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ABSTRACT 

The efficacy of various types of field-index perturbations (n-bumps) 

in effecting an instability potentially helpful for beam utilization is examined 

analytically for an alternating-gradient particle accelerator and the results 

illustrated by computational examples. The perturbations of interest open 

up a stop-band, at the frequency V ' within which the solution to the (lire ar)x 
equations for the radial betatron oscillations soon become dominated by a 

solution of exponentially-increasing amplitude. A field-index perturbation 

containing circular functions of argument ( 2{ + r) 9 and (.2{ - r) 9 can open 

up such a stop-band and a circular function of argument 2 V 9 alone can be x 
particularly effective. The azimuthal dependence of the perturbation can also 

serve to influence the form of the unstable solution, a perturbation which in 

particular contains a term of argument ( :2{ + r) 9 serving to introduce a 

sine or cosine term of argument r 9 into the solution, and it is suggested 

that such terms with r = 1/ l may be useful in some applications. It is finally 

pointed out that to achieve some particular features of the solution, such as 

meeting the condition dx/d9 = 0 at 9 = 0, careful engineering attention may 

be necessary to insure meeting the necessary tolerances for the form of the 

perturbation. It is suggested that such tolerances, although not discussed 

explicitly, could be estimated by the methods presented in this report. The 

analytic work is supplemented by Appendices covering some details of the 

analytic work, which employs a variational method, and by Appendix Iout­

lining an equivalent approach by conventional perturbation theory. 
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1. INTRODUCTION 

The use of the half-integral rsonance, V =1/2, to effect rapidx 

beam knock-out, or extraction, from a normally constant gradient synchro­

tron (or betatron) has been previously publishedl , 2* and more recently a 

convenient analytic description of the method has been reported. 3 Although 

there were'some early attempts4" 5,6 to study the applicability of the orig­

inal method to alternating-gradient accelerators, the use of the analytic 

approach to guide a broader reinvestigation of resonant knock-out seems 

timely, especially in view of the great enhancement of utility and versatility 

which a successful method would provide for alternating-gradient acceler­

ators now nearing completion. 7, 8 

In the following sections we attempt to make such an investigation, 

guided by the analytic approach and with computational tests made through­

out the treatment to check the theory with illustrative examples. It is not 

claimed that the knock-out methods examined here are optimum. or even 

practicable in all cases, but it is hoped that the discussion will stimulate 

furtle r consideration and examination of this topic. 

It may be recalled that the method used with the constant-gradient 

synchrotronl , 2. 3 employed an azimuthally-dependent perturbation of the 

field-gradient (n-bump ) to drive the operating point into an unstable zone 

(stop-band), which opened up with a width proportional to the magnitude of 

the perturbation and within which the solution for the exponentially-increas­

ing betatron oscillations attained its maximum value at ~ particular azimuth 

in the machine. In application to an alternaing-gradient accelerator it may 

*References are given in Section V. 
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not be convenient to retain all the features just mentioned, but we shall 

devote attention in what follows to the dependence of the stop-band width 

on the strength of the perturbation and on the manner in which the character 

of the unstable orbits can be controlled. 

For the purpose under consideration here the use of an n-bump 

appears desirable, since the perturbing windings then have very little 

. coupling from the main magnetic field of the accelerator. In analogy to the 

earlier work, I, 2, 3 we shall confine our attention in the present report to 

the effect of various types of n-bumps, although the possible utility of 

field-bumps may deserve attention at a later time. The use of a half­

integral, as distinct from an integral, resonance in the present application 

does not seem essential and the selection of the particular resonance to be 

employed may be based on secondary considerations peculiar to the partic­

ular accelerator with which the method might be used. With the integral 

resonance it will be seen, however, that if the unstable orbits show any 

preference for large amplitudes at some particular azimuth, half of the 

particles may be driven towards the outer radius at that azimuth and half 

toward the inner radius of the chamber; in contrast, with a half-integral 

resonance, the particles would go alternately to large and small radii on 

successive revolutions. In some cases it may be of importance, from 

the standpoint of economy or feasibility of the electrical pulsing equipment, 

to open up the stop-band by an adequate amount with relativity modest 

perturbations and, in such cases, this consideration may prove to be of 

dominant weight. In other cases, however, it may be of interest to insure 

6
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that the beam makes its maximum departure from the equilibrium orbit 

at ~ azimuth within the accelerator g to avoid interference by the inj ector, 

additional targets i or other structures within the vacuum chamber. As we 

shall see, it appears tr..at these features can be realized by a suitable form 

of perturbation, or by a combination of such perturbations. 

Basically. then, we shaH visualize driving the accelerator to a near~ 

by half-integral or integral resonance and shall direct attention not only to 

the stop-band width and associated growth rate of unstable oscillations but 

also to the form of the dominant solution for these oscillations. If the in­

stability associated with a readily-accessible stop-band can be effectively 

exploited, use of thz.s instability would appear to afford a subt~le and 

economical. way of effecting knock-out. 

Attention will be directed exclusively to achieving radial instability, 

it being presumed that axial stability can be maintained. Throughout the 

report the equations of motion will be taken to be linear, and typically may 

be regarded as of the Hill form. It is convenient to obtain approximate 

solutions to problems of this type by means of a variational method3 i 9, 10, 11 

and this method will be followed in the body of this report (Sect. II); alter­

natively, however, the use of harmonic balance or, as demonstrated in 

Appendix I, standard perturbation methods l2, 13 may be found equally 

suitable. 

In some of the numerical examples, the unperturbed accelerator 7 

will be considered to consist of N identical A-G sectors (full sectors) 

with N :::: 48 and 2J (the number of radial betatron oscillations per circum­

ference» in the range 7 to 7 1 /2, while in other examples we take N ::: 24 
7 
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and '2J:::: 5. In either case, hONever, the illustrative material thus will 

not include the complication of straight-sections, super-periods, or 

auxiliary lenses" it being felt that nothing significant is lost in the expo­

sition by omitting such elaborations. 

II. THEORY 

A. The Unperturbed Problem 

The differential equation characterizing the radial betatron oscilla­

tion may be taken to be of the form14 

2
d x/d92 + [a + m F (9)} x =0 (1) 

in the unperturbed case" where 

F (9) :: + 1 for - 'TC/2N <.[9, mod. -2 1t"/N] <. 'Tt/2N 

F (9) ~ - 1 for 1"(/2N <. [9, mod. 2 mN14.- 31r/2N . .. 
It is seen that 9 == 0 then corresponds to the center of a "radially focus­

ing'· semi-sector. In what follows we shall usually neglect, for con­

venience, the constant term lIa ", thus ignoring the normally-small 

"centrifugal focusing" for the radial oscillations. 

'1 3 9 10 11, 1 d 'th 1A s noted prevIous y. ,. , eigenva ues an • WI ess accuracy, 

eigenfunctions for periodic solutions of equations such as (1) may be con­

veniently obtained by a variational method. This method may be expressed 

in the form of the statement 

2<(dx/d9)2 » - a <x2 >- m( x F (9) > =min. • (2) 

where <. > denotes that the quantity within the symbol is to be averaged 

over an entire period. 15 

8
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A solution of (2) may be obtained readily by adopting the simple trial 

function16 

x =A cos V9 + B
1

cos (N - 1) ) 9 "'" B Z cos (N + 1,) ) 9 (3a) 

or 

X :: A sin Zl9 + B 1 sin (N - V) 9 + B
2 

sin (N + zI) 9 . (3b) 

By substitution of the trial solutions (3a) or (3b) into (2), setting the partial 

derivatives of the resultant algebraic expressions separately equal to zero, 

and solving the resultant simultaneous equations, one obtains 

2 m 1 
B = +-- A (4a)

1 - 7t (N - V) 2 - a 

1 
B -~ A (4b) 

2 - -1\ (N + 21)2 - a 

V = a +(Z,r/ [(N _ 12A2 _a +(N +iJ)2 _ 1 (4c)a 

where the upper and lower signs for B1 refer respectively to the even 

(cosine) or odd (sine) solutions (3a) or (3b). 

In the case of present interest we take a = 0 and we write 

(5a) 

(5b) 

(5c) 

9 



MURA-445
 

For this "unperturbed problem, II the interval 2'1\ of the accelerator as a 

whole plays no basic role and the results (4a - c) or (5a - c) need not be 

considered to be restricted to integral or half-integral values of V--from 

another point of view one may reason that the frequencies 1J of the oscilla­

tion and N of the structure may be regarded as effectively commensurate 

in some (possibly large) interval and the variational statement then con­

sidered as applying in that interval [ref. 11, Appendix II]. It may also be 

noted that, to the degree of approximation employed here, the function F (9) 

in the differential equation (1) could equally well be replaced by its first 

4 
Fourier component" 7( cos N 9. 

For V~~ N, equation (5c) may be written in the simplified approxi­

mate form17 

(6) 

Although equation (5c) as it stands is a rather accurate relation be­

tween V and m for the parameters of interest here (vide Table I below), 

it may be presumed that improved accuracy could be obtained by use of a 

more elaborate trial function" employing, for example, additional circular 

functions of argument (2 N - "2) 9, (2 N ... '2/) 9, (3 N - V) 9, (3 N + V) 9, 

etc. If we undertake to improve (5c) in this way, and simplify small 

correction terms by the aid of (6), it appears that we obtain a more accurate 

result of the form given below. 

10
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We present below in Table I the values of m computed by means of 

equations (6), (5c), and (7) for a few values of 2/ in the range 7 to 7 1/2, 

for N '" 48, in comparison to the exact results obtained by a direct matrix 

computation for the solutions to equation (1). It will be noted that, although 

the results obtained by use of (7) are definitely superior, the relation given 

by equation (5d is fairly accurate. In the following sections we shall 

endeavor to treat the perturbed accelerator to an order of accuracy com­

parable with that used in deriving (5c). 

TABLE I
 

Comparison of Exact Values of m with Values Given by Analytic Formulas
 
(N =48)
 

m 
V 

Exact By (6) By (5c) By (7) 
, 

358.68 373'2 361.44 358.71 

7.375 376.53 393'2 379.4 376.56 9 

7.5 382.43 399'9 385.42 382.5
1 

Error (4 to 5)/102 
<1/102 (l to 2)/104 

B. Analytic Estimates of Stop-Band Widths, Lapse-Rates 

and Character of Orbits in an Unstable Zone 

I. Method: 

When a perturbation is applied to modify the coefficient of x in 

equation (l >., the frequency of the betatron oscillations will be modified 

and a zone of instability, or stop-band, may be opened up (Fig. 1). If 

11
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the perturba.tion is an even function of e (periodic, with period 2 'T( or a 

sub-multiple thereof), the periodic eigensolutions which are associated 

with the edges of such a stop-band are conveniently even or odd functions 

of e. By use of suitable even or odd trial functions in a variational pro­

cedure similar to that used in Sect. A, the location of the stop-band 

boundaries may be determined rather well and the form of the eigensolutions 

estimated. 

Within the stop-band, moreover, it appears that the solutions to the 

differential equation can be rather well expressed in terms of the eigen­

functions associated with the boundary of that particular zone of instability. 

This fact, which we develop below, permits us to estimate the rate of growth 

of the unstable oscillations, as well as other features of the orbits which are 

of interest. We undertake below to develop the general relation which con­

nects the solutions within the stop-band to the associated eigenfunctions, 

and then proceed to examine the effect of specific types of perturbations. 

2.	 Approximate Character of Solutions within a Stop-Band: 

To obtain an approximate description of the solutions within an unstable 

zone, with an estimate of the characteristic exponent which determines the 

rate of growth (lapse rate) of the unstable solution, we follow a procedure, 

based on a suggestion by McLachlan, 18 which we have previously3, 11 found 

useful in similar applications. Although the solutions quite generally could 

be written in terms of an ascending (or descending) exponential factor times 

a periodic function of 9, where this periodic function could be expanded in 

terms of a complete set of eigenfunctions, we assume here that it suffices 

12
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to employ only the characteristic solutions associated with the boundaries 

of the stop-band of interest. We thus visualize an approximate solution of 

the form 

x "" e + p. 9 [c c (9) + S s (9) ] , (8) 

where c (9) and s (9) represent, respectively, the even and odd eigen­

solutions at the boundaries of the stop-band. An expression of the form 

(8) is then substituted into the differential equation of interest, which is 

of the form 

(9) 

where f (9) represents the perturbation. Use is made of the fact that 

c (9) and s (9) satisfy (9) for m equal to m or m ' respectively.even odd 

In this way we find that. if (8) were a true solution of (9), the following 

relation would be satisfied identically in 9: 

[;t2 + (m - m ) F (9il C c (9) + 2)/ S s' (9)even

+{f.2 + (m - modd) F (9)J S s (9) + 2}J-C c' (9) ::: 0 • (10) 

where the prime denotes differentiation with respect to 9. 

In order to adjust the parameters in (8) so that (10) is satisfied in an 

approximate sense. we multiply (10) in turn by c (9) and by s (9) and 

integrate, to obtain the conditions represented by the algebraic equations 

which follow: 

[jA,2.t...c2) + (m-meven)~C2F>] C + 2~<csl>S=0(l1a) 
2 ,tt.(c' s > C + ~2 <::. s2 > + (m - modd) <s2 F1S = O. (lIb) 

For the simultaneous homogeneous equations (lla. b) to have a non-trivial 

solution, the determinant of the coefficients must vanish, thus determining 

fl and thereby fixing the ratio of S to C. 
13 
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Since the analysis described here is no more than approximate. we 

regard it as sufficiently accurate to propose the solution 

and 

m - modd (l2b) 
m even - m 

For evaluation of the right-hand sides of equations (12a, b) it should 

suffice to employ only the dominant terms in c (9) and s (9). namely just 

the terms appearing in the unperturbed solutions [(3a, b), with the co­

efficients (5a, b»). By use of these unperturbed solutions we find 

(13a) 

2 
'Aeven 

(13b) 

, ~ 21<:. c s > T Aeven Aodd ' and (13c) 

, >~ ,; (l3d)<.,c s - - T Aeven Aodd . 

The results (l2a, b) may thus be expressed in the convenient form: 

8 mo2 z -I(meven - rn) (rn - m odd ) (14a) 
'T(NV 

and 

C/S~I m - modd (l4b) 
rneven ­ m 

14
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with 

(14c) 

The exponent jA may be said to be expressed here in nepers per radian-­

the corresponding lapse rate in nepers per revolution would be obtained by 

multiplying by 27\ and in decades per revolution by use of the further factor 

loglO e (= O. 4343). 

From the results (14a - c) it is clear that the lapse rate attains a 

maximum value, near the center of the stop-band. which is directly propor­

tional to the width, J m even - mood I ' of the stop-band. The growing un­

stable solution. when the exponential factor is factored out, is seen to have 

its azimuthal dependence in the center of the band represented by an equal 

admixture of the even and odd eigensolutions which prevail at the edge of 

the band. To the extent that equation (6) is an adequate approximate expres­

sion for 21 . the maximum lapse rate given by (14c) may be expressed in 

the very simple approximate form 

il ~ 2J Imeven - moddl nepers per radian. (15)r-max. ""2 
mo 

3. Effect of Perturbation 

The perturbation applied to n will necessarily be periodic in 9 and 

in a typical case might be of the form f (9) = f. cos r 9 + ~ cos s 9, 

where f (9) is the perturbation function appearing in equation (9) and the 

constants rand s are integers. We shall see that to open up a stop-band 

effectively at some integral or half-integral betatron frequency zI it is 

generally necessary to have present in the perturbation both of the terms 

15
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shown, with r ~ s :: ZI , since the stop-band width depends on the product 

£ r;. Before treating this case, however, we shall consider the case in 

which a perturbation f (e) = A cos 2 1,) is applied, since in this special 

case the stop-band is found to open up with a width proportional to the first 

power of the perturbation. In the interests of clarity we then also discuss 

the special case in which f (e) = Yf. cos zle, which is a form of perturba­

tion capable of producing a stop-band about the frequency z/when ],I is an 

integer. 

For determination of the stability boundaries and the form of the 

associated eigenfunctions for the differential equation (9) we make use of 

the variational statement 

L(dx/de)2.> - m <x 2 F (e) >-<x 2 f (e) >= min. (16) 

Throughout the analysis we shall presume that 1/<.< N. It moreover will 

be noted that, to the degree of accuracy employed, F (e) could be replaced 

by the first term of its Fourier expansion ~ cos N e. 

a. The perturbation )... cos 2 1/e 

With f (e) = A cos 2 "lie, the variational statement (16) which we 

apply at the stop-band boundaries becomes 

'.(dx/de)2'7 - m <. x 2 F (e)., - )...< x 2 cos 2 2Ie ? = min. (17) 

Trial functions of the form (3a, b) which were employed in the unperturbed 

problem (Sect. II) should now be supplemented by circular functions with 

arguments 3 ve, (N - 3 V) e, and (N + 3 V) e in order that cross terms 

in x 2 can contribute to <. x 2 cos 2 zle :>. By insertion of such elaborated 

trial functions, one even and one odd, into (17), one is led in each case to 

a set of simultaneous algebraic equations for the coefficients and for the 

16 
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associated values of the parameter m. We list below, in Table II, 

approximate solutions to these equations, retaining only terms which are 

first order in A (and presuming 1J~<:'N). Details are given in Appendix II. 

TABLE II 

COEFFICIENTS OF cos h9 or sin h9 IN THE EIGENFUNCTIONS 

CORRESPONDING TO THE STABILITY BOUNDARIES 

OF FREQUENCY 'V FOR THE EQUATION 

d 2x/d92 + [m F (9) + 7'-cos 2 V9] x = O. 

The upper sign is for the even (cosine) eigenfucntion and the lower sign for 
the odd (sine) eigenfunction. 

h Coefficient of cos h9 or sin h9
 

V 1 [ Normalized]
 
----r' 

1 - 17 ( ])I Nfl.3.,/ /..	 ~ 7'-- [1 + 4 ( V/N)2J ~ r­
167)2 1 - 21 ( U/N)2 16 V 2 161,.)2 

(1 + 3 Z4N)2 [1 +(N ~ 7'a m ~tr]N - 32)	 + /'- m ~ +-- -- ~ + 
-SVZ"rrN2 1 - 21 ( V/N)2 - 8"21Z 7'(N2 - 1612 liN 

1+ 2 m N-V
 
-7(N2 (1 - "V/N)2
 

N + z) 2m 1
 

1t'NZ (1 + V/N)Z
 

m V Z [ /3 V z]
r (1 - 3 IN) 1 + \IV ~,J ) N ?0- m ~ J..N + 321	 ­- IT N2 ­82JZ ?tNZ 1 - 21 ( 'VIN)Z 8 7)Z 16 Y2 VN 

m - m 1o	 _l(W )Z~ ~ + ~+ Z	 - ­m o 4 m o 4 if 
Relative W m even - modd 'TlN ,.., 1 
Width,	 m- -t4 m t r- e - z z)Z /-..moo	 o 

17
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These results are readily interpretable19 as the analogues of the 

corresponding results for the first stop-band of the Mathieu equation if 

we replace the rapidly-varying term m F (9) by its smooth-approximation 

equivalent constant. The effect of the particular perturbation considered 

here is seen to be powerful~ in the sense of being first order in A. It 

thus affords the opportunity of readily forming large rates of growth if such 

should be desired. but it should be noted that the modifications to the orbit 

are of high frequency. 

By use of the relative width, given in the last line of Table II, and by 

reference to equation (l4c). one estimates the lapse-rate in the center of 

the stop-band to be given by 

nepers per radian. (18) 

b. The perturbation 1(, cos 2J 9
 

With f (9) = ~ cos V 9, the variation statement (16) becomes
 

~ (dx/d9)2~ - m <:: x 2 F (9) > - ~(X2 cos V 9 >=min. (19) 

In this case the supplementary terms in the trial functions should include 

a constant (for the even eigenfunction). and circular functions of argument 

2 V9, (N - 2 V) 9, N 9, and (N + 2 1/) 9. By use of such supplementary 

terms the results listed in Table III are obtained (Appendix III). 
I 

We note that this perturbation. f (9) = Y'l. cos 7.19, is able alone to 

~. open up a stop-band at the frequency Z/. albeit with a width proportional 

18
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TABLE ITI 

COEFFICIENTS OF cos h9 or sin h9 IN THE EIGENFUNCTIONS 

CORRESPONDING TO THE STABILITY BOUNDARIES 

OF FREQUENCY V FOR THE EQUATION 

d 2x/dQ 2 + [m F (9) + 1l cos z/e]x,"" O. 

h Coefficient of cos h 9 Coefficient of sin h 9 

0 - - ­-(F:i / [1 ~ ( 1J!N)!~~~ ~ 4(1ItN)j~ 

zJ 1 [Normalized] 1 [ Normalized] 

1 1 - 7 ( "2//N)2 1 1 - 7 ( 7.J/N)l 
2,) 6 1/2 1 - 11 (lJ/N)2 Y'{ 6 1JZ 1 - 11 (71/N)2 1. 
r 

m (l + 2 V /N)2 [1 + <-,.2 -z;)2j m (1 + 2 V/N)2 [1 + V J-
N - 21/ yt3'lt'tfNZ 1 - 11 (zJ/N)"Z 31( 7.J2N 2 1 - 11 ( V/N) Y( 

1Zm - 2 m 1N -21 '1{' N2 (1 - V/N)2 7('N2 (1 - V/N)2
 

N - 'T( - 4 mzl>"lQit-rz ])2
 

4m rt '1rN5 N4 'l.
 

N +V 2m - 1 2m 1
 

'T('N2 (1 + ZI/N)Z 1fN2 (1 + V/N)Z
 

2[1 + tttun m (1 - 2 V/N)2 [1 + ( 2 11)l.J
mN + 2]) (1 - 2V!NI \N +V, "l.
311: il2N23'Jt'1I2N2 

1 - 11 (YIN)' T( 1 - 11 (VIN)2 

m ­ m o 5 (7(N)4 2 ~ 5 ( 7(N )2 1 1(N 2""" 1 7tN 2yt2 (2 (4 
mo "6 4 rno 1 12 V 2 4m - 12 211. 4 m o ) rt.- -"6 4 m ) >1 o o 

Relative W = meven - modd 2(..!1!1!.)4 2 'V 1 (1lN)2 2 ~ 1 
Width, mo m o 4 m o ll.. = 2 1)2 4 m o yt 4 jI4 >1.

to the square of the per turbation. In addition to introducing the term of 

frequency 2 Ve. and some higher-frequency terms, we note that it intro­

duces a constant term (in the even eigenfunction}, with a sign opposite to that 

of 'l1.. 19 
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From equation (14c), and reference to the last line of Table III, 

we estimate the maximum lapse-rate to be 

N (7'(N) 2ft.max. .:;::; ~-8 m (20a) 
o 

nepers per radian. (20b) 

c. The perturbation E cos ( 1/- r) 9 + C; cos ( 2/+ r) 9 

With f (9):: €. cos ( 1/- r) 9 + ~ cos ( 2J t- r) 9, the variational 

statement (16) becomes 

with r taken different from 1/ and from zero since the special cases 

f (9):: A cos 2 1/9 and f (9):: Yl cos 1,) 9 have been considered pre­

viously in (a) and (b). The two terms, of frequencie s 2J - r and V + r, 

are considered together here, since, to open up a stop-band at Z), both 

terms must be present together. 20 The width of the resultant stop-band, 

specifically, is proportional to the product Co ~ ; if only one such per­

turbation term is present, however. the results obtained here of course 

still may be used to give the m-value associated with the oscillation fre­

quency 21 and to describe the possible forms of betatron oscillation. 

Appropriate supplemental terms in the trial functions are selected 

so that such terms will give cross products with the terms of the original 

2(unperturbed) functions when forming x such as to contribute to 

~x2 cos (z) - r) 9> or ~x2 cos ( zJ + r) 9). Such terms are evidently 

of frequency r, 2 11 - r, 2 z) + r. N - r, N + r, N - 2 11 - r, N - 2 V + r, 

20 
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N .. 2 V - r, and N + 2 z) + r. By inserting such supplemented trial 

functions into (21), one is led (Appendix IV) to the results listed in Table IV, 

in which the upper and lower signs respectively refer to the even and odd 

eigenfunctions. It is seen that, as just mentioned, the width of the stop-

band is proportional to the product E:. ~ , thus requiring the presence of 

both a cos ('; - r) 9 and a cos (z) + r) 9 term in the perturbation. To 

obtain a simple, low-frequency term (as cos ~ 9 or cos 9) in the solution 

one would take r = 1/2 or r =I, although the width of the stop-band and 

the consequent lapse-rate may not be as great as with larger values of r. 

From equation (l4c), and reference to the last line of Table IV, we 

estimate the maximum lapse-rate to be obtained with this type of perturba­

tion as 

nepers per~ '$N radian. (22)P max .== =--------­
4 ( V - r) 1J ( lI+ r) 

4. Introduction of a Phase-Shift in the Perturbation 

From equation (14b), Sect. II B 2, it is evident that, with the types 

of perturbation considered so far, operation in the interior of a stop-band 

(where growth can occur) will result in a mixture of even and odd terms in 

the ascending solution. In practice, however, it may be desirable that this 

solution have zero slope at 9 = 0 (the center of the first radially-focusing 

semi-sector) so that a maximum orbit displacement can occur at that azimuth. 

An almost equivalent condition, which is slightly simpler to treat, is that 

the ascending solution after removal of the exponential factor shall be an 

even function of 9. We indicate below some examples wherein this condition 

21 
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COEFFICIENTS OF cos he OR sin he IN THE EIGENFUNCTIONS 

CORRESPONDING TO THE STABILITY BOUNDARIES 

r"' OF FREQUENCY V FOR THE EQUATION
 

d22]xl de
 + frnF(e) + € cos ("/-4'")e +:J, cos (.J+ r)e x = o. 
The upper sign is for the even (cosine) eigenfunction and the lower sign for the odd 
[sine) eigenfunction. 

h Coefficient of cos he or sin he 

r 1 1 + (,)2 -Zr2 )1 N2-	 (~+~) ~ ~ (:/ 2 [1 + 4(JIN)2J (E +.$)2(112 - r 2) 1 - (3.j + 2r2 /N2 -	 2 V - r ) 

-zJ	 1 ~orrnalizectJ 

2v- r 1 1 ~ (7J 2 - 81Jr + 2r2)/N2 
1 

2(3v- r)(-J- r) 1 - (117J2 - 8vr + 2rZm2 ~ -""- 2(3~- r)(,)- r) [1 + 4(.,)/N)~€ 

1 1- (7"})2 + 8-vr + 2r2)/ N2 ~ (V 12-J+ r 
[1 + 4(V/N)~ ~ 2(3";+ r)(-a.J+ r)' 1- (11-zJ2 + 8c..k' + 2rZ)/NZ ::: 2(311+ r)(u+ r) 

-12
N -2.,)-r 1 

+	 2v'+ of [1 +CJ+rf][1 _ 1171 +S.yr +2rJ 
- (3,)+ r)(v+ r) '';:2 [1 + N N--z) NZ ;J, 

2 -12NrY+r + 1	 + 2v; rj2[ 1 t~zJ_-':) J [1 _117)2 ~~l1r + 2r ] e: - (3}/-r)(;)-r) 7r~2~ 
N -L.J	 + 2m 1 

-1TN2 (1 --z} IN)2 

..-,N-r 1 rn 
--/2 _r 2 (1 +~) 2 [1 '- 3?1~12r2 J-y +[1 +(N ~J 2]f+ [1 +(N :1J~ J~ ~ 

7T NZ
 

2
 .. 1	 2T1
N+r -

.,)2 - r 2 7T:2 (1 - ~) [1- 3,1;; 2r t[1 +~Nr+7l)]f.+[: +(N~vJ J;1) 
1N +-J 2m 

1TN2 (1 +1JIN)Z 

2 2] -1N + 2,)- r 1	 11'> - 8-vr + 2r €1r~2li- 2~ rJ 2 [1 + (~v;~~ 2J [ 1 ­(3';- r )(v- r) N2 

2 2 -1 
1N+211+ r	 m [1- 2V+rJ 2[1 +(2-zJ+ 1J[1 _ 11V ~~1Jr + 2r ] ~ 

(3,)+ r)(-J+ r) 17N2 N N +ZJ 

rno 
2" 4 rn (3"11- r)(1J+ r) - 1JZ - r 2 (3'11+ r)(-z)- r) 

rn -	 1(11' N) 2[ € 2 + ej + J 2 ~ 
rn	 oo 

Ri tive 
W= rneven - rnoddWidthl	 ­rn (4-::f 1Jf :;2III0o 
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is met by introduction of phase- shifts into the applied perturbation and by 

suitable adjustments of the coefficients. 

a.� The perturbation - ~1 Gin 600 cos (78 + 5Z?5) + sin 5Z?5 cos (88 + 600U, 

with V"" 7.5 and N = 48 

As a specific example we consider an accelerator with N = 48, and 

make use of a stop-band at V::: 7 ~ which results from a perturbation such 

that the differential equation reads 

d 2x/d9 Z + [m F (8) - ~ 1 ~in 600 cos (79 + 52?5) + sin 5Z?5 cos (89 + 6oo~'l = 0P;3a) 
or� 

d Zx/d8 2 + tm F (8) - S1 [sin 600 cos 7 (8 + 7?5) + sin 5Z?5 cos 8 (8 + 7?51l = O.� 
~23b) 

By setting if = 8 + 7?5 this is seen to assume the standard form for which� 

Table IV applies, since, with N = 48, F (8) is periodic with a period 2 'T"C148� 

or 7~5:
 

d 2x/d tt2 + [m F (8) - -; 1 (sin 600 cos 7 tf + sin 5Z?5 cos 8 sP)] x = 0, (24)� 

for which [ :: - -; 1 sin 600 
, ~ =- ; 1 sin 52?5, r = liz.� 

By reference to the first line of Table IV we note that the coefficient 

1 . 1
of the cos"Z e and sm'Z e terms which arise in the perturbed eigenfunctions 

may be written as of the form 

or, in the present example, 

k ; 1 (sin 600 :t. sin 5Z?5). 

The ascending solution prevailing in the interior of the stop-band would then 

be expected to be of the form [Cf. (8)1 ~ 

23 
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x = e-'~(9'[c [cos 7. 5C1 + k 51 (sin 600 + sin 52?5) cos ~ C; + .. J 
+ S [sin 7.5 r; + k ~ 1 (sin 600 

- sin 52?5) sin ~ Cf+ . ·1J· (25) 

Since, by (14b), the ratio cIs is given at least approximately by 

-V (m - modd) I (meven - m): we can, by suitable choice of m, arrange 

to have cIs = tan 33?75. The solution (25) may then be written 

x = A1.,!<(P[sin 33?75 &os 7.5 Cf + k S1 (sin 600 + sin 5Z%) cos ~ rp + ··1 
+ cos 33?75 [Sin 7. 5f + k ~1 (sin 600 

- sin 52?5) sin ~ rp+ .. oj} 
= A1 e,u?{cos 56?Z5 cos 7.5 {jJ + sin 56?Z5 sin 7. 5~ 

+ k ~1 sin 67?5 [cos 3?75 cos ~ tp+ sin 3?75 sin ~ '1']+ ...} 

= Al e}lffos 7.5 ((f - 7.5) + k 51 sin 67?5 cos ~ (Cf - 7.5) + .. -) 

= A ep.rp [cos 7 0 5 9 + k ~1 sin 67?5 cos ~ 9 + .•. ] , (26) 

which is of the form desired. The appropirate value of m would be expected 

to be roughly 

m ;; 0.69 modd + 0.31 m even ' (27) 

which although not centrally located, is comfortably within the zone of in­

stability and [by (l4a)] should lead to a lapse-rate estimated as some 92. 5 

per cent of ft. max, In practice, the value of m most suitable for the 

present purpose might be determined by empirical computation, to achieve 

a condition such that the pure ascending solution (which soon becomes the 

dominant solution) is characterized at e = 0 by zero slope. 21 

b. The perturbation - g2 cos (7 e + 450 
), with z)= 7 and N = 48 

As a second specific example we consider an accelerator in which 

again N = 48, and make use of a stop-band at 1J= 7 which results from a 

24� 
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perturbation such that the differential equation is 

d2x/d92 + [m F (9) - -g-2 cos (7 9 + 450 )] x:: 00 (28) 

By setting 1=9 - 450 this equation becomes of the standard form for 

which Table III applies, since an interval of 450 corresponds to a whole 

number of periods for F (9): 

d 2x / d 1 2 + [m F UP) - g2 cos 7 ~] x ::: 0 0 (29) 

By reference to Table III and equation (l4b) one is thus led to expect an 

ascending solution. at the center of the z):: 7 stop-band, of the form 

x::: Al eJ.l~ 52 + (cos 7qJ + sin 7<P) + . oj 

= Al eJ/.Cf[k 52 + [cos 7 (9 - 450
) + sin 7 (9 - 450 D + 00 J 

= Al efl~[k S2 + [cos (7 9 + 450
) + sin (7 9 + 450 ») + .. } 

= v'2 A l ejl~rk ~2 / Vi + cos 7 9 + .. J 
= A e,49 [k ~ / -V2 + cos 7 9 + ••. } , (30) 

which may be representative of a useful form for the unstable orbits. 

The location of the operating point which would be chosen in this case 

would be very close to the center of the stop-band [(14b)] and. accordingly, 

one would expect a lapse-rate virtually equal to the maximum [cf. (l4aJ . 

co The perturbation - -g3 [sin 600 cos (69 + 450 ) + sin 450 cos (89 + 600 )J ' 

with zJ:: 7 and N :: 48 

As another example in which 11 = 7 and N = 48 we consider the case 

governed by the differential equation 

d 2x/d92 [m F (9) - 53 [sin 600 cos (6 9 + 450 ) + sin 450 cos (89+ 600~1 x = O. 
~3l) 

Here, if we set q; :: 9 + 7?5, we again obtain an expression of the standard 

form for which Table IV applies: 
25 
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2 0 
d x/d ~2 + [m F (Cf) - ~ 3 (sin 600 cos 61 + sin 45 cos 89')J x = O. (32) 

By reference to equation (8) and Table IV, we see that the ascending 

solution prevailing in the inter ior of the stop-band would be expected to 

have the form: 

x =.!'9'[C [cos 7(1 + kS 3 (sin 60° + sin 45°) cos :P + .••J 
+ s [sin 7 Cf + k ~3 (sin 600 

- sin 450 
) sin cp + ...J} . (33) 

A choice of m such that cis = tan 37?5 permits one then to write the solution 

(33) as 

x = Ai ePlJlsin 37?5 [cos Up + k 53 (sin 60° + sin 45°) cosf/ + .• .J 
+. cos 37?5 [sin 7 l' + k f 3 (sin 600 - sin 450 ) sinf/J + .•.JJ 

= Al ef'f~os 5Z?5 cos 7 Cf + sin 52?5 sin 7tp 
0 

+ k ~3 sin 75 [cos 7?5 cosrp + sin 7?5 sin cp] + "'J 
= Al elll.f [cos 7 ('f - 7?5) + k ~3 sin 750 cos (rp - 7?5) + ...J 
= A e,u8&os 79+ k ~3 sin 750 cos 9 + ..•J ' (34) 

which is of the form sought. The appropriate value of m to be selected 

would be [by (l4b>] roughly 

m ; O. 63 modd + O. 37m J (35)even 

for which [by (l4a>] the resultant lapse-rate would be expected to be about 

96.6 per cent of )i. In practice, of course, the value of m most max. 

suitable for the present purpose might be best determined by empirical 

computation. 21 

d. The perturbation - ~4 cos 4 9 - ~5 cos (10 9 + 900 
), with z) = 5 and N = 24 

An effective and useful perturbation might employ one term of the 

form cos (2 V 9 + ~ 1) to open up a stop-band and a second term of the 
26 
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form cos [( z) - 1) 9 + ~ 2] to provide a term cos 9 in the solution. To 

illustrate this possibility we consider a case in which N = 24, the stop­

band of interest corresponds to V:;:: 5, and the differential equation is 

2d 2x/d9 + em F (9) - ~4 cos 48- 55 cos (10 9 + 900 )J x::: o. (36) 

The last term, of frequency 10 (~ 2 1,) in equation (35) will, as noted in 

Table II, serve to open up a stop-band at 1,)::= 5 with a width directly pro­

portional to the strength of the perturbation ( '5 ),5

To determine the expected character of the solutions, in regard to 

their azimuthal dependence, we put r.p::: 9 + 450 and equation (35) becomes 

d 2x /d'f2 + fm F (P) + 54 cos 4 Cf - S5 cos 10 rp] x = 0, (37) 

since, with N :::; 24, the periodicity of F insures that F (9) = F (tp). By 

reference to the first line of Table IV we thus see that in the center of the 

stop-band the ascending solution would be expected to be of the following 

form, through the lower frequency terms: 

x :::; Al eP-9'&os 5 Cf + sin 5 Cf - O. 025 ~ 4 (cos cp + sin Cf) + ...J 
= - J!2 Al e}lf&os 5 9 + O. 025 ~4 cos 9 + ...J 
= A eP.9[cos 59+ O. 025 ~4 cos 9 + ...J ; (38) 

This may be a useful form for the ascending unstable orbit, with the lapse­

rate control!ed by the coefficient -; 5 in (36). 

We turn now to some computational tests, intended to check and 

illustrate the analytic work of this section. 

III. COMPUTATIONS 

A. Method 

Computations were performed with the MURA IBM 704 computer to 

check and illustrate the general character of the knock-out phenomena des­
27 
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cribed by the analysis presented in this report. The examples may not be 

ideal for illustrative purposes, since the azimuthal dependence of the solu­

tions may be felt to be not markedly changed by the perturbation in these 

examples--on the other hand it may be expected that the theory should per­

form fairly well, in a quantitative sense, with perturbations as small as 

those used here and that such perturbations, moreover, should not be ex­

cessively difficult to realize technically. 

In performing the computations, solution of the differential equation 

for x was accomplished by use of the DUCK- BUMP program, 22, 23 in which 

integration is by a Runge-Kutta method, in fixed-point, and the square-wave 

function F (9) could be generated by use of suitable "bumps II in the <jJ 
channel of the program. Fourier analysis of the resulting orbits was 

implemented by the FORANAL program. 24 In one example the particle 

motion was also studied by successive matrix multiplications, in which case 

use was made. of the MESSY-MESSY program. 25 

The initial DUCK-BUMP computations were made for 7.J = 74, with 

a perturbation E (cos 7 9 + cos 8 9)and € given the values €. = 6 or 

€ = 6 / 11'3 = 2 113: A few side checks were made in addition, however, 

(i) to verify that the expected betatron frequency was correctly given by the 

program when no perturbation was present, and (i i) to compare the results 

for € =- 6 with those found for e ::: + 6. 

In the following sections we report the results of computations made, 

in turn, for examples in which V = 7 ~, tJ:: 7, and z) = 5. In the first 

case the perturbation employs cos 7 9 and cos 8 9, so that circular functions 

of argument 49 may be expected to arise in the solution. In the second case 
28 
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this same type of perturbation is also studied, so that both a constant term 

and circular functions of argument 9 may be expected to arise; in addition, 

a perturbation in which cos 7 9 is present alone is also studied. In the 

case tJ = 5, the perturbation employs cos 10 9 and cos 4 9 terms, the 

first to open up the stop-band and the second to control the solution so that 

circular functions of argument 9 appear. In each case the location of the 

stability boundaries and resultant stop-band width are studied, the Fourier 

composition of the eigenfunctions examined, the lapse-rate within the stop-

band determined, and the utility of phase-shifts illustrated. 

B. Computations in which 

1. Stability Boundaries for� a Perturbation e (cos 7 9 + cos 8 9): 

With tJ = 7 ~, N =48, and f (9):: C. (cos 7 9 + cos 8 9), a number 

of DUCK-BUMP computations was made to obtain results suitable for com­

parison with the analytic theory summarized in Table IV. Runs made to 

determine the values of m associated with the stability boundaries for 

6.� (= ~) = 6 led to� 

m = 384.426,�even 

381.999,modd = 

Width :: m - . 2. 427;even m odd = 

this width is seen, from the summary presented in Table V below, to be in 

reasonably good agreement with that expected from the analytic theory. 

2. Eigenfunctions for a Perturbation € (cos 7 9 + cos 8 9): 

The x-values for the eigensolutions associated with the boundaries of 

the v= 7 ~ stop-band were entered into the FORANAL program (192 points 
29� 
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per problem, corresponding to 6. 9 = 4 'T() to obtain the Fourier coefficients 

for which analytic estimates were presented in Table IV. To insure that terms 

which involve the perturbation to first order could be distinguished from higher­

order terms, additional runs of this same sort were made for ~ (= S) = 

6 / 113 = 2 -"Ii. It appeared from this work that the terms expected to show 

zero- or first-order dependence on the strength of the perturbation did, in 

fact, rather accurately show the expected difference, while all other coefficients 

appeared to be definitely of higher order. 

Before introducing a quantitative comparison of theory with the com­

putational results, it should be mentioned that the FORANAL program, 24 

as applied here to half-integral eigensolutions, provides coefficients only 

through those of harmonic order h = 47 ~. It must moreover be noted that 

the Fourier coefficients printed by the FORANAL program are necessarily 

influenced, because of the discrete nature of the input data, by higher-order 

coefficients for the true function. 26 In effect, cosine coefficients of order 

h as printed should be interpreted as having been supplemented by the sum 

of other cosine coefficients of order 96 M + h (M denoting an integer); 

similarly the sine coefficient of order h is to be regarded as supplemented 

by other sine coefficients of order 96 M + h and decreased by those of order 

96 M - h. A reasonable comparison might thus best be made between a com­

puted cosine coefficient and the sum of the analytic values for hand 96 - h; 

likewise a comparison might be made between a computed sine coefficient 

and the difference of the analytic values for hand 96 - h. 

Table V summarizes this computational work and compares the results 

with the theoretical expressions listed in Table IV. For the odd eigenfunction 
30 
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COSINE COEFFICIENTS, Ch, AND SINE COEFFICIENTS. S • OF ORDER h� 
IN THE FOURIER EXPANSION OF EVEN AND ODD EIGE~FUNCTIONS
 

FOR THE EQUATION� 
,- d2x/ d92 + [mF(9) + E (cos 79 + cos 89tl x = 0, with -z) =7 1/2 and N = 48.� 

", 

lThe digitally computed coefficients are based on E =213; the stop-band widths, onE =6J� 

[m =382.429]�o 

FOR EVEN EIGENFUNCTION FOR ODD EIGENFUNCTION 
Value Value 

Coefficient From Analytic From Digital Coefficient From Analytic From Digital 
lResult (Table IV) Cornputations Result (Table IV) Computations 

h=r=1!2 

-0.020 -0.020 0 - - ­.!.C1/ 2 .!.Sl/2,E 
h =1..1= 7.5 

1 ~ormalize~ l[Normalize~ S7.5 1 [Norrnalize<il 1[Normalize~C7 . 5 , 
h =2"])- t 

=14.5 
0.0037 0.0037 0.0037 0.0037

.!.C14. 5 .!.S14.5 
E:E 

h =2.,}+ r 
~.5 

-. 0.0031 0.00310.0031 0.0031 
.=. ~15. 5 ~S15. 5 
E 

h = N - Z,I-r 
=3Z. 5 

-0.000800.00080
.!. C 32. 5 ~ 832. 5 
E 

Ih =N + 2,)+ r i 

=63.5 
O.OOOZO0.00020 .!.863.5~ C63 • 5 E 

-0.00100 -0.00096
0.00096 832• 5 - 863. 5C32 . 5 + C63. 5 0.00100 

EE 
h =N - zv+ r 

=33.5 
-0.0008a0.000881:. C33• 5 ~ S33. 5 

£ 
Ih = N + 211- r 

= 62.5 
0.000240.00024 ~S62. 5~ C62 . 5 

,- "7' 

C 33 . 5 + C 62 . 5 S33.5 - S62. 5 
-O.OOl1Z -0.001080.00112 0.00109 

E.€ 
\ 
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TABLE V 

: (coritinue:d) 

r- FOR EVEN EIGENFUNCTION FOR onD EIGENFUNCTION 
Value Value 

Coefficient From Analytic From Digital Coefficient From Analytic From Digital 
ResuIt (Table IV Computatiom Result (Table IV) Computations 

h=N-y=40.5 

0.148 -0.148C4O. 5 840 . 5 

h = N +,J; 55. 5 

0.079 0.079C55 • 5 855• 5 

0.227 0.221 -0.227 -0.220C40 . 5 + C55• 5 840 . 5 - 855 . 5 

h = N - r ;47.5 

-0.0021 18 - - ­~~ C47 . 5 € 47.5 0 

h == N + r =48.5 

-0.0020 - - ­/"'l C48• 5 i848 -.; 0 
• 5

E 

C47 . 5 +C48• 5 -0.0041 -0.0039 847 . 5 - 848. 5 
~ 0 - - ­

€ E 

Et 
1 m - m 1 m - mo 

0.000145 0.000145 , 
;Z 

m 
0 -0.000029 -0.000031m 

0 0 

Analytic: Observed: 

k . (Relative Width) =!.2 
m even - m odd 0.000174 0.000176 e E: m 

0 
! 

r; . 1 8obtained with €:: ; = 6, the Fourier coefficient associated with sm 2 

is, as expected, quite small (~ - 5.6 x 10- 4 in comparison to the unit co­

efficient taken for sin 7. 5 8). For the even eigenfunction, the coefficients 

E.,2 
,r-. corresponding to h =6.5 and h = 8.5, although varying as , were found 

to become virtually as large in absolute value as the coefficient correspond­

ing to h ; 14. 5 (:!:. 0.021 vs. 0.023), for €.. (= s) = 6.� 
32� 
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3.� Computations Near the Center of the tJ::;: 7 i Stop-Band, for a 

Perturbation 6 (cos 7 9 + cos 8 9): 

With C. c: r; ;;;:: 6 and no phase shift present in the perturbation, 

computations made with m :-;: 383. 213--i. e., near the center of the V,::; 7 ~ 

stop-band--indicated that the ascending solution could be obtained by use 

of initial conditions such that po/x "" 0.032035 , The lapse-rate was found.o 

to be� given by 

0.1632 nepers/revolution, or 0.0709 decades/revolution, 

corresponding to an increase by a factor 1. 1773 each revolution. This com­

putational result for the lapse-rate may be compared with the value 

0.137 nepers/revolution, or 0.059 decades/revolution, 

implied by the value )A- :: 0.0218 neperslradian given by the analytic result 

(14a) when using the observed values for m at the boundaries. 

When the exponential increase was divided out from the solution, the 

remaining periodic azimuthal dependence was found to be a sum of even and 

odd functions which were respectively very close in form to the eigenfunctions, 

c (9) and s (9), found at the zone boundaries in the previous computations. 

For the value of m employed (m := 383.213), the ratio cis = 0.994, or 

virtually unity, was suggested by forming the ratio of the coefficients of 

cos 7. 5 & and sin 7.5 e in the Fourier analysis of the computational results. 

In terms of equation (14b), this ratio is consistent with the fact that m was 

taken Virtually in the center of the stop-band. 

4.� Computations with a Phase Shift Present in the Perturbation: 

Motivated by the development outlined in Sect. II B 4a, a computational 

investigation was made for the perturbationZ7 
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f (9) =- 7.231 622 101 [Sin 600 cos (7 Q + 52~5) + sin 52?5 cos (8 Q + 600 )] 

=- 6.262 768 45 cos (7 8 + 52?5) - 5.737 231 55 cos (8 8 + 600 ) • 

For this perturbation> the boundaries of the z) = 7 ~ stop-band were found 

to be located at 

m even = 384. 427 and = 382.001 >m odd 

corresponding to a width - modd = 2.426. This width may be com­m even 

pared with the value expected from the analytic theory> namely 2.38. 

lt was then determined from the computations that selection of the 

value m = 382.91 75 would lead, for this perturbation, to the ascending un­

stable solution being characterized by dx/d9 =0 at Q =0, as desired. A 

run made under these conditions exhibited a lapse-rate 
r-

0.158i nepers/revolution (,JJ. = 0.0252 nepers/radian) 

or 0.0687 decades /revolution, 

corresponding to growth by a factor 1. 171 35 per revolution. With the 

exponential factor divided out from the solution, the azimuthal dependence 

with this strength perturbation was found to be such that the coefficients of 

cos ~ Q and cos 7.5 Q terms were roughly in the ratio 0.069. These results 

are illustrated in Fig. 2. 

As we have seen previously [cf. (22)] > one expects the rate of ex­

ponential growth to be proportional to the product ~ ~. By comparison 

of the parameters in the present case with thoseemployed in the tests 

reported in sub- section2 above ( E. = t; = 6) it is therefore to be expected 

that the lapse-rates would be similar in these two cases; specifically> we 

are not operating quite in the center of the stop-band and may expect the 
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present lapse-rate to be 0.97 (E. t; /36) times that found previously, so 

that we indeed may expect 0.158 nepers/revolution on this basis. From the 

observed values of m at the stability boundaries, equation (14a) would give 

fA-:: 0.0211 nepers/radian, or 0.133 nepers/revolution, directly. 

By reference to equation (26), and taking k = 0.010 [from Table V, 

in which results for e ::: C; are summarized], we would expect the ratio 

of the cos i 9 to cos 7. 5 9 coefficients to be given by 

k ~ 1 sin 67?5 :: 0.010 x 7.231 622 101 x 0.9238 7953 = 0.067. 

From these results we infer that the development of Sect. II B 4a is at least 

semi-quantitatively valid. 

Additional computations for a perturbation of essentially this same 

form were performed by matrix multiplication, using the MESSY-MESSY 

program, and are reported later (Sect. E and Fig. 3). 

C. Computations in which V = 7 

1. Stability Boundaries for a Perturbation Yl.(cos 7 9 + cos 8 9): 

With V= 7, N = 48, and f (9) :: Tl (cos 7 9 + cos 8 9), a number 

of DUCK- BUMP computations was made to obtain results suitable for 

comparison with the analytic theory summarized in Tables III and IV. It 

will be recognized that for z) :: 7 the term 'f1 cos 8 e in the perturbation 

f (9) is expected to affect the location of the stop-band boundaries, but not 

contribute to the width of the resonance; the term yt cos 7 e is expected 

to lead to the appearance of a constant term in the Fourier expansion of the 

even eigenfunction, while the yt cos 8 9 perturbation would engender a 

cos e term in the solution. 
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Runs made to determine the stability boundaries for ~ (= ~ ) = 6 

led to 

m even = 360.349, 

modd :: 358. 943, 

Width ::: IDeven - modd :: L 406; 

this width (and the location of the individual boundaries) is seen, from the 

summary presented in Table VI below, to be in reasonably good agreement 

with the analytic theory. With the magnitude of the perturbation reduced 

by a factor 1/113, so that yt (:::: ~) =6/ r3 ::: 2 Y3, it was found that the 

boundaries were given by 

m = 359. 234, 

.--- even 

= 358. 765,modd 

Width =m - :: O. 469;even m odd 

the width is thus seen to be proportional to the square of the perturbation, 

as expected. 

2. Eigenfunctions for a Perturbation 11 (cos 7 8 + cos 8 8): 
~ 

The x-values for the eigensolutions associated with the boundaries 

of the V = 7 stop-band were entered into the FORANAL program (192 

points in an interval ~9 = 2m:) to obtain the Fourier coefficients desired 

for comparison with the analytic theory. Output from the FORANAL runs 

fum gave values for Fourier coefficients ostensibly through the 96th order. 

Only for the coefficients listed was the dependence on the strength of the 

perturbation found to be of order no higher than the first, save for such 

higher Fourier coefficients as that with h = 89 (the cosine or sine co­

efficients amounting to :t. 0.0037 in this case, relative to the component 
36 
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COSINE COEFFICIENTS, C AND SINE COEFFICIENTS. ~, OR ORDER h
h

, 

IN THE FOURIER EXPANSION OF EVEN AND ODD EIGENFUNCTIONS FOR 

d
2
x/d8 2 + [mF(8) +'t (cos 78 + cos 88] x =0, with'ZJ= 7 and N = 48. 

[mo ::: 358.676) 

FOR EVEN EIGENFUNCTION II FOR ODD EIGENFUNCTION 
Value II Value 

Coefficient From Analytic From Digital I
; Coefficient From Analytic From Digital 

Result Computation ? Result Computationf 
,(Table s III & IV) I (Tables III & IV) 

h=O 'I
!

1 C -0.0113 -0.0110 I - - - - - - - - ­if I0 
1 

h =r = 1 11 
I1 C1 -0.0114 -0.0112 1 Sl 0.0114 0.0113 

tf I 
1 

1\ 
h =11 =7 

C \ 1 [Normalize~ 1 Wormalize~ 1 ~ormalize4J 1 ~ormalizeg
7 ~ 

J 
h=21/ =14 I 

1 C14 0.0037 0.00381 1 S14 0.0037 0.00380.,- 8 
~ 

8 

h=2,)+r=15 ! 
0.0031 ~. 0.00315 0.0031 0.00319,,1 C 15 7 1 S15 7~ 

'i, 'r\ 
h=~1,'-r=33 ,'I 0.00074 0.00072 -0.00074 -0.00073t5f J33 II i S33 

h=N-2V = 34 II
I

! 
1 C 34 0.00082 0.00081 I 1 -0.00082 -0.00081 
~ H if 

834 
It! 

h =N-V= 41 "I: 
0.1.358 0.1338 Ii.', -0.1358 -0.1336C41 841ii 

~ 

h=N-r·=47 p
1 C -0.00115 -0.00111 1 -0.00115 -0.00112

47 I'. 847 
- ~ II 
h=N::::48 '" -0.0021 9 =0.00206 -0.000013 -0.000013~ C48 ~ 848 3 

h=N + r=49 
-0.00106 -0.00100 0.00106 0.00101~ C49 I k S49 

h =N +71= 55 I
0.0755 0.0721 0.0755 0.0720C55 855 

h= N + 2,)=62 
0.00024 0.00022 0.00024 0.000224- C62 ~ 862 

h=N+ 2,)+ r=63 
1 C63 

0.00019 0.00018 1 0.00019 0.00018 
y- I 

863 
-- " 1 m-mo 0.000143 or 0.000130 1 m-mo 0.000 023 0.000 021
¥ rno 0.000136 ¥ InO 

Observed:~8:l(1)ic'- modd.!.2. (Relative Width) = !.2 m even • 0 "120 or 0.000 109-~, m o .- 0.000 113 
vI 



MURA-445� 

with h ;,: 7, independent of 'Yl ) which corresponds to h = 2 N - V and may 

be omitted from our summary since such terms were ignored in the analysis. 

The comparison of the computational and analytic results is given in 

Table VI. The theoretical values are obtained by substitution into the for­

mulas listed in Tables III and IV, with y\.= ~ and r :: I, so that (for ex­

ample) one expects the stability boundaries in this case to be given by the 

sum of the analytic expressions shown in these Tables. 

3.� Computations Near the Center of the z):: 7 Stop-Band, for a 

Perturbation 6 (cos 7 8 + cos 8 8): 

With 'Yt =) =6 and no phase shift present in the perturbation, 

computations made with m :: 359. 646--i. e., at the center of the 21 = 7 

stop-band--indicated that the ascending solution could be obtained by use 

of initial conditions such that Po/xo = The lapse-rate was foundO. 34455 , 

to be given by 

0.0934 nepers/revolution, or 0.0406 decades/revolution, 

corresponding to an increase by a factor 1.0979 each revolution. This 

computational result for the lapse-rate may be compared with the value 

0.080 nepers/revolution, or 0.035 decades/revolution. 

implied by the value p = 0.013 nepers/radian given by the analytic result 

(14a, c) when using the observed values for m at the boundaries. 

When the exponential increase was divided out from the solution, the 

remaining per iodic azimuthal dependence was found to be a sum of even 

and odd functions which were respectively very close in form to the eigen­

functions, c (8) and s (8), found at the zone boundaries in the previous com­

putations. The ratio C /S = O. 996, or virtually unity, was suggested by 
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forming the ratio of the coefficients of cos 7 9 and sin 7 9 in the Fourier 

analysis of the computational results. In terms of equation (14b), a ratio 

near unity is in accord with the fact that m was selected to lie at the center 

of the stop-band. 

4. Computations with a Phase Shift Present in the Perturbation: 

a. The perturbation - 8 cos (7 9 + 450 ) 

To follow up the development outlined in Sect. II B 4b, a computational 

investigation was made of the perturbation 

f (9) ::: - 8 cos (7 9 + 45o ) . 

For this perturbation, the boundaries of the V = 7 stop-band were found 

to occur at 

m even =360. 830 and modd :: 358.219, 

corresponding to a width - modd ::: 2.61 1, This observed width ism even 

in fair agreement with the values 2.80, 2.59, and 2.39 suggested by the 

analytic formulas presented in the last line of Table III for ~ =- 8. 

For the ascending solution to be correctly launched within the 1/ = 7 

stop-band at 9 =0 with dx/d9 :: 0, it was then found that one should take 

m = 359. 653. A run made under these conditions showed a lapse-rate 

O. 1721 nepers /revolution (pi. = 0.0274 nepers/radian) 

or 0.0747 decades/revolution, 

corresponding to growth by a factor 1. 188 each revolution. With the 

exponential factored out from the solution, the ratio of the constant term 

to the coefficient of the cos 7 9 term was 0.0654, These results are 

illustrated in Fig. 4. 
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The expected lapse-rate, computed from the location of the operating 

point with respect to the observed stability boundaries, is found, from (l4a), 

to be given by 

).l =0.0234 nepers/radian, or 0.147 nepers/revolution. 

By reference to (30) and Table VI, the expected ratio of the constant term 

to the coefficient of cos 7 9 would be 0.062 or 0.064. Again there appears 

to be reasonably good, semi-quantitative agreement between the expected 

values for these quantities and the values found computationally. 

b. The perturbation -7.6280938847 &in 600 cos (6 9 + 450)+ sin 450cos(8 9 + 600 )J 
As an example of the development presented in Sect. II B 4c, a series 

of computations was made with a perturbation given by28 

f (9) =-7.628 093 8847[sin 600 cos (6 9 + 450) + sin 450 cos (8 9 + 600 )J 
:: -6.606 123 086 5 cos (6 9 + 450 ) - 5.393 876 913 5 cos (8 9 + 600) . 

For this perturbation the boundaries of the zJ = 7 stop-band were found to 

lie at 

m even :: 361. 122 and m = 358.155,odd 

corresponding to a width 2.967• This width compares well with that expected 

on the basis of the analytic theory [from the last line of Table IV and ref. 28], 

namely 2.94. For the ascending unstable solution within the stop-band to be 

characterized by dx / d9 = 0 at 9 =0, it was then found that one should select 

m =359.494. With this value of m, a lapse-rate 

0.1958 nepers/revolution (fl = 0.03116 nepers/radian) 

or 0.08504 decades /revolution, 

corresponding to growth by a factor 1. 2163 each revolution, was obtained. 
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The azimuthal dependence of this solution, with thee exponential factor 

divided out, was found to be characterized by a ratio of the cos 9 and 

cos 7 9 coefficients given roughly by 0.091 8. These results are illustrated 

in Fig. 5. 

i 

l 
~ 
I 
1­

r 

(14a) would predict 

~ =0.027 nepers /radian, or o. 17 nepers/revolution. 

By use of the theoretical solution (34), and by reference to Table VI to obtain 

k '2ii 0.0113. the theoretically-expected ratio of the cos 9 and cos 7 9 co'" 

efficients is 
..... 

k 1) 3 sin 750 =0.0113 x7. 628 093 8847 x 0.9659 2583 =0.083. 

Again we infer .from these results that the theoretical development is valid, 

at least in a semi-quantitative sense. 

D. Computations in which V = 5 

Computations in which a cos 10 9 term was present in the perturbation 

were made to illustrate the effectiveness of such a term in opening up the 

V =5 stop-band. In some of the computations a cos 4 9 term was also 
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introduced in the perturbation, in order to engender in the solution cosine 

or sine terms of argument 8, and phase shifts were also introduced. In all 

this work N =24. and m o :: 123. 7353 for Y = 5. 

1. Computations Without Phase Shifts in the Perturbation: 

a. The perturbation - cos 10 8� 

The z):: 5 stability boundaries for the perturbation� 

f (8) := - cos 10 8 

were found to occur at 

m =125.0048 and modd = 122.4396,even 

corresponding to a width m even - modd = 2. 5652. This observed width is 

in fair agreement with the values 2.87 or 2.47 obtained from use of the 

formulas listed at the bottom of Table II ( )... = - 1); since the width involves 

}.. to the first power, a substantial width is obtained with a relatively modest 

perturbation. 

The Fourier coefficients for the eigenfunctions corresponding to these 

stability boundaries were determil).ed with the DUCKNALL program24 and 

the results for the prominant coefficients, through the 29th, are listed in 

Table VII. For the example with which we are concerned here, 1J is not 

sufficiently small in comparison to N that the results given in Table II are 

trustworthy--accordingly we include in Table VII numerical estimates ob­

tained by solving equations (II, 4 d' - f') of Appendix II explicitly. The co­

sine and sine coefficients of order h =N + 3 '}) =39 were found to be 

-0.00026 and -0.00024, respectively, in good agreement with the value 

-0.00025 calculated from (II, 4 d I - fl); these results are not included in 
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Table VII, however, because the magnitudes are so small, and terms of 

order 2 N ±. -Z), 2 N + 3 V, 3 N + V ; etc. are likewise omitted, The 

distinction between m even and modd was not made in solving equations 

(II, 4 d I - f\ since this distinction would make only a second-order effect, 

but was considered in calculating the large coefficients of order N + 21. 

TABLE VII
 

COSINE COEFFICIENTS, Ch, AND SINE COEFFICIENTS, Sh, OF
 

ORDER h IN THE FOURIER EXPANSION OF EVEN AND ODD
 

EIGENFUNCTIONS FOR THE EQUATION
 

d 2x/d9 2 + [m F (9) - cos 10 9J x:: 0, with 1J:: 5 and N :: 24 

~ m :: 123.7353:o 

FOR EVEN EIGENFUNCTION FOR ODD EIGENFUNCTION 

."""" Value Value 
Calc, from From Digital Calc. from From Digital

Coefficient (5a), (5b) and Computation Coefficient (5a), (5b) and Computation 
(II, 4d

l 
-f') (II, 4d'-f') 

h=21=5 i 

1 [Normalized] 1 [Normalized] S5 1 LNormalized] i 1 [Normalize~
C 5 I 

i 

h :: N - 37J= 9 l 

-0.0054 -0,0063 89 +0.0054 +0, 0060 
C9 

h=3V=15 
-0.004 -0.0046 815 -0.0042 -0.00442C15 

h::N-V=19 
0.220 0.222 -0.216 -0.2U3S19C19 

h =N + 7J:: 29 
0.095 0,094 0.093 0.092

C29 8 29
 

Information concerning the ascending solution within the V:: 5 stop-


band is presented later) in sub-section 2a below, for a perturbation of this
 

same character and strength, save for the introduction of a phase shift,
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b. The perturbation - cos 10 9 + 7.5 cos 4 9
 

The V 5 stability boundaries for the perturbation
0: 

f (9) :: - cos 10 9 + 7.5 cos 4 9 

were found to occur at 

;: 125.9926 and modd = 123.3829,m even 

corresponding to a width m even - modd := 2.60 97 , This width, as expected, 

is little different from that found previously for the case in which the term 

- cos 10 9 was present alone in the perturbation, although the stop-band as 

a whole is of course displaced towards larger m-values by an amount (0.97) 

which is in close agreement with the shift predicted by the E. 2 term of the 

analytic formula listed in the next to the last line of Table IV. Without. 

attempting to account at all quantitatively for the slightly greater width in 

the present case: we may point out that the parameters of the present ex­

ample are somewhat special in that 3 z/ = N - 2 1J + rand N - 3 V ::: 2 7J - r; 

as a result, certain terms in our trial functions can receive contributions 

from both terms of the perturbation and, without recourse to higher-order 

effects, one can recognize that the width may receive "cross-term" ( X€, ) 

contr ibutions. 

The chief value which may be attached to the cos 4 9 term of the 

perturbation is its effectiveness in introducing cos Q or sin 9 into the 

solutions of the differential equation. The Fourier coefficients of interest 

in this case were again obtained by the DUCKNALL program and are listed 

in Table VIII. The calculated values which are listed for comparison are 

those of Table VII., supplemented by the contributions suggested by Table IV 

(E: ;;: 7.5). 
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TABLE VIn 

r- COSINE COEFFICIENTS, C AND SINE COEFFICIENTS, Sh' OF ORDER hh, 

IN THE FOURIER EXPANSION OF EVEN AND ODD EIGENFUNCTIONS FOR THE EQUATION 

d 2x/d9
2 + ~F(9) - cos 10 9 + 7.5 cos 4 91 x = 0, withll= 5 and N = 24. 

Eno = 123_735t 

FOR EVEN EIGENFUNCTION FOR ODD EIGENFUNC TION 
Value Value 

Coefficient Calc. from From Digital Coefficient Calc. from From Digital 
TablEsIV & VII Computation TablesIV & VII ComputationI
 

1I:::r=l I 

C1 ..0.190 ..0.186 8 -0.190 -0.200
1 

I 
ih~ll=5 
I 

C5 1~ormalize~ 1 ~OrmaliZedJ t S5 1~ormalize ~ 1 §Ormalized 
p, 

h == 2V" r:::: 
~T 

- 3,1= 9 
C 9 0.080 0.086 S9 0.091 0.091 

h= 3V~ N- 21~ I 
+ r ~ 15 :' 0.029 0.033 -0.038 -0.038C15 I S15I 
h =N".J:::: 19
 

C 0.220 0.224 -0.216 -0.219

19 

819 

h =N - r =23
 

C -0.027 -0.027 8 +0.027 +0.028

23 23
 

h:= N + r = 25
 

-0.023 ~0.023 -0.023 -0.024
C25 825 

h:::N+-v'::::29
 

C 0.095 0.095 0.093 0.093
 
29 

829 
r-

Information concerning the ascending solution within the11 = 5 stop-band is presented
 
IaterJ) in sub-section 2b belowJ) for a perturbation of this same type but with phase-

shifts present. 45
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2. Computations with Phase Shifts Introduced into the Perturbation: 

a. The pertrubation sin 10 9 

The perturbation 

f (9) = sin 10 9 

considered here is seen, by the substitution 9 = t.p - 450 , to be - cos 10 f ; 
the perturbation is thus, in essence, exactly that considered in sub-section 

1a above and must lead to the same stability boundaries (eigenvalues of m). 

With N = 24, the ascending exponential solution within the ZI =5 stop-band 

was found to be characterized by dx/d9 = 0 at 9 =0 when m = 123. 7569 . 

Under these conditions the lapse-rate was found computationally to be 

0.3775 nepers/revolution (ft= 0.06008 nepersfradian) 
r' 

or O. 1639 decades/revolution, 

corresponding to growth by a factor 1. 4586 per revolution. With the 

exponential growth factored out, Fourier analysis of the periodic azimuthal 

dependence indicated a character substantially the same as that for the even 

eigenfunction (sub-section la), the dominant terms being those which appear 

in the even solution for the unperturbed problem: 

cos 59+ 0.220 cos 199 + 0.093 cos 299. 

Using the observed values of m at the stability boundaries (sub-section 

1a), the lapse-rate suggested by equation (l4a) is 

fA. =0.045 nepers/radian, or 0.28 nepers/revolution, 

which is about 3/4 of the amount found computationally. The absence of 

any strong Fourier coefficients other than those noted is to be expected 

from the theoretical analysis _(Sect. II B 3a). 
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bo The perturbation sin 10 9 - 70 5 cos 4 9
 

As noted in SecL II B 4d, the perturbation
 

f (9) = sin 10 9 - 705 cos 4 9 

is seen by the substitution 9:: , - 450 to be - cos 10 <p + 70 5 cos 4 1/ ' 
which is of the form considered in sub- section 2b above. With N :: 24, the 

ascending solution within the zJ = 5 stop-band was found to be characterized 

by dx/d9 '" 0 at 9 = 0 when m :: 124075944, 

Und.er these conditions the lapse-rate was found computationally to be 

0.3980 nepers/revolution (f-! = 0.06334 nepers/radian) 

or 00 1728 decades/revolution 

corresponding to growth by a factor 1. 489 per revolution. With the ex­

ponential increase factored from the solution, the chief Fourier coefficients 

for the periodic azimuthal dependence are as listed in Table IX and are seen 

to be substantially the same as those shown in Table VIII for the even eigen­

function when no phase shift is present, save for a change of sign for those 

coefficients which depend on the strength of the perturbation. These results 

are illustrated in Fig. 6. 

Since, as noted from sub-sections la, b, the width of the stop-band 

in the present case is only very slightly greater than for the perturbation 

sin 10 9 alone, it is not surprising that the lapse-rate found here is not 

much different from that reported for the computations of the preceding 

sub- section (2a). The effect of the additional term - 7. 5 cos 4 9 which 

has been added to the perturbation is to introduce an appreciable cos 9 

term into the solution. From equation (38) we expect, with S4 = 7. 5, the 
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coefficient of cos 9 in the solution to be 0.025 x 7.5 = 0.19 relative to the 

cos 5 9 term. In summary it is clear that the relatively modest perturba­

tion sin 10 9 has engendered an instability characterized by a marked rate 

of growth and that the additional perturbation -7. 5 cos 4 9 has introduced a 

not"iceable fundamental azimuthal dependence of a type which favors the attain­

ment of large displacements at 9 =: O. 

TABLE IX
 

COSINE COEFFICIENTS OF ORDER h IN THE EVEN
 

ASCENDING SOLUTION FOR THE EQUATION
 

d 2x/d92 + [m F (9) + sin 10 9 - 7.5 cos 4 9] x :::: 0,
 

WITH z)= 5, N::: 24, AND FOURIER ANALYSIS 

MADE AFTER DIVISION BY exp ()L 9) . 

Value of Cosine CoefficientCh from Computational Solution 

C 1 0.191 

C 5 1 [Normalized] 

C9 -0.085 

-0.032C 15 

0.221C 19 

0.026C23 

0.022C 25 

0.093C29 
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E.	 Matrix Computations for a Piecewise-Constant Perturbation,
 

with 1J = 7 ~ and N = 48
 

1. Motivation: 

It will be readily appreciated that in practice it could be considerably 

more convenient to provide a perturbation (n-bump) which is piecewise-

constant, rather than a continuously-varying function of azimuth. Specifi ­

cally in many cases it might prove most convenient to employ a perturbation 

for which the change in focusing index, n, is constant over each individual 

semi-sector. Detailed examination of such an arrangement would most 

naturally be carried out by the standard matrix methods14 and for computation­

al work the MESSY- MESSY program25 is helpful. With a large number of 

sectors in the accelerator one would expect, however, the results to differ 

in no essential way from those obtained by study of differential equations of 

the type considered heretofore. 

2. The Stop- Band for z) = 7 i with Piecewise-Constant Perturbation: 

In analogy to the computational example of Sect. III B 4, for which 

the analytic theory of Sect. II B 4a was intended to apply, the response to 

a similar piecewise-constant perturbation was studied by matrix multiplica­

tions, aided by the MESSY-MESSY program. The quantity designated by S 

in the description of this program, 25 representing the square root of the 

magnitude of the focusing constant, was given values in accordance with the 

expression 

'b = I m F (9) - 6.262 768 45 cos (7 9 + 52?5) - 5. 737 231 55 cos (8 9 + 600 )1, 
(39) 
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specific individual values then being obtained by substitution into (39) of the 

values of 8 corresponding to the mid-point of the individual semi-sectors 

of a structure for which N ~ 48 and for which 8 :: 0 corresponds to the 

center line of one of the radially-focusing semi-sectors. Appropriate 

matrix multiplications (with t = TC/48 for a full semi-sector, or t :: 'T(/96 

for one-half of a semi-sector) were then made to obtain the matrix repre­

senting an entire revolution; from 8 :: 0 to 8 = 2 n. 
By interpolation of the results of three such runs, made with m 

successively given the values 383. 3, 382.9, and 382,5, it appeared 21 that 

the pure ascending exponential solution would be correctly launched with 

(dx/d8)0:: 0 if m ::: 382.983, and these same orientation runs suggested 

that a lapse-rate of 

0.162 nepers per revolution 

would then be expected. A MESSY-MESSY run made under these conditions, 

strictly with m = 382,982 67, indicated a lapse-rate 

1 Trace
21()..U::: Cosh- 2 :: O. 160 nepers per revolution; 

it will be noted that this value is close to the result O. 158 nepers per revolu­

tion reported in Sect. III B 4 for DUCK-ANSWER computations pertaining 

to a similar (but continuous) perturbation. 

From the matrix element "A II of the successive cumulative product 

matrices printed out at quarter-sector intervals, in the course of the last-

named MESSY-MESSY run, one in effect has the coordinates of a repre­

sentative pure ascending solution, with (dx/d8)0 = o. A Fourier analysis 

of these data; taken at half-sector intervals and with the exponential increase 
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factored out, led to the major cosine coefficients for the periodic azimuthal 

dependence (period 47(') listed in Table X, wherein, for comparison, we also 

include the corresponding results for the DUCK-ANSWER run described in 

Sect, III B 4, It is noted that in either case the coefficient of cos ~ 9 is 

about 7 per cent of the dominant cos 7, 5 9 coefficient, These results are 

illustrated in Fig, 30 

TABLE X 

COSINE COEFFICIENTS, OF ORDER h, FOR THE ASCENDING 

SOLUTION WITHIN THE z) = 7 ~ STOP-BAND, WITH N :: 48 . 

Results for the solution, with the exponential factor removed, as obtained 

by the MESSY-MESSY program for the perturbation implied by Eqno (39), 

Value of Cosine Coefficient
Ch 

f'or MESSY-MESSY solution for DUCK-ANSWER solutioriJ 

0.072 0.069Cl/ 2 

C 7,5 1 [Normalized) 1 [Normalized] 

00221 0.219*C 40 • 5 + C 55 . 5 

~:<See note, Sect, III B 2, on the interpretation of FORANAL output data, 26 

TFor purposes of comparison with analysis of MESSY-MESSY computation. 

IV. SUMMARY AND DISCUSSION 

It appears from the foregoing work that a perturbation which changes 

the field index of a particle accelerator (n-bump) can create a stop-band 
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within which as a result of the perturbation, a substantial rate of growth 

of oscillation amplitude will occur. It moreover appears that the form of 

the ascending solution, which is the solution that soon dominates the motion. 

can be controlled to some extent by the nature of the azimuthal distribution 

of the perturba.tiono Specifically, a perturbation whose spatial dependence 

contains a circular function of argument 2 V9 will open up the stop-band 

in first order, in that the width of the stop-band is directly proportional to 

the strength of the perturbation, whereas otherwise a combination of functions 

with arguments ( 7J + r) 9 is required and such a combination produces a 

stop-band width proportional to the square of the perturbation. Terms with 

argument ( V + r) 9 or (1J - r) 9 may be useful, nonetheless, in intro­

ducing into the solution (orbit) a spatial dependence which includes circular 

functions of argument r 9. 

The use of such instabilities may be effective in achieving rather 

economically a rapid knock-out of a beam onto an internal target. It may 

also be useful for extraction of the beam. either by moving it rapidly into 

a "peeler" structure or possibly by directing the beam through the fringe 

field of the magnet itself. In the case that the fringe field is involv~d, 

specific computations including the non-linear features of the motion in 

such regions would be desirable, but in any extraction method the intro­

duction of a term such as cos ~ 8 into the growing solution would seem to 

afford an azimuthal dependence which would be helpful. It may be noted 

that, as is the case for some of the examples considered in this report. the 

exponential growth of the solution may be sufficiently great in one revolution 

as to outweigh the azimuthal variation introduced by the cos 2'1 
9 term (and 
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by the other terms of some importance which are associated with this term 

in the solution)--such a situation shoul.d be avoidable, however, if that be 

desirable, by proper adjustment of the relative magnitudes of the coefficients 

of th<.>EEterms in the perturbation which create the stop-band and those which 

primarily influence the form of the solution, Such "tailoring'! of the pertur­

bation may be possible, of course only at the expense of heavier currents 

(or ampere turns) in some portions of the perturbation windings, but it is 

hoped that the analytic discussion contained in this report will provide a help­

ful perspective concerning the role played by the various terms under con­

sideration, 

In the body of the present report, the location and width of the stop­

bands have been specified, for convenience, in terms of the parameter "m "; 

in practice it may be more economical to "tune" the accelerator to the desired 

resonance by use of the constant "a" (representing an azimuthally constant 

addition to the field index), and actually a combination of changes in "a" and 

"m" may be desirable to keep the axial motion free of resonance effects while 

exploiting the desired radial resonance, Such possible perturbation arrange­

ments, however, should be readily investigated in any specific case by methods 

paralleling those presented here. 

As a final caution it should be noted that, in order to achieve ascending 

exponential solutions for which (in our illustrations) dx / de =0 at e =OJ a 

very definite perturbation schedule should be followed. Thus one might best 

undertake to perturb the accelerator to the vertex of the stop-band and then 

proceed up a definite central curve in its interior, Departures from the in­

tended central curve will introduce phase shifts into the solution, such that 

the orbit maxima are shifted or, otherwise expressed, dx/de will differ from 

zero at the azimuth 8 :: O. Such control of the perturbation currents may, then, 

require fairly careful programming and electronic engineering, and the toler­

ances necessary to achieve desired limits of performance could be estimated 

for a specific case by application of methods similar to those discussed in 

this report. Such planning of the design, and the requisite engineering effort 

may, however, be well warranted if the obtainable performance is felt materi­

ally to enhance the versatility and usefulness of the accelerator, 
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R[cos'2J9 + I cos (N:"'V)9 +~ cos (N+V>9J + S~inJ9 -,Jsin (N-'ZJ)9 

+(f sin (N + 1.J>~
 
can be written
 

R - is exp (i VQ) [1 + f3 (cos NQ - i sin N9) + ~(cos N9 + i sin N9~
 
2
 

+ R ; is exp (-'iL)9) [1 + I (cos N9 + i sin N9) + ~ (cos Ne - i sin NQ>J • 

which is clearly of the Floquet Form [E. T. Whittaker and G. N. Watson, 
"Modern Analysis" (Cambridge University Press, 1927), sect. 19,4J. 

17.	 This result is identical to that obtained by applying the "smooth approxima­
tion" to the equation d2xi d9 2 + (4m/7f)(cos N9) x = O. [K. R. Symon, 
MURA Report KRS(MURA)-l (July 1, 1954); K. R, Symon, et al., Phys. 
Rev. 103. 1837 (1956), Appendix A~	 - ­
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(Clarendon Press, ~ord. 1947), sects. 4.90 - 4.91. 

19.	 The basic differential equation governing the radial betatron motion when 
the perturbation! (9) = A. cos 2 -U9 is present, namely 

d2x/ d9 2 + [mF(9) + A cos 2)}9 ] x = 0,
 

may, by use of the smooth ap~roximation,17 be replaced by
 
2 2


d x/d9 + [2 (~~) + A. cos 2VGJ x = O. 

Since, to this degree of approximation, 7J2 = 2 (Z;;~~2 , 

this	 become s 

d2x/ d9 2 + [V 2 + / 4mo) 2 m - mo + ~ cos 2Y9J x =: O. 
t?TN I mo 

In the standard Mathieu Form. obtained by the substitution 2t19 = 27: , 
the last equation may be written 

Ad2x/dZ2 + [1 +( 4mo )2 m - mo + v 2, cos 2"t'] x = O.
 
. 7TVN m
 o 

For the first resonance of this equation. which corresponds to the situation 
of interest here, it is well known that the stop-band opens up linearly 
with A in the manner 

(4mo) 
2 
m~mo __ .!. ~ or
 

l?r2JN m -+ 2V2. = -+­
o
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The eigenfunctions. moreover. may be approximated by 

A [COS T + I\. cos 37J = A (COS-Vg + 1\ cos 3Vg
even 161J2	 even 16 V 2 J 

and 

Aodd [sin't+	 [sinz}g + A. sin 3V gJ .Aodd 
167.1 2 

[CL Ref.ll. Appendix I,; or Whittaker and watson (ref. 16). Ex. 1. Sect. 19.3} 

These results are thus seen to be consistent with the corresponding results 
listed in Table II. 

We wish to record that the dependence of stop-band width on the product E-t 
in cases of the type discussed here was pointed out to us by Dr. Parzen prior 
to completion of the analyHc work described in the present report. 

21.	 If the matrix which serves to carrt the vecto:s (~It')-I ) of a particle through one 
revolution is written in the form cf. ref. 1-:i m-I 

+ Cosh~ + 0.. Sinh/< - "'&Sinh/< -) 
( oSinh/(	 + Cosh/< - 6. Sinhf< } 

~ 

where 'r == I;; . the general solution after n revolutions. for a particle 
starting with initial values xO' Po is 

Xu (2:)0 + 1 t[('" + 1) Xo + ,.8 Po] e'rlll - [(.... :;: 1) Xo + ,4 Po) .-nJL}0 

2 
2	 2 

n + 1	 f EfXJ - 1 - l n Ll [ eX. - 1 1 -1li4
Pn :;: (±) 2 1- ! X o + (iX. + 1) POJ e r- + ~ X o + (DC..± 1)p~ e J. 

Here the upper and lower signs correspond. respectively. to operation in an 
integral or half-integral stop-band. For a solution launched with p = 0 to 
correspond entirely to a rising exponential. it is therefore necessa~y that 
0.. = + 1. the product of the main-diagonal matrix elements must then be unity. 
and one of the two coefficients~or?(must vanish. It is. in fact. evident 
that it is ~ which must vanish in this case. as clearly can be established 
directly from the observation that a "pure" exponential solution. if correctly 
launched with p ::: O. would continue to give p = 0 after one revolution. The 
sign ofJ...(~ + 1)ocan serve as noted here. to distinguish between the cases 
in which Po ~ 0 will lead to an ascending or decreasing exponential: 

Character of Exponential Solution Arising when p = 0 and 0(= + 1 o	 ­

~ce Integral Half - Integral 

+1 Rising Falling 
-1 Falling Rising 
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The matrix element <f Sinh/'f can. of course, be determined directly 
by a one-revolution computation for an orbit launched with Po = O. since 
it is then given simply by PI/ x ' The parameters of the differential o
equation (e. g., m) can be adjusted to make this matrix element vanish. 
[We consider that the condition (dx/ dB)o = 0 for the rising exponential, 
which is the condition adopted here, is not only simpler to apply but 

probably preferable to the condition €d/ dB)(e -fiB x~ 0 = oJ 
22.	 J. N. Snyder, DUCK-ANSWER (1. B. M. Program 75), MURA-237, Int. 

(1957). In the use of this program for examples in which N = 48,"r= 168 Bwith 16 
steps of the variable 7: in each intervalAT=7f. Thus 5376 steps were 
made per revolution. or 112 within each full sector. The square-wave 
function F(B) of unit amplitude (.±.1> was generated in theV -channel of 
the program by use of the "bump" feature, 23 and introduced into the
1- or x-equation by setting.J'f2 :::: 1. Accordingly one set S14 = -(1/2)(m/28224). 
A perturbation E cos 7B + 1 cos 8B can be represented by setting 

B1 = - € / 282240 with N1 =96
 

and B2 '=- ~ /282240 with N2 = 126.
 

Similarly, a perturbation E cos 6B + f cos 8B can be obtained by 

B1 =- E/282240 with N1 = 112 

and B2 = - r/282240 with N =126.2 

For examples in which N =24, 192 Runge-Kutta steps were employed in 
an intervalA't' =1Z', corresponding to 1920 steps per revolution or 80 
steps per full sector. 711 was again obtained by use of the "bump" feature, 
but with values,.± 20. fn this case S14 = -m/1000 and a perturbation 
€ cos 4B + f cos 6B + -,.,. cos lOB was representable by 

Al =	 - >"/250; 

B1 =	 - E/ 250. with N1 =5; and 

C1 =	 - f/ 250, with N 2 = 5. 

Phase shifts can be introduced into the arguments of the circular functions, 
when desired, by use of the parametersol..p ~l' and~l' 

23.	 J. N. Snyder, Invariant Duck-Bumps (I. B. M. Program 77), MURA-238, 
Int. (1957). With the Runge-Kutta interval chosen as noted in reference 
22 for N:: 48 sectors/rev.• we set N = 112,....,., = 28,/7.'= 84, 2- 5 .0.11

B 
= =.03125, 2-5A ~= .03125, and launch the"'f solution with fo10-2 = .01 
to generate the desired unit square wave. In the exampleslertaining to 
N_"" 24 sectors/ rev., we set NB :: 80, ~ =20, '17.' =60. 2- ~ 1f =-.625, 
2 5A(=. 625, and fo 10-2 = .2 to generate the desired square wave(-gt'= +20). 

24.	 J. N. Snyder, FORANAL (1. B. M. Program 52). MURA-228. Int. (1957). 
With a large number of input data the limitation of the original program to 
output coefficients of order not to exceed 24 was not considered to be a 
necessary or desirable limitation. We are indebted to J. McNall of the 
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MURA Computer Division, for relaxing this limitation and, more 
recently, for incorporating the Fourier-analysis methods of 
FORANAL directly into the DUCK-ANSWER program [John McNall, 
DUCKNALL (1. B. M. Program 219), MURA-438, Int. (1958i1. 

Elizabeth Zographos, MESSY-MESSY (1. B. M. Program 78), MURA-239, 
Int. (1957). Matrices of "Type 1" and "Type 2" respectively describe 
the passage of a particle through a focusing or defocusing section. 
Matrices of "Type 3" may also be used, if desired, to represent either 
a lens or a straight section. We are indebted to Mrs. Zographos 
Chapman for preparing an overwrite to the MESSY-MESSY-- program so 
that the elements of the successive cumulative matrix products can be 
printed. A test of the program in its present application was made by 
a routine run for an unperturbed A-G structure for which 11= 7.375. 

26. L. Jackson Laslett, MURA-435, Int. (1958). 

27.	 For this perturbation. in which the coefficient "5, of equations (23a, b) 
has the value 7.231 622 101, 

€ = -7.231 622 101 sin 600 
= - 6.262 768 45,

f = -7.231 622 101 sin 520 .5 = - 5. 737 231 55, and 

E -t f = -12. 

28.	 For this perturbation, in which the coefficient ~ of equation (31) has 
the value 7.628 093 8847, . c: ...• . , 

E = - 7.628 093 8847 sin 600 = - 6.606 123 0865, 

f =- 7.628 093 8847 sin 450 =- 5.393 876 9135, and 

E .... f - - 12. 
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APPENDIX L PERTURBATION METHOD
 

The analytical problem of solving the Hill equation
 

(4ml	 \i ~ ~) 
(1-1)d9

d 2

2 )P,e (9) + 1f cos N 9 + ~ ~m cos m ~ li (9j ~ 0 

for the eigenfunctions >':i can also be accomplished for small ~ through 

the use of stationary state perturbation theory. 12 As the unperturbed 

equation, one considers the Mathieu equation 

d2 A.
H =: 'f'ZJ,,l	 (1-2)¢ 

o 7J,L d 92 

where for ~ertain a V and m t ' the ¢~t are periodic Comparison of0 

this equation to equation (1) with ~ m =0 shows that 

(1- 3) ¢t>l .: ~,t 
if mt is chosen so that at. =00 The eigenfunctions ~£ for V and t 

either integer or 1/2 integer are given to a good approximation, for 

]} .(. N, by 

r 
,+.. "" A [cos V 9 + B ~ C?S (N - zJ) 9 + C (cos (N + 2J) 9 (1-4)
Y-;~t ~ l lsin 2J 9 11/. CSlll (N - V) 9 ~f.. LSin (N + 2J) 9 

where the notation means either the even or the odd functions are to be used 

and where 

_ + 2 m,t. + for even solutions; 
- TC [ - for odd solutions. 

A	 "V.k 

1 * 
+	 (1- 5) 

(N - 1,)2 - aVJ 
':CThese equations are the same as eqns. 3, 4 and 5 of the main text, They 
are repeated here only in an attempt to draw more closely the parallel to 
the familiar quantum mechanical problem through the use of similar notationo 
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::0:Setting V:::: t and	 at. 0 gives the condition
 

2

22 (- m l) == J/ (N2 - 1.2) 2 ,
 

1ft N2 + .l. 2
 

'\J J-2 (1	 - 3 /} /N2) (1-6)0 

A good	 approximation for a V is give n by
 

002 _ 2(N
2 ~_\2 (1 + 3 2/ 2 2 2
 

a V ::;.	 \..J::---.-____ ~ ­_;;;........V_.........=.--:/~ V N_) V t
 V<::< No (1-7) 
1 + 2(~mt) IN2 

1 + 4J.2/N2 

Assuming the perturbation term to be 

HI:: 

zt
L: ~m cosm8 (1-8) 

m = 1 

so that both first and second order effects will occur and applying stationary 

state perturbation theory one obtains the solution of equation (1) to be to 

first order 

(1-9) 

where 

;- cos	m 8 ¢".t (8) (1-10)
m	 :,) 0 

The change in the eigenvalue a j!, to second order is given by 

(- ,Q. a -t ) "(Hl>'U	 + L;;JH1l,t, 11] I av" (I-1I) 
"))+l 

For J,. <<. N, the	 only matrix elements of importance are, to terms in 1 /N3, 
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for the even functions and 

(a) (H1 ),e R-+ m= ;m/Z ; 
J 

(b) (HI) £"/.l _ ml == ( ~ m/Z - S2 J., _ m/2) (/. - m)/II- - ~; kfm 

(c ) (H1) ,t., 0 == 0, (I- 13) 

for the odd functions. 

The negative differential of equation (7) gives approximately the change 

in the eigenvalue mt equivalent to the change A a./. as 

::: (AClL 14) (N 1"(lz mt. )2 (1 + [4/N:JI2 m£. IN1TJ2 ) 
1 + (4/N2) (1} - [Z m LIN '1"'CJ2 ) 

~ (~a.t 12) ( 1 + 3;.,2 INZ) I 1.,2 . (I-14) 

Changing mt by this amount approximately adjusts A a,t to zero in the 

,-... final differential equation so that 'tfJt is the solution of equation (1) with 

m.l" replaced by (m,t + D. m,e...) instead of being the solution to the equation 

d~~ '1j)J, + (,6a"t + ~ m,L cos N 9 + E ;m cos m 9) ¥'~ = 0 . 
m 

A splitting of the m;" level (removal of the parity degeneracy), that is, an 

opening of the mt stop-band, will occur to first order only when 

m = 0 ( ; 0 = 0), as can be seen from equations (12b) and (13b) because 

of the presence of the cos 2/.,9 term in the perturbation. The magnitude 

of the splitting as obtained from equations (11) and (14) is 

[(Am) -(A) I =_C5zt 4]N'J"'C'lzmL 
2 1+(4/NZ)(2m,lIN1t)~ 

,L even m odd ITt 
1 + [4/N 2 t. Z - (Z mt IN"O 

IV _ ( SZ!/2) (1 + 3t 2/NZ)/ £,2 ~ (I-15) 

where the subscript "even" refers to the matrix elements using the even 

¢])
) 
t and the subscript "odd" refers 
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¢v,t. This result is identical to the one obtained using the variational 

method if terms of order 1/N2 are dropped, as can be seen from Table U. 

An opening of the mJ, stop-band will occur to second order only when 

terms of the type, ~.t cos 1.. 9 or [$ m cos m 9 + S21.. _ m cos (2 t - mp 9J 

are present in the perturbation. The magnitude of this splitting is 

where K = t - 1 if t is integer or 

1 1
K=l-"2 if tis"2 odd integer. 

This result is to be compared to those shown in Tables III and IV, again for 

the case where terms of order I/N2 are ignored. 

For the application discussed in this paper, that of finding a perturba­

tion that can be used for the resonant extraction of a beam from a conventional 

A. G. synchrotron, it would appear from equations (4) and (15) that the maxi­

mum effect is obtained for a perturbation of the type 

HI = f ZL cos Z J.,Q + ~t- I cos <t - s) Q + ~.e+ 1 cos Ll+ s) Q 0-17) 

where 

s	 = I if t is integer
 

1 1
 -s = if f, is "2 odd integer ,
2 

since the first term opens the stop-band linearly in ~2l and the second 

and third terms give rise to a cos s 9 term in the solution t..fJL (9). It is 

interesting to note that for the special case of J, = 2'
I 

a single perturbation 

term -;1 cos 9 accomplishes both g£fects. 
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APPENDIX II. VARIATIONAL SOLUTION FOR THE PERTURBATION f (9) = ./\ cos 2 VO 

We employ the variational statement (17) of Sect, II 3 Ba. 

<. (dx! dQ)2 > - m .(x2 F (Q) > - 'J'. <x2 cos 2 V Q> :::' min,. (II-l) 

and employ as trial functions 

x .: A cos z) 9+B cos (N - V) Q -t- C cos (N + '2) 9 + D cos 3 V 9 .... E cos (N - 3 V)9.... F cos (Ni"3V)Q 
(II-2a) 

or a similar expression contain~ng  sine functions. (II-2b). 

The variational statement (II-l) then becomes 

1)2A2 (N - 1»2 B2 (N+ V)2 C2 (3 V)2 n2 (N - 3 V)2 E 2 (N -t- 3 2/)2--- + - ... + + + F2n n n n 

2m 
~'fr  [±AB ~  AC ± DE + DFJ
 

- ""\. A2
 
+ ~'""4 - ~ [AD + BC + BE + CFJ = min., (IIc~3  ) 

where the upper and lower signs respectively refer to the even or odd trial functions, Differentiation 

with respect to the parameters A through E. in turn. leads to the simultaneous algebraic equations 

2m -6..D( y2 + -4- )A :F 2;' B - 1l- C - 2 = 0 (II-4a) 

-2m 2 7'- A+- A + (N - V) B ~  - C --2- E "= 0 (II-4b)rr 2
 

--2m
A - ~ B +(N + 11)2 C -~ F
 -==-0 (II-4c)7r 2 2 

_A. 
A +(3 V)2 D -2m E 2 m F2 +rr -'fL (II-4d) 
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A -2m
 ---, B + (N ~  32)2 E -0 (Il-4e)+~ D2 
2 m·-~C - If( D +(N+31/)2 F -0 (II-4f)

2 

The coefficients D, E, and F will be of order )... and, to tijis order, it will suffice to use the 

unperturbed values of B/ A and C/ A in solving (II-4d-f): 

2m _ 2m F _ A(37)2 D + E (II-4d' )7t' 'T[ ­
A I:;: 2m D + (N - 3 V)2 E =± ~ (II-4e )'1r (N -%1)2


2m 2m A­
-
1T 

D -to (N +31J)2 F:s 'Tt' (II-4f')(N + '21)2 

The determinant of the coefficients is 

9 V 2 
(N2 - 9 7,)2)2 - (;rp)2 [ (N'T' 3 V)2 + (N - 3 1",,1)2 ] of which the last term is the smaller.J 

This last term may be simplified, by use of equation (5c), to become approximately 

~.  V 2 N4 1 + 9 (V/N)2. or _ V 2 N4 [1 + 6 (V/N)21. 
1 ..... 3 (V/N)2 

Hence the determinant may be expressed in the form 

V 2 N4 V 4 N
29 - 162 - 2/2 N 4 - 6 z)4 N 2
 

4

=8 V 2 N - 168 ])4 N2 = 8 V 2 N 4 [1 --21 (VIN)2J (II~5  ) 

In solving equations (II~4d'-f')  by determinants, one obtains 

2 
Numeratorfor D: -F-[ (N - 9 V 2)21"e;f[ (~~ ~Jr + (~~3S] } A 

4 V 2 2 4~ ~ [N - 18 N + V 2 
N

2J A == -f: N [1 - 17 (1II N )2] 
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Numerator for E: + I\.~ [2 m (3 7,)2 (N.,. 3 lJ)2 + (2 m)3 [ 1. = 1 ~J+ 2 m (N 1" 3 V )2J A 
- 2 1l (N ~  V)2 l'IT (N +- V)2 (N _ V)2 fJ'{ 

3~±  7-11: (N+3 z,I)2 [l+(N3~~YJ A =j: i'- m;/ _ ~f J A;(1+3 2I/N)2 [1+(N

~ ~ 2 m 2 (N·~ 3 21)2 (2 m)3 [ 1 = 1 ~ 2 m 2~Numerator for F: _/_, -- (3 V) . + - .... (N ~  3 '2) A 
2 1"( (N.,.. 7.)2 7T (N _ V)2 (N ... V )2 'JT . 

'" A;;' (N - 3 V)2 [1 -{~  :1.1/]A ="}- ":rl2 
(l - 3 VIN)2 ET~~t/] A. 

Hence we write 

N 7'- 1-17 m (1'" 3VIN)2 [1+@ ~iiJ A; 
D= 16 7)2 1 - 21 )2 N.J::. _ .. --2 2 ~ 1J}2]

(VIN. A; E =± ",.9. N 1~ 21 ( VIN) 2 (3 1.1 A (H-6a-c)
(1IIN)2 8 flIT m (l _ 3 VII'l) 1+~  • 

F 'V ~  1l'; N 2 1 _ 21 ( VIN) 

The solutions for Band C, as given by (II-4b. c). will be modified to first order in 'J.. by the 

presence of the terms - (7\/2) C and - (;/\./2) B, respectively. A more marked first-order modification 

of the values for Band C arises implicitly. however, from the first~order  change of m. which then 

affects the terms '+ (2 m/rn A and - (2 m/'IT) A in (II-4b.c). We believe it permissible to disregard 

here the first -mentioned effect. 

The locations of the stop-band boundaries may now be determined, through use of (II-4a). Since D 

is of order')... , the term - (A/2) D will be disregarded. Moreover the explicit correction terms of 

order ?'- arising in Band C will affect the location of the boundaries by an amount which is of order 
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(V/N)2 less than the main effect. and hence (as stated above) will also be disregarded. With m o denoting 

that value of m which in the unperturbed case gives the same integral or half -integral value of V as is to 

be employed with the perturbation, equation (II-4a) becomes, with the simplifications noted above. 

+ "J.. ~ 2(2 m )2 = _2 (2 m o ~ 2 
7 'TrN 1tN j 

or. treating m - rno as small. 

m~' moe;;wr =+~
rno 2
 

m - m o
 == + ~ ( '7t 
N)2 ?,-. (II-7 ) 

m o 4 mo 

These results are those listed in Table II. 

APPENDIX III. VARIATIONAL SOLUTION FOR THE PERTURBATION f (9) := y( cos 1/ 9 

We employ the variational statement (19) of Sect. II 3 B b. 

2<::"(dx/d9)2>, - m ~x2 F (9) > -~ <x cos 'ZI9 > c min •• (III-1 ) 

and employ the trial functions 

x :: A cos V 9'" B cos (N - V) 9 -I- C cos (N + 1J) Q + R + S cos 2 11 Q 

+ D cos (N - 2 1J) 9 r E cos N 9 + F cos (N + 2 V) 9 (III-2a) 

or a similar expression involving sine functions [with R absent]. (III-2b) 

The variational statement (III-1) then becomes 

1J2 A2 (N - 11)2 B 2 (N .,. })2 (2 V)2 S2 (N - 2 z)2 D2 N2 E 2 (N +2 z)2 F 2 
--- .,.. n 4- n + n .,.. n + n -r ---=-2--";"'-­

2m [± AB of- AC +' 2 RE + DS +' FS]11 
- ---1- [ + AS + BE +- CFJ :: min .• (III -3)2 AR ..... BD + CE

2 
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with the upper and lower signs referring respectively to the even and odd eigenfunctions and with the 

terms in R omitted in the latter case. The simultaneous algebraic equations which result are 

_2m 2 m e1)2 A +-B -1l - '1 R - -!l.- s =- 0 (III-4a)'1'C 2 

2 
--{L- D+- ?;; A ... (N - 7J)2 B - 2:l. E :: 0 (III-4b) 

2m
-'TT'A -t-(N+1I)2 e -4 E - 2l. F .0 (III-4c)

2 2 

_ 4 m R- --!l. B --fLe +N2 E ~O (III-4d)
2 t'Jl 

...0 (III-4e)- 11. A 
4m E 
7( 

2m--fl.A .... (2 v,2 S +2 m D - 7fl F -0 (III-4f)
"""iTt" 

-1l B +- 2 m S +(N _ 2 V)2 D -0 (III-4g)- 2 7'C 
_ 2 m S-!i.e 

'1t 
+{Nofo2 ])2 F -0, (III-4h)- 2 

with the term - 4; R in (III-4d) and the entire equation (III-4e) omitted when seeking the coefficients 

of the odd eigenfunction. 

For the even eigenfunction. equation (III-4e) immediately gives E:. - and, ignoring+ : A 

quantities of order '1 2• equation (III-4d) then gives 

2 
R= -~  [4 (B+C) _N -(41JS [2i-r NJ "l. A = -(1!j[+<V/Nl11 AE] . 

For the odd eigenfunction. on the other hand. R does not enter and equation (III-4d) gives 

)') N m V 2 m [ rl 2 m C .. 1 J
E = 2i2 (B + C) ::; - 4 7T N5 '1 A, by taking B {di ~>  1t 2 1 + 2 V/Nj and e ~TfN2 \!- - 2 vlNj .

N
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Through first order in rz. the solutions for Band C will be the same function of m as in the 

unperturbed casE'. as can be seen by inspection of equations (III-4b~c).  

The last three equations. (III-4f ~h).  are quite analogous to the equations (II~4d··f)  of Appendix II and 

may be solved in a similar manner. Thus the determinant of the coefficients. which enters in the denominator 

of the solutions. is approximately 4 V 2 N 4 - 32 z)4 N2 - V 2 N4 .. JN2 = 3 zJ2N4 ~ 33 V~2-3Z.iN4F  -11<z..tN)2]. 

Then one finds 
2 

1 - 7 ( V IN)2 D _+ m (1 + 2 z)/N)2 b{N _ ~ )2J1 '1 A;S.. ~ 1 - 11 O)IN)2 - 3 'T'( v2 N2 1 - 11 (VI N)2 YL A; 

F_ (1 -2V/N)2 [1t{NvtfJm 
31'[. V N2 1 - 11 (-,) IN)
 

Finally, by use of (III-4a). in conjunction with B ';;f + 2 m 2 A and C~  2 m A. one obtains
 
- 7(N 7rN2 

(2 m :\2 S [2 moj2 
- 2 \ 7t' N J A -, 1{ (R.,. 2" ) = - 2 \ Tf NJ A. 

or m~mo - - Yl (R+~ )/A,e.,;n2 

The shift of the stability boundary corresponding to the even eigensolution is then obtained by substitution 

1 ,oJ 1 
of the appropriate expressions found above for Rand S. rewriting '2" SI A = 12 7j2 1 in the approximate 

form ~  tP:':' t Y\. to simplify combination with R/ A , Likewise the shift for the odd eigenfunction is 

obtained by ignoring R and substituting the appropriate expression for ~  sl A (~~\ • 
12 V ) 

The p:ru::;edure outlined in this Appendix leads to the results listed in Table III. It may be of interest 

to note that the net width of the resonance arises from the term R in the even eigensolution. since S does 

not change sign in passing from the even to the odd solution. 
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AI-)ENDIX IV. VARIATIONAL SOLUTION FOR THE .a.-kRTURBATION f(9) =E cos (V- r)9 -r t;cos (V.,. )9 
Woe employ the variational statement (21) of Sect. II 3 B c. 

2~(dx/d9)2  > - m < x 2 F (9» - ~ <x2 cos (z) - r) 9" ~  r;<.x cos ('V+r) 9 >-=min .• (IV-l) 

and employ the trial functions 

x ..:r A cos V Q ... B cos (N - V) 9 +C cos (N .,..1,) 9 

+D cos (2 V - r) 9 +- E cos (N - 2 -,)f> r) 9 + F cos (N'" 2 V - r) 9 

+Gcos (2V+-r) 9 +Hcos (N - 2'V - r) e .... I cos (N+2V+r) 9 

+J cos r 9 + K cos (N - r) e + L cos (N or r ) e (IV-2a) 

oor a similar expression involving sine functions. (IV-2b) 

The variational statement. (IV-l). then becomes 

2,)2A2 (N - 11)2 B 2 (N of- 21)2 C 2 

2 + 2 +- 2 

+ (2 V- r)2 D2 (N - 2V+ r)2 E 2 (N.,. 2 ,; - r)2 F 2 
+2 2 + 2 

+ (2']/+ r)2 G2 (N - 2 V ~ r)2 H2 (N..,...2 V-r r)2 12 

2 +- 2 + 2
 

r 2 J2 (N - r)2 K2 (N + r)2 L2
 
+ -2 + +2 2
 

2m
 
-'T( JL]
[+- AB + AC ±. DE + DF ± GH + GI ± JK -+­

~  [ AD .... AJ +- BE ~  BK of'" CF to CL]- 2 

(IV·~3)--t- [AG!: AJ + BH f" BL +- CI + CKJ :s min .• 
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where the upper and lower signs respectively refer to the even and odd eigenfunctions. Differentiation with 

respect to the coefficients A, ...... L. in turn> leads to the simultaneous algebraic equations� 

2 _2m 2m E:.� 
]) A + ?r,B -1r C ~-2- D ... ~ G ".f-£t ~~ :.02 L2 21 (IV -4a) 

-2m £+rrr A +(N -"2A2 B --E ~l  H - i K _lL cO 
2 2 2 (IV -4b) 

2 m A ~ ~ +(N+V)2 C -~ F "- I -- K -.L L .0
1T 2 2 2 - 2 (IV-4c) 

2 _2m 2m~A - 2 t(21,) ., r) D t rrt E - iff F .. 0 
(IV -4d) 

€ -2 m d 2--2- B +rr D t(N-2V+r) E _0 
• (IV-4e) 

- ;: C-2; D +(N+2 V - r)2 F ..0 
(IV-4f) 

5... A t(221+r)2 G ~2  m H _ 2 m I =02 rr 1l (IV··4g)

~B 2m 
- 2 + 1r G (N-2V-r)2H ==0 

(IV -4h) 
2m

- lc ---G (N+2V-J-r)2 I ==02 7T (IV-4i) 

-f~ "'~J  A 1" r 2 J =F2....nLK _ 2 m L ==0 
[2 - 2 '!T rr (IV-4j) 

+(N - r)2 K __ 0- i B-+C =F~J 

-+ 
(Iv-4k) 

€ _ 2 mB--C J ..t{N +' r)2L =0
2 'IT (IV -41.> 
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The coefficients D•..• L will be of the order of the perturbation ( € and/or ~  ), while, as in 

Appendix III, the solutions for B and C will be the same function of m as in the unperturbed case (ignoring 

effects of second order). Equations (Iv -4d-t) may thus be solved. in groups of three, for the coefficients 

D, ... L in the same way as in the previous cases. The results are those listed in Table IV. 

With the coefficients so determined, equation (IV-4a) then serves to give the location of the stability 

boundaries. Although the shift. m ~ m o ' is second order in the perturbation, we again ignore in this 

computation possible second order terms in B and C because of the presumption that ~<='N.  Accordingly 

2mO_2(~,2  A _£ D - ~ G - (L ± ~)J :::::. -2 )2 (IV-~)  

'f{l'lJ 2 2 2 2 ?TN 

t ;Nl rn ~rno  - - ~ L t- l;" G +- (I!: i: ~)  J tjA,€ D (IN) 

leading directly to 

IDOm - _!. rrN 2 E. 2 + C ~ of- r ' 
(IV-B)

IDo 2 ~ rno ) f<3 V - r) ( Vt- r) - V - r 2 (3)1.. r) 
2 
(V - r) 

] 

as entered in Table IV. It may be of interest to note that the s~~it!~.~[  of the m-values. to produce a 

iitop-band, arises from the term of frequency r, whose coefficient (J) is proportional to (f: ;k ~). 

The width of the resultant stop -band is proportional to the product c.)'. thus requiring the presence 

of both a cos ( 7J - r) 9 and a cos ( -z).,. r) Q term in the applied perturbation. If only one such term 

is present, however. the results obtained here of course still may be used to give the m-values 

associated with the oscillation frequency V. 
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CAPTIONS FOR FIGURES 

Fig. 1. Stability Diagram for 

d 2xl d9 2 + [mF(9) + E (cos 7G + cos 89)J x = 0 

N = 48. 

Fig. 2. f(G)::: -6.262 768 45 cos (7G + 52°.5) 

-5.737 231 55 cos (8G + 60°). 'll= 7 -1/2. N = 48. 

Fig. 3. f(G) given piecewise-constant values in accord with 

f (9) = -6.262 768 45 cos (7G + 52°.5) 

-5.737 231 55 cos (8G + 60°>' -r/::: 7-1/2. N::: 48. 

Fig. 4. /<G) = -8 cos (7G + 45°). 11 = 7. N::: 48. 

Fig. 5. f (G) = -6.606 123 0865 cos (6G + 45°) 

/'" -5. 393 876 913 cos (8G + 60°>' lJ = 7. N::: 48.
5� 

Fig. 6. I (G) ::: sin lOG - 7.5 cos 4G. V = 5. N = 24.� 
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