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ABSTRACT 

Computational results, obtained with the DUCK-ANSWER program 

and pertaining to the 2 '2Jy - Vx = 1 resonance, are reported for two examples 

r-,� of coupled Hamiltonian different i a I equations. Each of the examples contains 

a term involving x . y (with a periodic coefficient) in the y-equation. The 

width of the resonance appears in each case to be roughly proportional to the 

first power of the x-amplitude. Results are also presented to show the effect, 

on the y-motion, of traversing the 2P - .z.{ = 1 resonance, at various rates.y 

A rough analytic examination of the second set of equations is also 

given. Comparians with the computational results suggest the theory to be 

semi-quantitatively valid. 
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f""'" 1. MOTIVATlON: 

The character of the solutions to non-linear coupled differential equations, 

for oscillation frequencies in the neighborhood of certain non-linear coupling 

resonances, has been reported previously in a number of MURA reports1t and 

by members of the Harwell group. 2 Recently there has been interest in the 

2 V y - U = 1 resonance, since (i) the proposed operating point for the ANL x 

12.5 Gev accelerator 3 lies close to this resonance and (ii) it may be necessary 

to traverse this resonance when employing the Hammer- Bureau method4, 5 of 

beam extraction from a conventional betatron or synchrotron. 

Two systems of coupled differential equations have, accordingly, been 

studied by means of the MURA IBM 704 DUCK-ANSWER 6 computational pro­

f'""\ lI'am. Although neither of these systems may represent closely the physical
• 

situations mentioned above, it was felt that the results would be of interest as 

illustrative of effects attributable to the Z 1/ - .2{ =1 resonance. Attentiony 

has been focused on the growth of y-amplitude (axial-amplitude) rather than on 

the possible eventual "turn-over" of the y-lI'owth, axial limitations of aperture 

frequently making turn-over of somewhat secondary interest. To simplify the 

study, only those non-linear terms were introduced which would be required 

to give a Hamiltonian system of equations capable of responding directly to the 

resonance in question and first-derivative terms were omitted. 

A guide to the magnitude of the y-oscillation amplitude was obtained by 

computing the quantity7 

""" Ky =rl'+ (r;y/ Sy) f:Jr.. . 
which should be an invariant for small-amplitude oscillations.� 

, References are given in Section VI.� 
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r" II. THE EQUATIONS STUDIED' 

The equations employed in this study .vere the following: 

5ET L� 

d 2x/dS 2 + (0.536- L 8 cos 8 8 - 0,075 cos 8) x = - (0.025 cos 8) y2� 

d 2y/d8 2 + (-160 52 + 1. 2 cos 8 Q + 0.050 cos Q) Y =-2 (0 025 cos Q) x y. 

which wereput into a form suitable for use of the DUCK-ANSWER program by 

the transformation 4 Q = 1: : 
2 2 6~d x/d'r = 10 (-0.00335 + 0.01125 cos 2't + 0.00046875 cos~) x 

+ (-0.0015625 cos ~i) y2 

d 2Y/d't 2 =10 (52 - 0.0075 cos 21: - 0.0003125 cos ~r) y 

+ 2 (-0.0015625 cos ~i) x . y . 

"....... The constant coefficient 52 was adjusted to obtain small-amplitude y-oscillation 

frequencies located as desired in the neighborhood of the 2 J.} Y - 2Jx =1 

resonance. 

5ET II. 

d 2x/dS2 + (-2.5 51 - 0.063 cos Q) x = (-0.0825 -0.105 cos Q) (x 2 _ y2) 

d 2y/dQ 2 + (-2. 5 52 + 0.063 cos Q) y = 2 (0.0825 + 0.105 cos Q) x· y, 

which were transformed by the substitution Q = 2't" to obtain the working 

equations: 

d 2x/d'L 2 = 10 (51 + 0.0252 cos 2't: ) x + (-0.33 - 0.42 cos 2'7::) (x2 - y2) 

d 2y /dT. 2 = 10 (52 - 0.0252 cos 21:') y + 2 (0.33 + 0.42 cos 2'C) x· y . 

In this case the constant coefficients 51 and 52 were adjusted together, in 

~ concordance with the relation 51 .. 52 = -0. 4036, to obtain desired operating 

points in the neighborhood of the 2 "])Y - l{ = 1 resonance 

3 
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"" In connection with this set of equations it was also of interest to traverse 

the resonance "dynamically"--i. e., during the course of a run. This could be 

accomplished by introducing, in effect, a secular change in the coefficients S1 

and S2' Specifically, the factors S1 + 0.0252 cos 2't and S2 - 0.0252 cos 2't in the 

last equations were then supplemented, respectively, by 

4't 7f 41:' + '71'
B 1 cos ~6384 + T) and B 2 cos (16384 T ) , 

where the coefficients Bland B2 are related to the rate-of-change of the 

"field- index, " n, substantially by 

B l W' - 3300 dn/de and B2 ';1 + 3300 dn/de . 

The location of the working points, in relation to the 2 V - V =1
Y x 

resonance line, for these two sets of equations is indicated in Fig. 1. Infer­

ences drawn from the computational results for the amount of non-linearity 

introduced in these equations may, of course, be re-interpreted for other 

malllitudes of non-linearity (of the same form) by "scaling" the dependent 

variables--i. e., by use of the transformation x =oe.X, y = ot,Y, which has the 

effect of increasing the relative amount of non-linearity by the factor a.. 

III. RESULTS FOR THE EQUATIONS OF SET I: 

A. The Oscillation Frequencies: 

The frequencies of small-amplitude oscillations were determined for 

the equations of Set II (for various values of the parameter S2) by preliminary 

orientation runs in which the non-linear (coupling) terms were suppressed . ..r", 
The results are shown below in Table 1.� 

4� 
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TABLE I 

Oscillation Frequencies for Equations of Set I 

~ = 0 7483 

Sz - 160 S2 2;)
y - 2J x 

-0.005235 0.8376 1. 0938 

-0.005075 0.81Z0 1. 0664 

-0.004995 0.799Z 1. 0515 

-0.004915 0.7864 1.0379 

-0.004835 0.7736 1. 0235 
-0.004755 0.7608 1.0090 

-0.004675 0.7480 0.9943 

-0.004595 0.7352 0.9796 

-0.004515 0.7224 0.9646 

-0.004355 0.6968 0.9344 

-0.004195 0.671Z 0.9036 

B. The Examination of y-Growth: 

For each of the frequencies listed in Table 1, runs were made with a 

small initial y-amplitude (0.001) and various initial x-amplitudes, in an 

effort to find y-growth characteristic of the coupling resonance. When such 

growth was observed, 'the lapse-rate ll denoting the rate of exponential growth 

was measurable from a semi-logarithmic plot of Ky vs t /1f and could be 

conveniently expressed as decades per ,D.?:. = 1l. Since 7: = 4 9, the lapse-

rate so determined may also be regarded as expressed in "decades per 

octant. " 

The results of these runs are summarized in Table II and portrayed 

in the form of an altitude chart in Fig. 2. In the figure each notch corresponds 

5 
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to a lapse-ratp of 0> OOS decades per oel ant As mentioned in Section II, 

the results could be re- mterpreted for other strengths of the non-linearity 

by suitable scaling of the dependent vanables. 

TABLE II 

Lapse- Rate for Equations of Set 1 

Lapse-rates are given in decades per octant 

U = O. 7483x 
Xo 

S2 2 Uy -u 
}l 7.0 4.4 2.2 O. 7 

-0.005235 1. 094 ~hrob-factor 5, 8 

-0.005075 1.066 0.010 1 Throb- factor 4. 3­

-0.004995 1. 052 0.0062� 

-0.004915 1. 038 0.0028� 

-0.004835 1. 024 0.0141 0.0089 0.0043� 

-0.004755 1.009 0.0143 0.0048� 

-0.004675 0.994 0.0144 0.0091 0.0048� 

-0.004595 0.980 0.0136 0.003� 
!

-0.004515 0.865 0.01l3 0.0065 0 ,i 

-0.004355 I 0.934 0.0071 5 0 
! 

-0.004195 0.904 0 

IV. RESULTS FOR THE EQUATIONS OF SET II: 

A. Results with no Secular Change 

As with the equations of Set I the frequencies of small-amplitude 

oscillations were determined for the equations of Set II by short orientation 

I""". 
runs with the non-linear terms suppressed. With the non-linear terms 

6 
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present a search was made to find y- growth, again using a small initial 

y-amplitude (0.00001) and various initial x-amplitudes. When y-growth 

was seen to be present, it was followed through a few decades--in every 

case through more than one decade save for those runs with Xo equal to 

0.01 or to O. 005--and the lapse-rate determined. For the equations of 

Set II, in which 9 = 2?;, the lapse-rate is conveniently expressed in 

decades per L::>.'C::: 1f or, equivalently, as decades per revolution. 

The results, giving the lapse-rate for various values of the 

parameters 81 and 82 together with the associated frequencies for small-

amplitude oscillations. are listed in Table III. The lapse-rates are also 

shown in Fig. 3 in the form of an altItude chart, with each notch corres­

ponding to a lapse-rate of 0.02 decades per revolution. 

B. Results with Secular Change: 

As remarked in Section II. the motion characterized by the equations 

of Set II could be caused to traverse the 2 Vy ­ v =1 resonance by intro­x 

duction of the terms B 1 or 2 cos ~6i8f + .1f). with B1 =- B2' These 

terms, in effect, are equivalent to a slow (substantially linear) secular change 

of the coefficients Sl and 82 and produce a change of the small-amplitude 

oscillation frequencies simulating a linear change of the field-index, n: 

dn/d9 ~ B 2 /3300 . 

The values of 81 and 52 actually used throughout this series were -0.1618 

and -0.2418, respectively, corresponding to initial oscillation frequencies 

(\ V x =O. 6334 and 2Jy :; O. 7765, v/ith 2 ~ - U ::: O. 9196 [ Table III] . x 

7� 
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Lanse- late. are riven in decade. ner revolution 

TABLE. 

OSCILLATION FREQUENCIES AND LAPSE-h)TES FOR EQUATIONS OF SET II 

.Jc ,)y 2~ -11 I- Xe. 
0.50 0.25 0.10 0.050 0.025 

S,+s.,: -0.4036 

) 

O. OJ 0 0.005 

r 

"', 

0.1618 

0.1525 

-0.2418 

-0.2511 

0.6334 

0.6143 

0.7765 

0.7914 

0.9196 

0.9685 
throb-fact< r 
2.5 or 2.6 

0.1505 

0.1495 

-0.2531 

-0.2541 

0.6101 

0.6080 

0.7946 

0.7962 

0.9791 

0.9844 

0.0175 
hr~b  - actor 

2.5 

0.1485 

0.1475 

-0.2551 

-0.2561 

0.6058 

0.6037 

0.7977 
. 

0.7993 

0.9896 

0.9948 

0.0287 0.0086 

0.0141 

0.1470 -0.2566 0.6027 0.8001 0.9975 0.0052 

0.1465 -0.2571 0.6016 0.800~  1.0001 0.0306 0.0156 0.0062 0.0031 0.0016 0. 00062 0.00038 

0.1460 -0.2576 0.6005 0.801 t 1.0028 0.0046 

0.1455 

0.1445 

-0.2581 

-0.2591 

0.5994 

0.5972 

0.8024 

0.8040 

1.0054 

1.0107 0.0241 

0.0127 
. 

0.0044 

0.1435 -0.2601 0.5950 0.8055 1.0160 0 

0.1425 -0.2611 0.5928 0.807i 1.0213 0 

0.1408 -0.2628 0.5891 0.8097 1.0304 

0.1405 -0.2631 0.5884 0.8102 1.0320 0 

0.1268 

0.1233 

-0.2768 

-0.2803 

0.5561 

0.5469 

0.8311 . 
0.8364 

1.1061 

1.1258 

0.1198 -0.2838 0.5370 0.8416 1.1462 

0.1124 -0.2912 0.5000 0.8525 2.2050 
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In all the runs made employing this secular change of parameters, the 

initial y-amplitude was, as before, taken as quite small (0.00000. It would 

be expected that the factor by .vhich the y-amplitude is ~ncreased by traversal 

of the resonance would depend in a somewhat accidental way upon the phase with 

which the oscillations enter the region of instability--in most of the work re­

ported here the initial amplitude of x-oscillation was obt ained by taking 

X o = 0.50, Pxo:: [dX/d1:] 0 = 0 or X o := 0, Px ;:: 0.51 (each correspondingo 

to an initial amplitude O. 50), or by X o = 0.25, Px = 0 or X = 0, Px = O. 255 o o o 

(corresponding to an initial amplitude 0.25). The rates of secular change 

which were employed are listed in Table IV.� 

TABLE IV� 

Values of the Coefficients Bl and B2,� 
Introduced to Represent a Secular Change of Frequency,� 
and the Corresponding Rate-of-Change of Field- Index� 

B 1 B 2 Approx. dn/de 

-0.0990 0.0990 0.000 030 

-0.1452 O. 1452 0.000 044 

-0.2145 0.2145 0.000 065 

-0.3168 0.3168 0.000 096 

-0.462 0.462 0.000 140 

-0.66 0.66 0.000 200 

-0.99 0.99 0.000 300 

The results of such runs are shown in Figs. 4-10. Although traversal 

of the resonance 2 V - U :: 1 is seen to have a material effect on the 
y x 

amplitude of the y-oscillations, normally increasing the amplitude by a sub­
I'"' 

9 
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stantial factor the magnitude of the effect is seen to depend considerably 

upon the phase (of the x-oscillations in this case) at the start of the run and 

in some cases a decrease of y-amplitude is seen to result ~igs. 9 and 10J . 

In some of the runs, specifically those with the more rapid secular changes, 

the computations continued for a sufficient number of revolutions to carry 

the operating point to the neighborhood of OK ..7t"<))x = 1 / Z)--in such cases, 

of course, the x-motion would be expected to experience instability and, 

through coupling with the y-motion, exert a pronounced influence on the 

latter. In an auxiliary investigation, 8 however, no resonances leading to 

y- growth were detected in the interval bet ween ZV - V = 1 and V = 1/Zy x x 

for the simple equations of Set II (as was to be expected). 

Since, as noted above, the effect on the y-amplitude of traversing the 

coupling resonance will necessarily depend markedly upon the initial phases 

of the oscillatory motion, the results depicted in Fig. 7 [B = -0.3168,1 

BZ = O. 3168; dn/d9~0. 000 096] were supplemented by sixty additional runs 

to give what it was hoped would be a representative selection of initial phases 

for both the x- and the y-motion. As before, the initial values corresponded 

to an initial x-~~..P~ituq~ of either O. 50 or 0.25. From the results of this 

survey (summarized in Appendix 1), it was felt that the following factors 

represent a fair estimate of the amount of growth which may be obtained with 

this rate of traversal of the 2 V y = 2J :-:: 1 resonance (cJ. Fig. 13):x 

For an initial x-amplitude of 0.50, growth by a factor 18 

or 1. 25 decade; 

For an initial x-amplitude of 0.25, growth by a factor 3. 3 

or O. 52 decade. 

10 
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V.� APPROXIMATE ANALYTIC TREATMENT:� 

A, The Case of No Secular Change:� 

It may be of interest to attempt an analytic treatment of the equations 

of Set II along the lines previously employed9 in examination of other coupling 

resonances, although the accuracy of such theoretical results may suffer in 

the present instance because the oscillation frequencies are sufficiently high 

that both, ~ and CJy lie rather close to 7l. The method10 basically 

assumes the x-motion to be prescribed, unaffected by coupling with the 

relatively small y-motion, and this solution when substituted into the y-equa­

tion thus gives a differential equation linear in the single dependent variable y. 

Since we are here attempting no more than an approximate treatment of� 

the 2 V y - )Ix =1 resonance, it apparently is sufficient to employ a simplified� 

,...... form of the y-equation� 

~:~ +[V; + (d/2) (cos 9) x] Y =0, 

where d =-0.42 in the computations reported above (Section IV). If a simple 

representation of the x-motion, 

is now employed, one obtains� 

2� 
d y + [V2 ... (Ax d /2) (cos V 9) (cos ~)] y = 0x
deZ Y 

or 

2 
d [l + ... U ) 9 + (Ax d/4) cos (l - ~~ + V (Ax d/.) cos (1 x� Vx ) 9 y = o.
de y 

For purposes of studying the Z})y - U = 1 resonance, we may ignore the 
~ x 

last term in the coefficient of y and consider the simple Mathieu equation 

11 
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:;~ + [V~ 1- (Ax d/4) cos (l + Vx ) 9 ] y - O. 

(1.) This last equation has, as is well known, the stability boundaries 

[~f. Ref. 9, Appendix IB, C]: 

Axd 
- ( ---z­

leading to a full-width for the resonance which may be conveniently expressed 

as 

. __ IAxd I
4ZVy-VX-l[ ] 2Vy + U + 1 

Numerically, for the problem at hand, this becomes 

w = 0.42 A 
~ x 

= O.131Ax ' 

where W denotes the full-width of the resonance in units of 2 V - V ' y x 

We may compare this theoretical width with that estimated from the 

computational results of Section IV A. as is done in Table V below. 

TABLE V 

Comparison of the Theoretical and Computational 

Width for the Resonance ZU - 2{ = 1y 

The Table gives the widths in units of 2 ~ - V ' x 
d = -0.42 ~ O. 6016, V C! O. 8008Vx y 

0.50 0.25 0.10Ax 

0.066 0.033 0.013Wtheor. 

0.051 0.029 0.012Wobs· 

(2.) The lapse-rate characterizing y-growth in the unstable region 

12 
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may also be estimated for the Mathieu equation cited earlier, by reference 

to methods used previously [Gf. Ref. 9, Appendix IVJ. One obtains 

Ll = l!.!L r4i - Attr. -= 1. I W2 - 4 q2r- 8 I t V 4� nepers/radian of 9 , 
x 

where q denotes }. ~ - 2{ - 1 and ~hr.	 the threshold 
amplitude, 

jI. =~	 " ~ nepers/radian of 9 .Max. 8 1+ V x 

H, for convenience, we convert these result. to decades per revolution 

(through multiplication by 27'(10g. :!:: Z. 7Z875) and insert the appropriate 

constants for the problem at hand (when required), we obtain 

)J. = 0.089 /~ - A;hr. = o. 68hZ - 4 qZ decades/revolution of 9 

and 

~ax. =0.089 Ax :: 0.68 W decades/revolution of 9 . 

The formula for AM may be compared� with the computationalax. 

results, summarized in Table III, for ZVy - Vx =1. 0001, which corresponds 

closely to the resonant condition and for which the lapse-rates attain nearly 

their maximum values. This comparison is given in Table VI. 

TABLE VI 

Comparison of Theoretical and Observed Lapse-Rates. 

Lapse-rates are given in decades /revolution. 

81 = -0.1465, 8Z =-0. Z571 Vx = 0.6016, Vy =o. 8009, z~ -2{ =1.aDl 

0.50 0.Z5 0.10 0.050 0.025 0.010 0.005Ax 
A Calculated 0.045 0.OZ2 0.0089 0.0045 O.OOZZ� 0.0009 0.0004

from Av 

.;ll Calculated 0.035 O.OZO 0.008Z 
from Wobs . 

.-k~. 0.0306 0.0156 0.0062 0.0031 0.0016 0.0006 0.0004from om­

13� 
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,-.., From the comparisons shown we infer that the simple theory outlined 

in this section appears to provide a semi-quantitative account of the effects 

of the resonance, in the absence of secular change, although the widths for 

the resonance and the associated lapse-rates appear to be somewhat greater 

than observed from the computational results. 

B. Effect of Traversal of Resonance: 

It is tempting to employ the foregoing theoretical results to estimate 

the possible increase of y-amplitude when traversing the 2 V - 2) =1 
- Y x 

resonance. The results of such an attempt certainly cannot be expected to 

be of high accuracy J in part because of the approximate character of the 

preceding analysis and in part because of a certain amount of adiabatic 

amplitude-change (which we shall ignore) before reaching the resonance,
"....., 

but perhaps primarily because the situation with secular change is in a 

sense different and the net effect upon the y-motion will certainly (as we 

have seen) depend markedly on the phases of the respective oscillations. 

From the results of the preceding sub- section, we estimate the 

growth of y-amplitude which can result from traversal of the 2 V y - V x =1 

resonance to be, if the ascending exponential solution dominates, 

_JIWZ - 4 q2 nepers, with the integral taken 
Growth - 4 d9 through the resonance 

IWll� 
4 q2 dq=

1 jw2 
­

4 '~I. W/2 

l [1 
dS= ~ /1- f 2 

rn­ nepers,�= if W2 

de 14 
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".,... where, as before q denotes 2 2J - 2J - 1, From the observed dependence
r ' Y x 

of Vx and 2Jy on the parameters Sl or S2 (Table 111), and from the rate at 

which the coefficients B 1 and B l in effect modify Sl and S2' one finds for the 

equations of Set II (with B1 -- -BZ)' 

and 

8192
Growth nepers5:"3 

WZ 
= 303.5 nepers

'Blf 
W2 

= 132 decades, 
IB 11 

W being the full-width of the resonance, for the x-amplitude under considera­

tion, measured in units of 2 Vy - 2{. 

In particular, for the case B 1 ;:: -0.3168, B 2 ;:: 0.3168, 

Growth = 416 W2 decades. 

If we employ the observed widths of the resonance (Table V) for the x-amplitudes 

o. 50 and 0.25, we then expect� 

For X =0.50, Growth of 1.08 decades (factor 12);�o 

For X =0.25, Growth of O. 35 decades (factor 2.2).o 

Vr the theoretical values of W were employed, the expected growth would 

be somewhat larger--l. 81 and 0.45 decades, or factors of 65 and 2.8, 

respeCtively] As noted in Section IV B, the corresponding figures estimated 

from actual computational runs (32 runs for each x-amplitude) were 

For X o = 0.50, Growth of 1. 25 decades (factor 18); 

For Xo = 0.25, Growth of O. 52 decades (factor 3.3). 
15 
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-0.1355 -0.2681 0.577 0.818 
-0.1330 -0.2706 0.571 0.822 

-0.1305 -0.2731 0.575 0.8255 
-0.1280 -0.2756 O. 559 0.829 
-0.1255 -0.2781 0.553 0.833 

-0.1230 -0.2806 0.546 0.837 
-0. 1205 -0.2831 O. 539 0.8405 
-0.1180 -0.2856 0.531 0.844 

-0. 1155 -0.2881 0.52 3 0.848 
-0.1130 -0.2906 O. 51 0 0.852 

16 
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As expected, ...,ith the coupling terms employed in the equations of Set II, 

no evidence of any coupling resonance was seen in this interval. For the 

two runs for which the coefficients were those listed in the last two lines of 

the preceding Table, however, x- instability for the x-amplitude employed 

(0. 50)� rapidly became apparent, attributable to the proximity to the� 

o-x =7( (~ = 1/2) resonance (Figs. 11 and 12).� 

9Esp. L. Jackson Laalett and A. M. Sessler, MURA-263 (May 6, 1957).� 

10The procedure in principle thus parallels that suggested by W. Walkinshaw 

for analysis of the 2 V y - 1Jx = 0 resonance--W. Walkinshaw, "A Spiral 

Ridged Bevatron, 11 A. E. R. E., Harwell (1956). 

17� 
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APPEND:X ~ 

Data !~ .. ustrafjng Growth In Trave- sal of Resonance 

dn /de: 0., 000 096 
-.� 

0 50�IAx] 
Grown·, Factor Geom. 

Xo� PXo \0 PYo For Successive Maxima and Minima Mean of 
Middle 'I'M:After Traversing Resonance Factors 

5 0 .00001� 0 17.657 8.920 15.646 9.703 11. 81 
.354 .361 10,838 5. 774 9.706 6. 135 7.49 
0 51 3.146 1. 661 2.709 1,769 2.12 

- 354 .361 7,537 3.774 6.475 4.249 4.94 
-.5 0 18 .. 7.25 9.598 16,635 9 694 4.00 
-.354 -.361 .22.034 11. 883 19.607 11. 970 15.26 

0 -.51 23 547 12.456 20.180 1;$.902 15.85� 
.354 -.361 23.390 11. 906 20.104 12.619 15.47� 

.5 0 .00000 7101 .0000 11999 23.606 11. 923 20.911 12.965 15.79� 

.354 .361 23. 937 12.762 21. 408 13.533 16.53� 
0 .51 18. 128 9. 586 14.962 10.585 11.98 
~4 361 10.203 5.084 8.800 5.753 6.69 
-. :i 0 O. 378 0.183 0.325 0.235 0.24 
-.354 -.361 7.552 4.016 6. 708 4.121 5.19 

0 -.51 14,729 7.826 12.671 8.713 9.96� 
.354 -.361 22,651 11. 539 19.476 12.238 14.99� 

5 0 0 I- 0000 16999 15.724 7.927 13.917 8.638 10.50� 
.354 .361 23.303 12 424 20.849 13.178 16.09� 
0 . 51 23565 12.468 20.145 13.760 15.85 

-.354 .361 22. 182 11.056 19.161 12.517 14.55 
-.5 0 18.154 ~.301 16 108 9.388 12.24 
-.354 -.361 10.980 5.916 9. 773 5.969 7.60 

0 -.51 3.,044 1.621 2.639 1. 810 2.07� 
.354 -.361 8. 504 4.365 7.331 4.656 5.66� 

. 5 0 .00000 7101 10000011999 2. 136 1.068 1.883 1.178 1. 42 
354 .361� 8 469 4 519 7.622 4.816 5.87 
0 . 51 14 636 7.756 12.558 8.265 9.87 

-.354 .361 21,19t. 10.570 18.300 11. 961 13.91 
-.5 0 26,]99 13.425 23.245 13.547 17 67 (r­

-.354 - 361 23.184 12.523 20.631 12. 587 16 07 
0 -. 51 18.088 9,560 15.494 10.675 12. 17� 

~4 -.361 10.4~7 5, 346 9.025 5.681 6.95� 
-� -
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MURA-443 

, ~ , 
IAxl =0.25 

Growth Factor Geom. 
Xo PXo Yo PYo For Successive Maxima and Minima 

After Traversing Resonance 
Mean o~
Middle 
Factors 

.25 0 .00001 0 3.899 2. 759 3.681 2.843 3.187 

.177 .1805 4.010 2.857 3.745 2.945 3.271 
0 .255 3.615 2.497 3.291 2.590 2.867 

-.177 .1805 2.625 1.851 2.459 1.949 2. 133 
-.25 0 1.338 0.922 1.234 0.960 1.067 
-.177 -.1805 0.561 0.419 0.541 0.436 0.476 

0 -.255 2.045 1. 478 1. 917 1. 510 1. 683 
.177 -.1805 3.280 2.293 2.988 2.409 2.618 

I 

I 
I 
I 

.25 

.177 
0 

.1805 
.00000 7101 0000 11999 2.031 

3.285 
1. 402 
2.348 

1.877 
3.070 

1.510 
2.412 

1. 622 
2.685 

0 .255 3.969 2.802 3.667 2.846 3.205 
-.177 .1805 4.074 2.840 3.774 3.020 3.274 
-.25 0 3.579 2.491 3.314 2.601 2.873 
-.177 -.1805 2.591 1.808 2.395 1. 823 2.081 

0 -.255 1. 310 0.905 1. 191 0.945. 1. 038 
~7 -.1805 0.526 0.381 0.513 0.405 0.442 

.25 0 0 0000 16999 1.331 0.921 1.229 0.934 1.064 

.177 .1805 0.590 0.442 0.567 0.455 0.501 
0 .255 1. 999 1. 461 1. 915 1.472 1.673 

-.177 .1805 3.259 2.255 2.986 2.409 2.595 
-.25 0 3.975 2.761 3.669 2.881 3. 183 
-.177 -.1805 4.007 2.863 3.754 2.843 3. 278+­

0 -.255 3.565 2.491 3.285 2.607 2.861 
.177 -.1805 2.686 1.833 2.435 1. 958 2.113 

. ~5 0 ~. 00000 7101 0000 11999 3.568 2.529 3.361 2.569 2.915 

.177 .1805 2.584 1.810 2.406 1. 885 2.087 
0 .255 1. 341 0.908 1.204 0.980 1.046 

-.177 .1805 0.314 0.491 0.369 0.483 0.426 
-.25 0 2.025 1.440 1.900 1.493 1.654 
-.177 -.1805 3.204 2.325 3.052 2.322 2.664 

0 -.255 3.931 2.753 3.626 2.892 3.159 
.177 -.1805 4.153 2.849 3.768 3.038 3.276 

19� 
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'"� ) ..) Fig. 4. Variation of y-amplitude during tra:Jrsal of resonance. ~  
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Fig. 6. Variation of y-amplitude durin' traversal of resonance. 
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Fig. 8. Variation of y-amplitude durin& Jversal of resonance. ) 
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Fig. 9. Variation of y-amplitude during trav ,al ot resonance. '.,B, = - o. 66 .82 • C' j 6 t) ) 
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The geometrical mean of , 

these two factors is takeR.~_,  

as a measure of the net ~t growth (arithmetic mean r I 
of growth in decades). I
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