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ABSTRACT 

The characteristics of orbits in the median plane of a spiral orbit 

spectrometer are briefly examined from the viewpoint of phase-plots siuJilar 

to those used in accelerator theory. The characteristics of the spiral orbit 

spectrometer may be suggestive of injection methods which would prove useful 

in accelerator design. 
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I. INTRODUCTION 

The� ingenious spiral orbit spectrometer has been described 1-7;t'and 

d I, 3- 5 , . fbI' h d d " 8, 9ana1yze In a ser1es 0 pu 1S e papers an 1tS experImental use reported 

for the study of,}ot+ meson decay. The instrument employs an axially-symmetric 

magnetic field characterized by a vector potential (A~ ) having a stationarye 
value at a radius (~) such that Br at that radius is equal to the magnetic 

rigidity of the particles. Particles with this magnetic rigidity, or momentum, 

emitted from a source on the axis then describe orbits which approach (asymptot­

ically) a circle of radius r a while particles of lower momentum do not reach 

this radius and particles of larger momentum cross the circle quickly. The 

r-- field-configuration thus appears well suited for the selection. with good resolution 

and large solid angle, of particles of the selected momentum -- particularly if 

a directional detector is used. 

Although a source on the axis may not be realized exactly in practice and 

the particleswhich are emitted with initial conditions suitable for approaching 

the circle of convergence thus (even assuming the mechanical momentum to be 

correct) in a sense constitute a set of measure zero, the orbit characteristics may 

be of interest (beyond the spectrometer application) in suggesting effective means 

for injection into particle accelerators. The spectrometer characteristics have 

been calculated in some detail in the references cited (esp. ref. 3), but it may 

be useful here to describe the radial motion (in the median plane) briefly in a 

way whi.ch parallels the viewpoint frequently adopted for the examination of orbits 

t'References are given in Section IV.� 
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in particle accelerators. Radial phase-plane plots may then be examined. 

in analogy with the procedure used in accelerator design. The magnetic field, 

as a function of radiu.s. is normally bell-shaped and axial focusing may be 

expected Gee, F. ex., eq. (43) of ref. 3J 
II.� THE ORBITS IN THE MEDIAN PLANE 

Employing polar coordinates (r, 9) the trajectories in the median plane 

may be obtained from the "space Lagrangian" (principle of Least Action) 

L� =,{2 + r,2 + e r A(r) Gmu or MKSJ (1 ) 
p 

where A(r) represents the vector potential, e and p the charge and mechanical 

momentum of the particle. and a prime denotes differentiation with respect 

to 9. It is convenient to normalize the argument of the vector potential so 

that it may be expressed in terms of a normalized function a(""') as follows: 

A(r) ::: - --.Ea-. a (r!ro>' (2) 
e 

where a(l) := 1 (3a) 

and a'(l) = O. (3b) 

{j:hUS at x=r! r 0 :.: 1 the ve ctor potential is stationary and, at this point, 

IBrl = Ipo! e/.; hence a possible orbit of a particle with mechanical momentum 

~ is the circle r :=: r 0] 
We thus write 

L =-(;.2 + r,2 - 1 r a(r! r o> 
1 + ! 

::': ror~2 + x,2 - 1 x a<x>) (4)
i' 1 +~ 

where x; r!ro andE':: p!po -1. One may then employ in what follows the 
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simple Lagrangian 

;t: ~ -;:~2-+-x-'-2 - 1 x a(x). 
(5)

1+£ 

From the Lagrangian (5) one obtains 

~ x' 1-/x2 + x,2 :::: r' /1r2 + r,2 = cosC't. or (6a) 

x' := Px 1-11- p2 (6b) 

~ = xth.l + x,2 = r/.,,{,2 + r,2 = sinoC. (6c) 

where fA, denotes the angle between the direction of motion and the radius 

vector; 

= x;/xl + x,2 - 1 ~a(x>J. (7 ) 
1 +e ~x 

The corresponding Hamiltonian is 

'# -, Px' - ~ 

:= -x{i-p 2 + 1 xa(x). (8) 

1 +€ 

and will be a constant of the motion. Again from Ff.the equations for the 

trajectory may be obtained: 

x' - ::: Px/-/t-pl (9a)..llJ 
ap 

pi ,- =-f;.. p 2 _ 1 (9b)-, a H, a oa{x)J · 
d X 1 +~ dX 

as before. 

The geometrical interpretation of p. the canonical momentum conjugate 

to x. as the cosine of the angle between the direction of motion and the radius 

vector is noted; one also sees firom {9b!Jthat one can have P identically zero 

(x' =o. corresponding to motion on a circle) at x=1 for€:=O, sincef~x [x a(xM=l 

4 
:::1.� 
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For a specific illustration of the features of the trajectories, as described 

by the foregoing equations, one may consider a bell-shaped magnetic field for 

which the vector potential has the simple form 

a(x) :.:: 2x 
Z1 + x , (10) 

for which, as desired, a(l) =1 and a'(I) = 0, The general nature of the 

median-plane magnetic field, B, implied by this vector potential is indicated 

in Table 1. 

TABLE I 

2CHARACTER OF MAGNETIC FIELD DESCRIBED BY a(x) := 2x/(I+x ) 

Radius Field Field Times Radius 

x -(er Ip ) B -(e/po) rB = - xfjerol po) riJo 0 

0 4 0 

0.2955 9774 3. 382 9758 1 

1 1 1 

It is noted tha"': the radii represented by each of the last two lines of this table 

correspond to possible circular motion of a particle with mechanical 

momentum po. 

The invariant phase curves, in the x, P-plane, are given by"J/.= constant. 

With a(x) as given by eq. (10), such phase curves are illustratedlOin Fig. 1 

forE ~ 0 (p:: po)' It is noted that the axis of the spectrometer (x ::: 0) 

corresponds toi¢= °and that the curve#= 0 passes through the point (I, 0), so 

r-- that particles emi.tted from the axis with p = Po may approach the circle r ::-:: r 0' 

albeit requiring a logarithmically infinite time (as we shall see) to reach this 

radius. The dotted lines in Fig. 1 which connect branches of phase curves for 

5� 
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which h >0 evidently correspond to retrograde motion, for which the motion 

2in time is backward in 9 and.,{ - p = sino( should be taken as negative. 

"\"""""-----.~ 

\ I I 

--+--­
I 

The situation for particles of somewhat larger momentum (E>0 ) 

is illustrated in Fig. 2 and for particles of momentum smaller than Po 

(€ <0 ) is shown in Fig. 3. 

III. CORRELATION OF PHASE POINTS WITH 9 OR t 

The progress of the motion along the phase curves, such as those shown 

in Fig. I, may be indicated by noting values of 9 along such a curve. The 

progress of 9 is given by 

X
~9 =/ dx 

Xl 
x,

=/tfr!" dx (11) 

[ef eq. (15) of 

X, 
ref. fJ. where P(x) is given in terms of the parameter -rl-by 

eq. (8). Near the circle of convergence (1. 0) forE =0 and ~ =0 the quantity 

P approaches zero in such a way that 9 becomes infinite as x approaches 

unity; thus, for€ =0 and!l= O. 

6 
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2p :::� 1 - x� 
1 + xl� 

9 «,x) - 9 (0) '''J~ 2 dx� 
1 - xl�o 

.--b,l+x =2 tanh 
-1 

x. (12) 
1 - x 

For other phase curves the progress of e may perhaps be most conveniently 

found by numerical integration, aided by analytic integration of asymptotic forms 

applicable in the neighborhood of P = O. 

The progress may also be noted in terms of time. by noting� 

A+' :::. r o� fX dx 
v p . 

><. 
Again forE::.; 0 and#= O. a logarithmic infinity is obtained in approaching the 

point (1, 0),; specifically with the form of field considered here and forE = O. 

, )( 
2t{x) ,-� t(O) dx= r o� / 1 + x 

1 - xlv 
X, 

= -
r o� ~. 1 + x -xJ = r [2 tanh -1 x - 0. (13)o 
v 1 - x v 

In Fig. 4 the curves 71= 0 and 11= -.025 of Fig. 1 (E = 0) have been 

approximately la.beled with values of B, fixing arbitrarily the relative positions 

of the points Q ~ 0 on the two curves. As B. the independent variable of our 

formulati.on. increases. phase points located between these two curves will pro­

gress as indicated and one may expect the area occupied by such points to be 

conserved. The progress of points with time, however. may be of somewhat 

greater interest and in Fig. 5 an attempt is made to attach time labels to the 

curves rf.=-. O and;/.':":: -.025 of Fig. 1. It does not appear that the region occupied 

7� 
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by points in an Xi P phase plot, when observed at a time common to all such 

particles, should be conserved. From Fig. 5 it is at any rate apparant that a 

certa.in accumulation of points in the neighborhood of the equilibrium circle 

(X ::;,; 1) is obtained. 
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This process of changing from the independent variable t of a true 
Hamiltonian to the variable e (which may be demonstrated generally 
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by use of Hamilton's principle), and the distinction between observation of 
phase points projected in the r, Pr-plane at a common 9 or at a common time, 
is illustrated by the following artificial example: 

Consider� the Hamiltonian 

H (x, G.; Px. pn.: t) = 1 (Pn + 1 P Z ). 
t1� t1 - X 

x Z 

For this Hamiltonian the equations of motion in time are, of course, 

• I 

9 .- aH/~ Pg Pg = - aH 
4g 

.- 1 = 0, or Pg =const. ; 
x 

x - 'dHIaPx Px = - aH� 
ax� 

.- Px Ix; = Pg + 1 Px
Z =H ; and H =const. 

Z x 
xZ 

From these equations it follows that the derivatives with respect to 9 are 

x' = px� 

p' =" H , with solutions Px = Px + H9� 
x o 

x = X + Px 9 + 1 Hg Z
,o o Z 

and the functional determinant, a (x, px)/a (x ' pxo)' with the partial derivativeso 

evaluated with 9 held constant is, of course, unity, independent of g: 
ax ~Px 1 o a (x, px) _ axo axo = 

= 1. 
,,(xo' pxo) - ~ a Px 

apx -.=-­ 9 1 
Q vPxQ 

The time.� t, is given in terms of 9 by 

dt ~ x d 9 

9 
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In concordance with Judd's observations, the equations for x' and p'
x 

may be obtained by writing 

!f(x. t; Px' -H; 9 ) = -pe 
2 

= -xH + 1 Px 
2 

from which 

OX ~ilf= Px apx = 1lI = H 

3- 9 8 Px a9 (!}x 

~a t =P..lf= x a(-H) =-~= 0 

1 9 a-(-H) a 9 ~t 

as before. 

If, for simplicity. we consider the particular solutions for which H =O. 

x = Xo + Px 9 • 
o 

2
9 ::; -xo +-/xo + 2Pxo (t - to) • 

PXo 

If we form the functional determinant a(x. Px) I a(xo• pxo) from these solutions. 

performing the partial differentiation with t held fixed. we obtain 

a(x. px) 

;} (xo ' pXo) -

ax 
;}xo 

a x 

dPX 
t?xo 

;}Px 
= 7'X~ 

Xo 

+ 2pxo (t - to) 
t -to 

0 

= 
dPXo <3PXo 

~~+ 2px
0 

(t - to> 1 

Xo--­- x 

this expression clearly will not in general be equal to unity. 

10 
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The writer is indebted to Dr. B. C. Carlson and Dr. F. T. Cole for 

helpful general discussions concerning such specialized phase plots and in 

particular for remarks leading to the following summary: 

This example illustrates a general situation of some interest. If one� 

takes a group of particles governed by a Hamiltonian and projects the region� 

. occupied by these particles on a subspace of the total phase space, the area 

occupied by these particles on this subspace mayor may not be constant as 

the motion develops, depending on the way in which the initial conditions of 

the particle are chosen. 

Consider a system of two degrees of freedom governed by the 

Hamiltonian H (r" Prj g, Pg; t), where H is independent of g, as in the 

example above. Then Pg is a constant of the motion and if we consider 

a group of particles with the same Pg, but different values of rand Pr 

and observe the progress of the system in time, the area projected on the 

r - p plane by the particles will be constant in time, since effectively
r 

H = H (r, Pr; t). Geometrically, all the phase space points representing 

the particles lie at all times on the hyperplane Pg = const. normal to the 

r - Pr plane in the four-dimensional phase space. 

If" however, as a second example we choose a group of initial 

conditions with the same H and differing values ofpg, the functional 

dependence of H (r. Prj t) varies from particle to particle, so that all 

particles are not governed by the same Hamiltonian. Area in the r - Pr 

plane is not conserved in time. 

11 
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The same problem can be viewed with e as independent variable; 

the "Hamiltonian" is -Pe :::: h (r, Pr; t, -H; e). If H is independent of t, 

it is a constant of the motion, and plays the same role as Pe did when H 

was the Hamiltonian. A group of particles with the same H. but different 

values of Pe (as in the second example) will have the same Hamiltonian 

h (r" PrJ 9-) governing the motion and the area in the r - Pr plane will be 

constant in e. It goe s almost without 13aying that Liouville's Theorem, 

whi.ch is concerned with the total phase space volume, is conserved in all 

cases. 

lZ 
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