3 - 2 V IN)~ 
.... 

1
'I' 

1 
::: (i - 2N-zJ ) [6 -vIN (37c)

1 - (z/IN)2 1 + 3 -V IN 

eqn. (36) assumes the more concise form� 

2 3 ) ~ 4�J +) sin (3 a' - 2 t) - (9 r. I 8~ =l< . (38) 

The fixed points for the motion, in particular, are characterized by 

expression (38) being stationary with respect to ?f and); . For the un­

stable fixed points associated with the separatrix between stable and un­

stable regions, we take (/ as having values for which** 

sin (3"21 - 2 t) = - 1 (39a) 

[a = - 7T 16 + 2 t/3, mod. Z"713] (39b) 

and -} to be the root;, near 2 13, of the quadratic equation 

(9 f.. 12)} 2 + 3) - 2 :: 0 : (40) 

;, = Yl +?i -1 
(41a) 

~ ~ F- A + 2 ~ Z - 5 ~ 3 + 14). 4 ... ] (41b) 

*For "ZJ IN := O. 3, ~= L 451706., ,,:= 0.0967804, and (9/8) 7' " 0.108878. 

**With this choice of sign for sin (3 ¥ - 2 t), the value Of} which we 

select is positive. 
16 
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In the work to follow it will be convenient to employ a quantity. normally 

near unity, * which we denote as 1, 
(42a)'1,= ~~I 

;-1-+-4-).- - 1 
(42b)

2').. 

• 1 - ?\ + 2 ~ 2 - 5" 3 + 14" 4 - ... (42c) 

"being defined by eqn. (37c). The associated value of X is** 

(43a) 

(2 - j, )/4 (43b) 

4 7,'" (3 - 7I ) 
(43c):: 2:7 2 

Associated with this value of X there is a value of J ' which we 

d~note by 31.. and which is normally roughly J I 12, which corresponds 

to setting sin (3 ~ - 2 t) == + 1 in eqn. (38); if we write ~ J- ~ ~';':z.. 
h ***in analogy to eqn. (42a), (2. will be roughly 1 12. 

In summary, then 

1/2. -1":1w 
J = 64 (l 13 - 7J IN) ( -z) IN) ? (44) 

U:!: e~n. (37a[]; points on a particular phase curve specified by its value 

of i( , are then obtained by use of values of ?I and J which are mutually 

consistent with 7< through eqn. (36) or (38). evaluation of the correspond­

-
ing values of ~ , ), , and finally proceeding back through the trans­

formations to obtain the associated values of v and p. Without continuation 

*For -zJIN = 0.3, J.::: 0.61225 and ~/:::: 0.918374. 

**For .,) IN ~ O. 3, ~:": O. 130049. 

***For V IN ~ 0.3, the value J::J... corresponding to X, = 0.130049 is
}.1.. =0.31570 and ?2., ::: O. 471~5. 
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of the analysis beyond the transformations described here, it is pointles.s 

to express the results to terms beyond those which are second order in the 

. quantity (1/3 - -zJ IN). 

We give below, in Table II, such values of ~ , 'X for the twoJ 

types of locations considered in the examples of Section C 2 b, namely 

t ~ 0 (mod. 7T ) and t ""' 3 7r /4 (mod. 7r ). 

(c) The reverse transformation to the original variables: For evalua­

tion of j'o ' J'o ' and hence of v, p, we now make use of the transforma­

tion equations previously exhibited. Since, by eqns. (14a, b), the quantities 

required for evaluating v and p are explicitly ~o + j'D and ~D - io , 
respectively, we make use of eqn. (A4) of Appendix A, 

jo'" ~ ==4 +~ +- (.l...J'Ig)(N)v)#L[(-31()+1 )!54.+(-~~+;L~ ) ~ S 
I , 4.2 I I 

(45)+ (- I~ +.?~) 3, ], 
and the corresponding expression� 

-. - J/£;;z.. _� 

~l) - j" =:J, -:!J, .,.. (~/~8)("hJ) l b I" -ri. )3+- (OJ.9 +;J..~ ) 'iJ, jJ -r 
.. 1 I I ;a. , (l+.3~ )5,J

:a J 
(46) 

obtained by subtraction of eqns. (A1) and (A2). It is a matter' then of 

straight-forward algebra to evaluate ~ I ,. I ffi"for the value of t which is 

of interest, to evaluate jo + jll from the previously written ~, ' j, 

~. g., those listed in Table II), and thus determine v, p. The results, for 

the cases to which Table II pertains, are given in Table III. 

.p 

Intercept 

,Separatrix 

18 
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) )
TAh.w\ II 

-
VALUES OF J" AND J, CORRESPONDING TO THE SEPARATRIX OF� 

EQUATION (5) FOR t =0 (mod. 7T') AND FOR t == 371' /4 (mod. 7T )� 

The first lines apply to the unstable fixed points; the last line refers to the intercept of the� 
separatrix with the symmetry axis of the v. p diagram.� 

For t = O. mod. ir For t.= 3?r /4. mod. Tr 

J ~ 

~, . ~J j, g, 
.3/z. 3/z. 3/z. ¥a. 

_ 1T +~), 32 (t3-ri)(.!. - V)(ll) '11 32(,.'3 - i}(~ - ~)( ~~I 32(1 -7"3i}{.!.- -V)(i)~  32(1..-13 i}(~  - ~X~) ~ I6 3 3 N N . 3 N NI 

.1/,,- 3/z. 3/,. 
_ 511' t~ ~ 

-32(6- i)('!' - V)(~) '''}J -32(.,fTi}(.!.- lLX.2L) ~I 32(1 +-13 i}(!' - .JL)(.Jl.)~  32 (l - -f3 i)(!' -~ )(i) '76 3 3 N N 3 N N 3 N N'I 3 N N I 

3h, 3/,2. 
1L+~  . 1 7J'/..JL) 31.. 64 i (!. _ "'21)( V) ? 1 oJX2,)) 3/2­~ 641(--- ,?, - 64(.!. - ~Y.V) 1
2 3 3 N N 3 N N ' 3 N N I - 64("3 - N N P, 

.,) J/_ JIl­
l V j/z. *x.u .312.1L 2 t 1>~ - 2 -r-3- 64 i (I -N)("*) '7~ - 64i(; - ~X;)(~ 64(3 - -wXi1) Ir;. 64(3 - ~ N) 72­
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) TAl ~  III )� 
VALUES OF v AND p CORRESPONDING TO THE SEPARATRIX� 

OF EQUATION (5) FOR t=-O (mod. T() AND FOR t = 3 1T14 (mod. 'it")� 

The first lines in each group give the coordinates of the unstable fixed points; the last line� 
refers to the intercept of the separatrix on the axis of symmetry.� 

t v p 

t = 0; II V3(1 1J,rv.\ n [1 -l . 2 _ 1 _V~ _7)}n- )1 t)VJl\2 (L 10 ~(1 .. V\YJJ 
mod.1( -r32 3 '3 - NAN) 1I ~ _ -z}IN2 1+3Vt~  N7~  6\.S-N}(Nl '7,t"'~  .. 7J2/N2 'l+3z)IN) 3" 1f)'U 

-128!-- V ~ 2 _ 1 I_Vo (3 ~fi,2i G_l}/N2 H3Z4~f3  f)ll,J 
o 1286 V)h))2'f) ~t( 2 -~~  Jl)Y'JJ

\'3-Nj'Jf7 'Ij.[ li -V2/N2 If 3V/~- N ~ 

t=31C/ 4, II 32/!.. 1)'1v)n [_( 10 UN 1 ,r1 - V, Y) J =F64 --13(1 J1J/7JJ2 L1of" 2 tJIN 1 )/1 - J!j J 
mod. Tt \3 -NJ~  ·u t li _ifIN2t~\3  Nt (, I 3"" N7'\N-l~' 1 _if IN2 .. 1.,. 3t1NA,3 N) 7[, 

-641L t1\l1Jl1l,~b tJ/N -~I! ill 11] o 
\3 NA.-Nl ( ['~i - 1JlIN2 1+3VINR - NJ '� 

64(!.V'lJL\"Y} ~ 12 VIN 1 \(1 .Jl\n]� o\3 -Njl..NFttt -h _7J2/N2 -~ 3"" NJ'l~ 

Since the .fo~egoing  results have no~  ~een  carried con~istently  beyond terms of ord~r(I  - 1f)Z ; it may be . 

considered suffIcIent to replace the coeffIcIents of (3" - -f1) In the lastterm of the correctIOn {actors by the value WhICh 

. these coefficients assume as VIN'-'l 13. Thus the correction factor for the value of v given in the first line of 

Table III might be consistently written as f} - (7/4)(1/3- -z)IN~.  Indeed; since 1l..~1  .. i\. ~ 1 .. (7/2)(1/3 .. -z)IN), 

the factor 'fl.. outside the square bracket might be replaced by unity and a composite correction factor 
[1 - (21 14)(1 I 3 -71NJ employed in this case. * Although this contention cannot be gainsaid, we elect. however to leave� 

our results in the form summarized in Table III. being guided. in part, by some computational results pertaining� 

to the case t =O. mod. 'T( [c;ect. D 4].� 

*Als 0 >'b. Qt (l 12)(1 - 5 'A.I 8). 
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3. Use of Quantities Akin to Angle-Action Variables 

(a) The forward transformations: We commence again with the 

Hamiltonian of eqn. (13). 

H = (1/2) p2 + (1/2) (2 ,) /N)2 v 2 + (1/6) (sin 2 t) v 3 • (13) 

and make a series of canonical transformations from the conjugate pair 

v, P to zr;, • J o ; 2(, • J 1 ; and 'ot. J · The first transformation2 

is defined by the generating function 

(47) 

so that 

p =. d Go I ~ v = (2 7.J IN) v ctn ~ (48a) 

J = - a Go/a'tl = (-z)/N)v2 csc2~ (48b)o 

thus 

N -Lctn ~ (49a)= 27J v 

Jo = ~ ( 2~) p2 + +(~-J) (49b) 

'n.. '/" _jv = (N1-,) J o sin To (49c) 

//%.. ,/,.. 
P = 2 (-z.) /N) J 0 cos Yd (49d) 

and the new Hamiltonian is 

= H 
,.)/~ 31:a.. 

= 2 (z) IN) J o + (1/6) (N/v ) J sin3 ( sin 2 t o 
31.2. 3/.:z. 

= 2 (7.,) IN) Jo + (1/48) (NI-v) J ~ cos (~ - 2 t)o 

- 3 cos (~ +~) + cos (3 ~ + 2 t) - cos (3 ~ - 2 if ' 
() (50) 

21 
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In analogy to the procedure followed in Section D 2 in formulating-
the transformation from ~o ,:!Jo to :5, ' ~, , we now introduce 

a second generating function 

3/.a,. .1/.a. E. (~./ ). . (J
G 1 ( If. , J 1) = J l' (/ + (l 196)(N!V) J 1 3 s m To -I 2 t j + 3 s m tJ0 + 2 t 

I 0 1 - -z) N 1 + -V IN 

sin (3 ~ + 2 t) ] (51) 
1 + 3 -V IN ' 

so that 

J o = dG1!~~ 

J/:J., 3/.;4f (.../) J = J + (1!32)(N!V) JCos ~o-2 t + cos (t7,,+ 2 t) _ cos (3 ~+ 2 t)] (52a) 
1 1 1 - 7)IN 1 + v IN 1 + 3 -V IN 

?!, = 0 G1 I d J 1 

= i+ (1/64)(N!2./'Y~· J 112,.t;sin(~- 2t)+ 3 sin( 10+ 2 t) _ sin(3 ~+ 2 t) J (52b) 
D 1 e 1 - -z) IN 1 + -z) IN 1 + 3 :zJ IN ' 

and 

K 1 = K + '(} G 1I -a t o 

= K + (1/48)(N!v'1/z. J 3/2.( 3 cos(i,- 2t) +3cos('~+ 2t) _ cos(3 ~+ 2t)1(53) 
o 1 t: 1 - -,.) IN 1 + -z)!N 1 + 3 ;; IN 1 

The new Hamiltonian, K l' can be expressed in terms of the new 

variables ~ , J 1 without much difficulty fppendix B], with the result 

.II£, 3/2. _./
K1 = 2 <,)IN) J1 - (1/48) (NI-J) J1 cos (3 ~ - 2t) 

+ (1/2048) (N/-v)3 J2 r 6 -z) IN _ 1 ] (54) 
1 Li - 7J 2/N2 1 + 3 -z.JIN ' 

in which we have retained10 only terms independent of t and of ~ in 

the term involving J f 
22 
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It now only remains to introduce a third generating function, 

Z 
Gz ( i, ' Jz) ::: J z (~ - 3" t) , (55) 

which effects the transformation 

J 1 ::: a Gz/gJ{ = J z (56a) 

~= dGz/-;;'Jz = ~ 
Z 
3 

t (56b) 

with 

= K 1 + B Gzi a t 

= K1 - 3'
z

J Z 

_ J 3/a.. J/z. .J 
(Z/3 - z -vIN) J z - (1/48) (NI,) Jz cos 3~-:z.. 

+ (o<. IZ048) (N I '1J)3 J: ' (57) 

where, as previously, 

0( = 6 -JIN __1 __ [cf. eqn. (Z5j] 
- 1 - -z) ZINZ - 1 + 3?J IN 

and t-dependent terms have been omitted10 from the term involving J: 
This final Hamiltonian KZ' as expressed by eqn. (57) and which we 

shall take to be substantially a constant of the motion, is seen to be identical 

in form to the Hamiltonian HZ of eqn. (35), as developed in Section D Z 

save that the sine function is here fortuitously replaced by the cosine. It 

remains to perform with the present variables the reverse transforrm. tions 

required to carry particular values of ~ , J 2 back to the original 

quantities v, p--both the forward transformation and the reverse trans­

formation which follows, however, appear to be somewhat simpler alge­

braically than the corresponding steps required with the J ,~ 

variables. 
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(bjl The separatrix: To initiate the reverse transi:>rmation in this 

case, we shall focus our attention as before ~ection D 2 iJ on the par­

ticular salient points of the separatrix:* 
For the Fixed Points 

irl3 + Z t/3, 
'/:1.. 3/r.. 

- "13 + 2 t/3, with J 1 = 64 (I 13 - -z) IN)(-zJ IN) ~, (58) 

?r+ 2t/3, 

For the Intercept of the Separatrix 

J 2 t lIt. _ J J.1~ 
~ = 0 + -3-' with J 1 :: 64 (l/3 - -V/N) (VIN) 1,., (59) 

(c) The reverse transformation to the original variables: For evalua­

tion of the original variables v, p one notes from eqns. (49c, d) that the 

~../ {/ l/z..
quantities explicitly required are sin (f 0 and cos 1() , in addition to J .o 

To the degree of accuracy with which we are concerned in the present 

work, it is sufficient for this purpose to refer to eqn. (52b) and write 

sin (, ~ sin ~	 - (cosrt )(~ - ~ ) I 

_ cos ¥, (Ii ~ I/'l-f; sine ~ - 2 t) +3sin{ i + 2 t)_ sineS ~ + 2 t)1~ sin ~ 
64 v)Jl J.: 1-;) IN 1 + -zJ!N 1 + 3V IN J 

(60a) 

and 

cos ~ ;" cos ct, + (sin Y; ) ( '( - ~ ) 
4 

+ sin ~ IN_f� th. ~sin{ ~ - 2 t)+ 3 sine ~ + 2 t) _sin{3 ~ + 2 t)],~.• 
~ cos ~	 J64 l7l} 1 L-> 1 - 7,) IN 1 + f..J IN '~1-+--.::'3"";"';~/~N~ '!' 

, (60b) , 

*Because of the� presence of cos 3 t a in eqn. (57), in contrast to the pres­

ence of sin 3 t in eqn. (35), the values of /2, which are of interest here� 
may be related to the corresponding values of y by ~ ~ =j' + 1r 12, or,� 
similarly,;;r; =¥ + "1r 12. This distinction between Z(.. and -? of course� 
could have been avoided by introduction of a phase shift in the generating� 
function G 2 . 24� 
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10. 
while obtaining J 0 by 8.: eqn. (52a)]� 

J ~:l ~ J I/~ 1. + 1... (1!..1~ +s ( t, - Z t) +cos (~ + Z t) _ cos (3 I, + Z t)11 (60 )�11 
o 1 1 64 vl 1 1 - V IN 1 + ;; IN 1 + 3 -tI IN :Jj' c 

Thus for t = 0 and ~ = ±. 1T 13, eqns. (60a-c) give 

sin ~ _ + 13 [1 _ 3 (1:... _l1)n 7 
- - 2 1 _ 71 Z /NZ 3 N l!J' 

_1:... [1 + __--:9-:::-__cos ~ 
1 V 2/N2- 2 - (+-*)~J' 

and 

+ 1 '(~-~)~J 
1 + 3 ..,) IN)3 N 7(, ' 

so that, by eqns. (49c, d), the fixed point coordinates 

v - + 32-f311...-1L)II..1L)~ ~ j 2 - 1 )(-1:...- ::L)hJ
-- r3 N.rN ICT1 _1J2 /N2 1+3-,)IN 3 N II 

are obtained. Similarly for the next case in the list (58), with t = 0 and 

t l = ~ ,� 

sin ~ = 0� 

cos '1D = - 1� 

(1 7N-J)3&. r, f Z 
Jo 

1/2, 
=64 T -'NAN" ~/L1-1_';2/N2-

so that 

v = 0 

p = - 128 (.2:.- -..JL)(2L)~ Ii J 2 - 1 '(1 -.:zL)h]
3 N N ~ r G- )) 2 IN2 1 + 3 -z) IN 1"3 N II I 

In this same way one finds complete agreement with all the results listed 

in Table III. 
25 
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(d) The unstable equilibrium orbit: The procedure just followed can, 

of course, be employed in general to provide, as a function of t, the equa­

tion of the unstable equilibrium orbit, which is represented (mod. 11' ) by 

fixed points as listed in sub-section (b). 

For the unstable equilibrium orbits, in particular, the Hamiltonian 

equations which follow from K2 [eqn. (57U permit Y,- and J 2 to be 

constant, with, let us say, 

1/,. Va. J
and J 2 = 64 (1/3 - -,)IN) (VIN) 7 fcf. (b) . 

1 

Then 

~ = y~ + 2 t (61a)
3� 

= ?r + 2t�-r 
Ill.. 

= J 2 
J/"I. 

= 64 (1 13 - -z,) IN) (-z) IN) '7, [~ eqns. (58)] . (61b) 

By making use of eqns. (60a-c), in conjunction with eqn. (49c), the 

equation for the unstable equilibrium orbit, v(t), is then found to be 

vet) = -64~- ";)(-.J)hfi~- sin 2t/3 + 4 (V IN)sin2t _( 1 - 1 J".ln lOt] 
3 ~ N I. 3 1 - N 1 - Oil 2 !NZ 1 +"iI!N 1+3'i'fNr 3 

(-i--ifh), (62) 

through quantities of the order of (1/3 - V /N)2. The expression (62) is 

seen to contain circular functions of argument 2 t/3, 2 t, and 10 t/3, as 

was the case for the trial function (7) employed in the variational treatment 

of Section C. By substitution of particular values of t, the specific values 

r- of v for the fixed points listed in Table III may be obtained. 
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It may be noted, however, that differentiation of (62), which results in 

:: dvldt = _ 128 /1-- v)(....!- .J)n£~s~_rcos 2 t/3 +12 (-z)IN) cos 2 t 
P ~·3 N 3 Nt,r 3 [1 - VIN 1 - 7J 2 /N2 

- 5(1 / -V IN - 1 + /'01 IN)COS 1~ V(i -1f>1,1' (63) 

does not lead exactly to the specific forms listed in Table III, although the� 

forms become coincident through (1/3 - 7J IN)2 when(1:. .:l!) is expanded as� 
2 3 N�

(*J [1 + 3 (1/3 - ~ IN». An expression for p may be obtained directly 

from eqn. (49d) of course, just as eqn. (62) was obtained from eqn. (49c), with 

the result 

_ 128{1--:Uy.u.)2)1 {cos~+rcos 2 t/3 _ 4 cos 2 t 
P 3 N;{'N (, 3 (1 -7) IN 1 _;)2/N2 

+( 1+b IN +1+ ~ V IN) cos 1~ y4- -iDJ' (64) 

J 
from which the "momenta" for the fixed points listed in Table III follow for 

the special cases. 

4. Computational Results 

(a) The unstable equilibrium orbit: To establish a connection with 

Section C, in which the results of the variational method were presented, 

we note first that for -z) IN = O. 3 eqn. (62) leads to the unstable equilib­

rium orbit as given by 
I 

v (t) =-0.56206 sin 2 t/3 + 0.02373 sin 2 t - 0.00437 sin 10 t/3 , (65)-while the alternative forms for p Leqn. (63), obtained by differentiation� 

of eqn. (62), or e qn. (64), obtained directly from o'-:z. ' J 2J are� 

p =~: = - 0.37470 cos 2 t/3 + 0.04745 cos 2 t - 0.01457 cos 10 t/3 (66) 
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or 

p = - 0.36808 cos 2 t/3 + 0.04745 cos 2 t - 0.01399 cos 10 t/3 . (67) 

These expressions may be compared with the Fourier analysis of computer 

results for this case, as given by eqns. (l2a, b) of Section C 2. There is, 

of course, no fundamental bas::ls for choosing between formulas (66) and (67) 

since, as noted previously, eqns. t63) and (64) are identical through terms 

in (1 13 - -zJ IN)2. It is in any event clear that the present results differ by 

a few percent from the computer results for z/ IN = O. 3. 

(b)The fixed points: The results presented in Table III for the unstable 

fixed points at t = 0 (mod. '1r ) and at t = 3 7r I 4 (mod.,..,.,) have been sub­

jected to computational checks for .,) IN = 0.3 and for -zJ IN = O. 3275. 

Computational data pertaining to the fixed points at t = 0 (mod,7T') have also 

been obtained for a series of values of -z) IN, ranging from 0.30 to 0.36, 

in order to exhibit the dependence of the accuracy on the proximity to the 

JJ IN ..., 113 resonance. We present these results below, to be followed 

in the suceeding sub-section by data for -z)IN = 0.3 which pertain to the 

"intercept" of the separatrix on the symmetry axis of the phase diagrams. 

The coordinates of the fixed points, as calculated by the expressions 

listed in Table III, are compared with computer results for -z) IN = 0.3 

in Table IV. The agreement with the computer results is seen to be poorer 

in TableIV than was obtained by the variational method summarized in 

Table I for '7.1 IN = O. 3. 
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TABLE IV 

COORDINATES OF UNSTABLE FIXED POINTS, 

AS CALCULATED FROM THE EXPRESSIONS OF TABLE III 

AND AS OBTAINED FROM COMPUTER RESULTS 

VIN = 0.3 

t From expressions of Table III From Computer� 
v p v p� 

0, 0 - O. 33461 0 - O. 3506 

.� 
mOd.7r + 0.48297 0.23849 + 0.4943 0.2440 - -
371/4, - 0.59015 0 - 0.6024 0� 

mod.?r 0.25949 + 0.30665 . 0.2668 + O. 3207� 

To illustrate results applying to operation nearer the .,)IN -t 113 

resonance, the coordinates of the fixed points, as calculated by the ex­

pressions listed in Table III, are similarly compared in Table V with com­

puter results for -zJ IN = 0.3275. 

TABLE V 

COORDINATES OF UNSTABLE FIXED POINTS, 

AS CALCULATED FROM THE EXPRESSIONS OF TABLE III 

AND AS OBTAINED FROM COMPUTER RESULTS 

V IN = 0.3275 

From expressions of Table III From Computer
t v p v p� 

0, 0 - 0.07778 0 - O. 07793� 

mod.'" + O. 10284 0.04191 + O. 10295 0.04195� --
31r 14, - O. 120095 0 - O. 12021 0� 
mod.1r 0.. 05854 ~ 0.06812 0.. 05861 + 0.06825� 
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As is to be expected, the agreement in this case. with 7J IN = 0.3275. 

is considerably better than for the case -z/ IN = 0.3 for which the results 

were described previously in Table N. 

As was mentioned earlier, it is of interest to examine the analytic 

results. in comparison with computer data. for various values of 7J IN. 

The results of such a comparison. for t = 0 (mod.'" ) and -z} IN in the 

range O. 30 to 0.36 are summarized below in Table VI. * in which the 

formulas used to obtain the theoretical results are those of Table III. The 

data are presented graphically in Figs. 1 through 3. and the percentage of 

error in the theoretical results is shown in Fig. 4. 

A detailed numerical examination of the computer data summarized 

in Table VI (forming. for example. such quantities as 

and 

1 

V IN - 1/3 [ 128 (-V/N/ (-z) IN - 1/3) 
\ 

for the various values of -z) IN employed and noting that these quantities 

respectively approach 714 and 21 14 as iJ IN ~ 1 13)suggests that the 

theory has. in fact. been carried correctly through terms of second order 

in ,) IN - 1/3. The correctness of this conclusion may. in fact. be 

immediately apparent from the second order dependence of the relative 

error on V IN - 1 13 in the graphs of Fig. 4. 
*1 am indebted to Mr. Igor Sviatoslavsky for assistance in performing SOnE 

of the calculations necessary in the processing of these data. 
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') TAB]) VI ) 

COORDINATES OF UNSTABLE FIXED POINTS 1 

AS CALCULATED FROM THE EXPRESSIONS OF TABLE III AND AS OBTAINED FROM COMPUTER RESULTS J 

°t ::. (mod. 77 ) 

VIN 
Fixed point on SymmetrY Axis 

p p tt:rror ±Y 
Fixed Points to ri!lht and left of SvrnmetrY Axis 

±v t,;rror p p ... ·rror 
~ormula  computer ~  formula computer % formula computer ~  

0.300 -0.33461 -0.35065 -4.57 :to.48297 ±0.49430 -2.29 + 0.23849 + 0.24398 -2.25 

0.305 -0.29897 -0.30971 -3.47 ±0.42445 ~O.  43205 -1. 76 +0.20384 -t-O.20731 -1. 67 

0.310 -0.25895 -0.26554 -2.48 ±0.36171 ±.0.36638 -1.27 +0.16850 ~0.17  049 -1.17 

. 
0.315 -0.21416 -0.21768 -1.62 ±-0.29439 ±0.29689 -0.84 -t-O.13262 ...0.13361 :.-0.74 

0.320 -0.16408 -0.16558 -0.91 'to.22202 .±0.22310 -0.48 +-0.09639 +0.09678 -0.40 

0.3225 -0.13688 -0.1377 4 -0.62 ±0.18379 .±0.18440 -0.33 +O. 07822 +0.07843 -0.27 

0.325 -0.10815 -0.10856 -0.38 :J:O. 14409 ,to. 14439 -0.21 +0.06004 +0.06014 -0.16 

· 0.3275 -0.07778 -0.07793 -0.20 ±0.10284 .:to. 10295 -0.11 + 0.04191 +0.04195 -0.08 

0.33 -0.04568 -0.04571 
•

-0.08 ±0.05994 fO.05997 -0.05 +0.02386 -+ 0. 02387 -0.04 

0.3325 -0.01174 -0.01176 --­ ±0.01529 j:0.01531 --­ +0.00594 +0.00595 --­
. 

0.340 +0.10237 ~  0.1 0269 -0.30 ±,0.13038 ,±0.13060 -0.17 -0.04649 -0.04654 -0.10 

. 
0.345 -+-0.19025 +0.19226 -1.04 ±0.23878 .:r0.24027 -0.62 -0.07963 -0.07987 -0.31 

0.350 +0.28943 -+-0.29655 -2.40 :r0.35808 :to. 36341 -1.47 -0.11042 •-0.11106 -0.57 

0.355 +0.40211 -to.42186 -4.68 +0.49047 :to. 50549 -2.97 -0.13781 -0.13883 -0.74 

0.360 ~.53130  +-0.58071 -8.51 :to.63906 :0.67734 -5.65 -0.1603 
•

-0.16070 (-0.25) 
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(c) The intercept: The intercept of the separatrix on the symmetry 

axis, for which formulas have been given in Table III, is somewhat more 

tedious to determine computationally than the location of the fixed points. 

Computational estimates of the intercept have been obtained, however, 

for V /N = 0.3 at t = 0 (mod . ..".. ) and at t = 3 7T /4 (mod. '?t). The 

comparison of the theoretical and computational intercepts for these cases 

is given in Table VII. 

TABLE VII 

LOCATION OF THE INTERCEPT ON THE AXIS OF SYMMETRY, '1JIN= 0.3 

LOCATION OF INTERCEPTt Relative Error 
(mod. ?') From Table III From Computer 0/0 

p = 
0 0.1886 0.191 2 

v =� 
3 7r /4 0.3024 0.308 2� 
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APPENtU.}� A 
., 

9EXPRESSION OF11. EXPLICITLY IN TERMS OF , 5.
I� J, I 

An iterative� solution of eqn. (22b) for 5.. ( Y , ~ ) leads to 
o J/ ...;;;II Z 

50 =~ +� (i/48) (N/ z) )J/& [1>, ~2, + 2, ~~ -3; !, +.3.13 J, 1 a _G --J 

- (1/1152) (N/ z) )3 [(~;+- 7.J1) 5/ + (3l, ~2.or Z rp,~)~;I.~ -I- (3 <J, /;3'" z,/>iJ .,.3(tJ)~~  +(;(/./'1 YJ'I)~  

• 5, '+ (i/48)(N/7.d'" [PI $,"+?. fA ~g, + 3 ~J j)� j 

+ (1/1152) (N/ V)3 [((.3/2.) tA -(1/£)(;/)3;3+(('1la)~op,-(!/~)~ f~~~ -{rf1)I,~ -({,,)~~)5,3; ,(Al) 

in which the cubic term has been simplified by elimination of ~  •... through use of eqns. (2b-e). Solution 

. 

of eqn. (22a) for ~  (3, . ~ ) similarly gives 

~  •S. -(i/48) (N/ z) )3/2.[.3~o3.~ +z i ~ $, + i .C;~] 

::Jo , I' I ... ;:),� i. oJ 
+(l!li52) (N! V)3 [(3~()~/+~ lpo)$,3 +('10 ~lf ~/+3'A)0~-r(9t~ rZ~tA+Z'i:J~~ +(J~41'fi)~ 

= ~ -(i!48) (N! z) )3~[310 ~2.+ 2 i 5, ft -t Iz !iLJ .J 

1" (1/1152) (N/ V)3 [(('Il-)~~/-('k)~zy~a!*~lci3-('b)i,i$.i+(r3/a)l,k(V;J'A·)J,  . (A2) 

It may be noted that, since P2. "" t * and l = tfo * [eqns. (20c" d)] ' eqns. (Al, 2) are consistent 

with the statement that ~  ,.~  form a complex conjugate pair to this order. 

Forming the product of eqns. (Al, 2) then leads, through fourth order terms" to 

J;.i =.5,~ + (i/48)(N/ ZJ>3/"[-3f.5/_1-,3,2J, r/..3-.t-r 3~ tJ ,. -,_", 
-t- (1!7 68) (N! V )3[£1,3, '1+-1/- io~2 5,~ -t(9 i,11+-i~J g;j 1- if.icA ~ $ .,.J~ ~ ~ ] . (A 3 ) 

In addition 
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)- - ~#[ r ~) (pi. ) ;r -1 - _i.

$0'"~ =-5, +~ + (i/",)(ff/V) (-3~o  t 'rl ~  +(-Z'R/ r Z~z)~,  ~ r(-I1, -r3i~)~  

+- terms of third order> (A4) 

so that 2. ~ 

(30r%:,)3:. $,3 l' 33,'-! + J~  ~ + 0 
-/-{l/"Xli/V/P.[r-3/.ri)~ 'if- (-1.1. ;-z~ .§;~ r(-3I.-3~ +3k3J).{f-(-~+(.I.Jtf+(~+34)tJ  (A5) 
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)ccordingly, the Hamiltonian..!l., becomes )� ) 

..f1., :I flo + 'dF',/()t 't 

• _ i. (t z)/N)~~o  - (1/,,')(N/tJ)3/2, (e ~,t  _ e- 2 (ot) (~ +~)3 .,. dry/;t� 

= - i (, V/N)~.! 
 

[iPo~  + ~(z)/N)lo  + (l/zJ(e%.,;t - e -~it ) ] ~3
 

3/a{ +[li'-l-;?(U'N)i +(J/2,)(e~lt_e:-2.d)  ]$z.g,� 
- ;j; (~) J + [il: -Z(V/N)~  +(3/t.)(e~lt _ e-2Jit) .]~ ~1
 

+[ iJ; -I., (1J/N)~3  t(I/~)(~  zii- - ~_a;t) Jt� 
ait)] I,�([ll; .;-h(U'N)A +('/,-)(e~''t_  e- " 'I 

~[i~'  +2(lI/,vJ1, +(3/~(e i.it. e '~l~]~  - ('~.11" -~)(eZit -e-;ut;) 3, 
(Z[il: f '(zJ/N)£ + (~)(e2i.t_e-~it  )]/~ 	 ) .3­

+ \::~[L tM -Z(ZI/#)~z. r(7'1.)(eut -e-Zii)]i -(ii -lJ{e"'(e-1.it) ~ ~  o• 
3[ii,' +,(zJ/N)1o +(~)(e~Lt_e#;'L~] ~ 

• .1- (Li} <� (+Ct/.' rZ(Z¥N)" -f(J/...xe2.:t-e-~"J~ 

/5310 V +� _[ i. if -Z (V/N) ~ .,. {3/a)(f!. zit _e~it)j  l� 
.3 [ll; -, (7J/N)~  +( '/z)(e~it-~-2.'9J~o  _(3/2,)(/0t-i -~ _~~Zit_e-;U.~
 

( zL//;' + Z(V/N)t +-(a/1J)(e2tt_~-~it;J~ 	 ) -3 

+ l: z.D~' -&(1J/N)~  +('0.) (et-it. e.-ld))¢,. (I, - 3t){e~it  _e-Mt) J; J: 
[i1~ -Z{7JIN)~~ l-{3/z,)(eZ,it-e-'-l9]~  ~ -II 

f ( - D/; -aV/N)~  + C'lh){G 3-i( e -2itJ]~ -(!I2.X4. -3 tP. )(el-d - e-Ut;)5, , 
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) )whic __ )bY virtue of eqns. (19a-d), reduces to~:<  

J2.- = -i. (2, VIN)~ ~ - (1/'1(,,) (1I1zJ)3/2, [ e2,/:t ~~ - e ~z.i.t ~ JJ '. 

[-3 i, (e'lLt _e -ti+ ) +i (2. ez,t _e -Zl.t) 75.1i 
I J , 

.,. [-,/0 (et.N: _~~1.JLt) +- z/z. (~eZ.&·t_e-2.Lt)] ~3~
 

. 3 -+ [-3fo(eZi.t .. Ze-2-i.~-3f, (e~l.t_e.-~;.t)
 

-dn (~) ~ +-3 Pz- ("Zit. - e -I. it) f 3 rA (Z e etc-e-2lt)] 3.;z.J:� 
3 I I 

f [.Z" (e 2L't: - Ze-Z i.1:) +-~ ~ (e Zit -e -~d.)]3; ~ 

+ [-~ (e~d:  _Ze-Zii
) +3 ~ (e 2tit_e-2-it)] ff4 

(A7) 

With respect to the quartic terms use will be made in particular1 0 of that part of the coefficientJ 

1J _2­
of .g;); which is independent of t - -this specific contribution to fl., is 

i cJ/N(v/ [6 ]rf,�1.2048 1 - (.,)/N)2 

as is readily found by use of eqns. (20a-d) for the functions Po ' P" ~t. • and ~3  

*It was to effect this specific reduction of the cubic term that the quantities ~o'  ... 4 were required 

to satisfy eqm (19a-d). 
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)� ) 
APPENDl) B 

,
• 

EXPRESSION OF K1 EXPLICITLY IN TERMS OF Y,. J 1 

The Hamiltonian K1 as given by eqn. (53). with Ko represented by eqn. (50) and the dynamical 

variables by eqns. (52a. b). may be express ed 

K1 =2 (V/N) J +-(1/48) (N/V)'P JiV2.G cos (" - 2t)-r3 cos (5+ 2 t) -3 cos (3 '~2 t) ]
1 f 1 - V/N 1.,.. IN� 1 ..,.. 3 VIN 

+ (1/48) (N/V)S/~(J1a/"'''''(3/64)(N/V)"P-J [ [cos (~  - 2 t) + cos (t,.,..2 t) _ cos (3(;'1"2 t) l}xl 1 - 7)/N l.,..iJ/N 1 + 3 V/N j

-f 3 cos < ~ - 2 I) - 3 cos <1.-1- 2 I) ... cos <31;+ 2 I) - cos (3(0 - 2.1)} 

+ (1/48) (N/.,) )3f2,J3/~[_  3 cos ( ~ - 2 t) t- 3 cos ( ~-r  2 t) _ cos (3 ~T 2 t) ]� 
1 1- iI/N l+V/N 1+3V/N� 

=-2(V/N)J1-t- (1/48XN/z)3/2 Jf/2( [3 co~ ( ~  ~._~  t) ~3  c~s.  (!?;!: 2 I) _ 3 c.os <3_Y.._'L~ t) j. (~ ) 
+ 3 cos (~  - 2 t) - 3 cos ( ~+  2 t) + cos (3 , .,.. 2 t) - cos (3 ~ - 2 t) 

3 cos (~  - 2 t) cos (t,+ 2 t) cos (3 ~  + 2 t) 
- , - =tJltI "'3 ,-I- -VIN - I 1" 3 7J!1J 

1 3 1 1 1 
.. 13/2 2' ~ 1 -1//N - 2'" 1 t V/N -"2 ~1--r~3--"""f)T:/-N-

+� (1/1 024)(N/v) J 1 
.� plus terms of argument 

4 t. 2 ~ • 4 Yo • 6 ~ , 2 ~ t 4 t. 4'± 4 t. 6' + 4 t (B1) 
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By the nature of the transformation. as determined by the selected generating function G • the coefficient1 \ 

of J~/2  is such that a considerable cancellation is seen to be possible. Those terms in the coefficient of 

J; which involve t and/ or ~  will be ignored. since. to the order to which the analysis is to be carri ed" 

they will not contribute t~independent  terms to the Hamiltonian which results from the final transformation. 1 0 

In view of the remarks just made. K1 is taken to be effectively 

K1 = 2 Cz)/N) J 1 - (1/48) (N/z})3/2 J 1
3 / 2 cos (3 ~ - 2 t) 

..... (1/2048) (N/ -,})3 J2 [6 c)/N _ 1 ]
1 1 - "il-I N2 1 -t 3 1)7N (B2) 

Since &:... eqn. (52b)] the variable ~  differs from ~  by terms of order J I /2, we may expect that 

substitution for ~  in the second term of eqn. (B2) will contribute additional terms to the coefficient of 

J;; this substitution. however, will not introduce terms other than thos e of the form which already have 

2been ignored in the coefficient of J and we therefore write, finally;1� 

K1 - 2 (V/N) J 1 - (1/48) (N/ V)3/2.f{/2cOS(3 r; - 2 t)� 

1+ (1/2048) (N/ V )3 J 2 [ 6 -,)/N 
1 1 _ 7)2/ N2 1 .... 3 V/N (B3)J. 

2The last factor appearing in the J term will be recognized as the parameter denoted by ~  in the
1 

text [eqn. (25) J. 
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